HCFNN: High-order coverage function neural network for image classification

•A more flexible HCF neuron model for DNNs is introduced; it constructs geometries in an n-dimensional space by changing weights and hyper-parameters and thus, possesses higher variability and plasticity. Furthermore, the approximation theorem and proof for arbitrary continuous infinite functions ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 131; S. 108873
Hauptverfasser: Ning, Xin, Tian, Weijuan, Yu, Zaiyang, Li, Weijun, Bai, Xiao, Wang, Yuebao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.11.2022
Schlagworte:
ISSN:0031-3203, 1873-5142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A more flexible HCF neuron model for DNNs is introduced; it constructs geometries in an n-dimensional space by changing weights and hyper-parameters and thus, possesses higher variability and plasticity. Furthermore, the approximation theorem and proof for arbitrary continuous infinite functions are presented, and the fitting ability of the HCF neuron 95 model is demonstrated.•HCFNN architecture based on the HCF neuron is proposed; it is used to mine specific feature representations and achieve adaptive parameter learning. Next, a novel adaptive optimization method for weights and hyper-parameters is proposed to achieve effective network learning. The 100 learned network model has better expression and learning ability with fewer neurons.•We conduct experiments on nine datasets in several domains, including the two-spirals problem, natural object recognition, face recognition, and person re-ID. Experimental results show that the proposed method has better 105 learning performance and generalization ability than the commonly used M-P and RBF neural networks. In addition, our method can improve the performance of various image recognition tasks and acquire good generalization. Recent advances in deep neural networks (DNNs) have mainly focused on innovations in network architecture and loss function. In this paper, we introduce a flexible high-order coverage function (HCF) neuron model to replace the fully-connected (FC) layers. The approximation theorem and proof for the HCF are also presented to demonstrate its fitting ability. Unlike the FC layers, which cannot handle high-dimensional data well, the HCF utilizes weight coefficients and hyper-parameters to mine underlying geometries with arbitrary shapes in an n-dimensional space. To explore the power and potential of our HCF neuron model, a high-order coverage function neural network (HCFNN) is proposed, which incorporates the HCF neuron as the building block. Moreover, a novel adaptive optimization method for weights and hyper-parameters is designed to achieve effective network learning. Comprehensive experiments on nine datasets in several domains validate the effectiveness and generalizability of the HCF and HCFNN. The proposed method provides a new perspective for further developments in DNNs and ensures wide application in the field of image classification. The source code is available at https://github.com/Tough2011/HCFNet.git
AbstractList •A more flexible HCF neuron model for DNNs is introduced; it constructs geometries in an n-dimensional space by changing weights and hyper-parameters and thus, possesses higher variability and plasticity. Furthermore, the approximation theorem and proof for arbitrary continuous infinite functions are presented, and the fitting ability of the HCF neuron 95 model is demonstrated.•HCFNN architecture based on the HCF neuron is proposed; it is used to mine specific feature representations and achieve adaptive parameter learning. Next, a novel adaptive optimization method for weights and hyper-parameters is proposed to achieve effective network learning. The 100 learned network model has better expression and learning ability with fewer neurons.•We conduct experiments on nine datasets in several domains, including the two-spirals problem, natural object recognition, face recognition, and person re-ID. Experimental results show that the proposed method has better 105 learning performance and generalization ability than the commonly used M-P and RBF neural networks. In addition, our method can improve the performance of various image recognition tasks and acquire good generalization. Recent advances in deep neural networks (DNNs) have mainly focused on innovations in network architecture and loss function. In this paper, we introduce a flexible high-order coverage function (HCF) neuron model to replace the fully-connected (FC) layers. The approximation theorem and proof for the HCF are also presented to demonstrate its fitting ability. Unlike the FC layers, which cannot handle high-dimensional data well, the HCF utilizes weight coefficients and hyper-parameters to mine underlying geometries with arbitrary shapes in an n-dimensional space. To explore the power and potential of our HCF neuron model, a high-order coverage function neural network (HCFNN) is proposed, which incorporates the HCF neuron as the building block. Moreover, a novel adaptive optimization method for weights and hyper-parameters is designed to achieve effective network learning. Comprehensive experiments on nine datasets in several domains validate the effectiveness and generalizability of the HCF and HCFNN. The proposed method provides a new perspective for further developments in DNNs and ensures wide application in the field of image classification. The source code is available at https://github.com/Tough2011/HCFNet.git
ArticleNumber 108873
Author Yu, Zaiyang
Li, Weijun
Bai, Xiao
Ning, Xin
Tian, Weijuan
Wang, Yuebao
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0001-7897-1673
  surname: Ning
  fullname: Ning, Xin
  organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
– sequence: 2
  givenname: Weijuan
  surname: Tian
  fullname: Tian, Weijuan
  organization: Cognitive Computing Technology Joint Laboratory, Wave Group, Beijing, 100083, China
– sequence: 3
  givenname: Zaiyang
  surname: Yu
  fullname: Yu, Zaiyang
  organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
– sequence: 4
  givenname: Weijun
  orcidid: 0000-0001-9668-2883
  surname: Li
  fullname: Li, Weijun
  email: wjli@semi.ac.cn
  organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
– sequence: 5
  givenname: Xiao
  surname: Bai
  fullname: Bai, Xiao
  email: baixiao@buaa.edu.cn
  organization: School of Computer Science and Engineering, Beihang University, Beijing, China
– sequence: 6
  givenname: Yuebao
  surname: Wang
  fullname: Wang, Yuebao
  email: yuebao17@163.com
  organization: Cognitive Computing Technology Joint Laboratory, Wave Group, Beijing, 100083, China
BookMark eNqFUEtOwzAUtFCRaAs3YJELpPgTO0kXSKiiFFGVDawt58UuLiGu7LSI29chrFjAaqR5M6N5M0Gj1rUaoWuCZwQTcbOb7VUHbjujmNJIFUXOztCYREg5yegIjTFmJGUUsws0CWGHMcnjYYyeVovlZjNPVnb7ljpfa5-AO2qvtjoxhxY669qk1Qevmgjdp_PviXE-sR-9AhoVgjUWVK-7ROdGNUFf_eAUvS7vXxardP388Li4W6dAmehSyjNSUa5rBlVdq9KIKs_yyBTGFEBACMUULyteQ6ko5RUXZYZ1iXMMWUEFm6JsyAXvQvDayL2PffyXJFj2g8idHAaR_SByGCTa5r9sYLvv4p1XtvnPfDuYdXzsaLWXAaxuQdfWa-hk7ezfAScRzYDH
CitedBy_id crossref_primary_10_1007_s11042_023_16870_0
crossref_primary_10_1016_j_eswa_2024_125157
crossref_primary_10_1007_s11042_023_16243_7
crossref_primary_10_1016_j_eswa_2024_125874
crossref_primary_10_1016_j_cmpb_2024_108080
crossref_primary_10_3390_electronics12071531
crossref_primary_10_3389_fevo_2023_1159152
crossref_primary_10_1016_j_displa_2023_102496
crossref_primary_10_1111_exsy_13579
crossref_primary_10_1007_s11042_023_17986_z
crossref_primary_10_1007_s11227_024_06799_y
crossref_primary_10_4018_JOEUC_384397
crossref_primary_10_1155_2022_4846103
crossref_primary_10_3389_fnbot_2022_1006755
crossref_primary_10_1109_TIV_2023_3304852
crossref_primary_10_1155_2022_1317439
crossref_primary_10_3390_app122311915
crossref_primary_10_1007_s11042_023_16105_2
crossref_primary_10_3389_fenrg_2023_1269059
crossref_primary_10_1155_2022_2819029
crossref_primary_10_1155_2022_4258577
crossref_primary_10_1109_JAS_2023_123813
crossref_primary_10_1016_j_neunet_2025_107820
crossref_primary_10_1007_s10044_024_01276_x
crossref_primary_10_1007_s11042_023_16680_4
crossref_primary_10_1007_s11431_024_2680_3
crossref_primary_10_1016_j_patcog_2025_111974
crossref_primary_10_1049_cvi2_12146
crossref_primary_10_1049_cvi2_12189
crossref_primary_10_1016_j_heliyon_2024_e37167
crossref_primary_10_34133_plantphenomics_0208
crossref_primary_10_1155_2022_1231601
crossref_primary_10_3390_info14030183
crossref_primary_10_1007_s00371_023_03157_6
crossref_primary_10_1155_2022_9124952
crossref_primary_10_1016_j_sigpro_2023_108996
crossref_primary_10_1155_2022_3048928
crossref_primary_10_1155_2024_6054172
crossref_primary_10_1007_s11042_023_16594_1
crossref_primary_10_1016_j_patcog_2024_110823
crossref_primary_10_1155_2022_1668750
crossref_primary_10_1007_s00138_024_01563_x
crossref_primary_10_1016_j_sigpro_2023_108954
crossref_primary_10_3389_fpubh_2023_1160478
crossref_primary_10_1155_2022_7672692
crossref_primary_10_1007_s00500_023_09536_4
crossref_primary_10_1186_s13677_023_00470_2
crossref_primary_10_1016_j_ins_2024_120130
crossref_primary_10_3389_fevo_2023_1155401
crossref_primary_10_1016_j_displa_2023_102588
crossref_primary_10_3389_fncom_2025_1545971
crossref_primary_10_1016_j_eswa_2023_121167
crossref_primary_10_7717_peerj_cs_1462
crossref_primary_10_3390_electronics12143171
crossref_primary_10_3389_fnbot_2023_1269105
crossref_primary_10_1016_j_sigpro_2024_109619
crossref_primary_10_1109_JSEN_2023_3267001
crossref_primary_10_3390_rs15010231
crossref_primary_10_1016_j_sigpro_2023_108962
crossref_primary_10_4018_JOEUC_345245
crossref_primary_10_3390_electronics12061395
crossref_primary_10_1016_j_displa_2023_102513
crossref_primary_10_1109_ACCESS_2023_3316885
crossref_primary_10_32604_cmc_2023_042466
crossref_primary_10_3389_fevo_2023_1272707
crossref_primary_10_1080_00949655_2024_2439453
crossref_primary_10_1016_j_inffus_2023_102128
crossref_primary_10_1016_j_neunet_2025_107124
crossref_primary_10_3390_electronics11223797
crossref_primary_10_1016_j_sna_2024_115930
crossref_primary_10_1016_j_ipm_2022_103243
crossref_primary_10_1371_journal_pone_0307319
crossref_primary_10_4018_JOEUC_336481
crossref_primary_10_1007_s11042_024_18810_y
crossref_primary_10_3389_fnbot_2023_1329589
crossref_primary_10_3390_electronics12071643
crossref_primary_10_3390_electronics13234820
crossref_primary_10_3389_fevo_2023_1176872
crossref_primary_10_3390_electronics11233995
crossref_primary_10_1007_s11042_022_14307_8
crossref_primary_10_3389_fnbot_2022_1000646
crossref_primary_10_1016_j_aej_2024_12_030
crossref_primary_10_4018_JOEUC_354413
crossref_primary_10_3390_electronics12224566
crossref_primary_10_1109_JBHI_2023_3247861
crossref_primary_10_1016_j_compeleceng_2023_108890
crossref_primary_10_4018_JOEUC_357249
crossref_primary_10_1007_s11042_024_19327_0
crossref_primary_10_1155_2022_3575130
crossref_primary_10_1016_j_displa_2023_102368
crossref_primary_10_1016_j_patcog_2022_109216
crossref_primary_10_1016_j_foodchem_2024_140795
Cites_doi 10.1016/j.neucom.2004.11.034
10.1007/s11263-015-0816-y
10.1007/BF02551274
10.1007/BF02478259
10.1016/j.neucom.2020.10.081
10.1109/TMM.2019.2958756
10.1016/j.patcog.2021.107975
10.1016/j.patcog.2021.108498
10.1109/TPAMI.2021.3102955
10.1016/j.patcog.2021.108351
10.1016/j.neunet.2021.02.028
10.1109/72.774263
10.1109/TMM.2021.3069562
10.1023/A:1018628609742
10.1109/TIP.2021.3060167
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.108873
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_108873
S0031320322003545
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c236t-2541b25ed3cbdda9f6b747b258ff8c1c66a3a59b5dc9a225b56940e9070c48263
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841964700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 03:52:32 EST 2025
Tue Nov 18 20:04:03 EST 2025
Fri Feb 23 02:40:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Back propagation
Computer vision
Heuristic algorithm
Neuron modeling
DNNs
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-2541b25ed3cbdda9f6b747b258ff8c1c66a3a59b5dc9a225b56940e9070c48263
ORCID 0000-0001-7897-1673
0000-0001-9668-2883
ParticipantIDs crossref_primary_10_1016_j_patcog_2022_108873
crossref_citationtrail_10_1016_j_patcog_2022_108873
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108873
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Si, Zhang, Li, Kuen, Kong, Kot, Wang (bib0045) 2018
Wen, Zhang, Li, Qiao (bib0038) 2016
Wang, Wang, Zhou, Ji, Gong, Zhou, Li, Liu (bib0041) 2018
Zhang, Zhang (bib0018) 1999; 10
Schroff, Kalenichenko, Philbin (bib0037) 2015
Suykens, Vandewalle (bib0027) 1999; 9
Gao, Zhou, Wang, Cheng, Yachi, Wang (bib0010) 2019; volume 30
Li, Zhu, Gong (bib0047) 2018
Shi, Wang, Zheng, Hua, Tang (bib0004) 2022; 122
Wang, Deng (bib0035) 2021; 429
Krizhevsky (bib0028) 2009
Huang, Mattar, Berg, Learned-Miller (bib0029) 2008
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0034) 2015
Mitchell (bib0023) 1998
Rumelhart, Hinton, Williams (bib0022) 1985
Liao, Lei, Yi, Li (bib0044) 2014
Geldmacher, David (bib0008) 2010; volume 29
Wang, Wang, Zhang, Zhang, Bai, Ning, Zhou, Hancock (bib0006) 2022; 124
Luo, Jiang, Gu, Liu, Liao, Lai, Gu (bib0050) 2019; 22
Yan, Pang, Bai, Liu, Ning, Gu, Zhou (bib0003) 2021; 24
Taigman, Yang, Ranzato, Wolf (bib0036) 2014
Sun, Zheng, Yang, Tian, Wang (bib0046) 2018
Tay, Roy, Yap (bib0048) 2019
Quan, Dong, Wu, Zhu, Yang (bib0054) 2019
Xie, Ma, Chang, Zhang, Guo (bib0016) 2021
Liu, Wen, Raj, Singh, Weller (bib0039) 2022
Costa, Rui (bib0012) 2011; volume 3
Zhang, Zhou (bib0014) 2021; 33
Li, Zhao, Xiao, Wang (bib0031) 2014
McCulloch, Pitts (bib0009) 1943; 5
Du, Xie, Ma, Chang, Song, Guo (bib0017) 2021
Jin, Xu, Han, Zhang, Cheng (bib0051) 2021; 30
Kemelmacher-Shlizerman, Seitz, Miller, Brossard (bib0025) 2016
Deng, Guo, Xue, Zafeiriou (bib0040) 2019
Wang, Ning, Sun, Zhang, Li, Bai (bib0005) 2022; 60
Zheng, Shen, Tian, Wang, Wang, Tian (bib0030) 2015
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0024) 2015; 115
Kiranyaz, Malik, Abdallah, Ince, Iosifidis, Gabbouj (bib0015) 2021; 140
Xia, Gong, Zhang, Poellabauer (bib0052) 2019
Shi, Yu, Sohn, Chandraker, Jain (bib0043) 2020
Dai, Chen, Gu, Zhu, Tan (bib0049) 2019
Ristani, Solera, Zou, Cucchiara, Tomasi (bib0026) 2016
Broomhead, Lowe (bib0013) 1988
He, Schomaker (bib0001) 2021; 117
Wang, Li, Zhang, Sun, Chen, Yu, Ning (bib0007) 2021
Cybenko (bib0021) 1989; 2
Lei, Yang, Haq, Zhang, Francis (bib0002) 2022
Simonyan, Zisserman (bib0033) 2014
Li, Xu, Xu, Shen, Li, Hooi (bib0042) 2021
He, Zhang, Ren, Sun (bib0032) 2016
Koch, Segev (bib0011) 2000; volume 3
Ge, Zhu, Chen, Zhao (bib0053) 2020; 33
Wang, Li (bib0020) 2001; 29
Shoujue, Jiangliang (bib0019) 2005; 67
Krizhevsky (10.1016/j.patcog.2022.108873_bib0028) 2009
Wen (10.1016/j.patcog.2022.108873_bib0038) 2016
Rumelhart (10.1016/j.patcog.2022.108873_bib0022) 1985
Kiranyaz (10.1016/j.patcog.2022.108873_bib0015) 2021; 140
He (10.1016/j.patcog.2022.108873_bib0001) 2021; 117
Zheng (10.1016/j.patcog.2022.108873_bib0030) 2015
Mitchell (10.1016/j.patcog.2022.108873_bib0023) 1998
Luo (10.1016/j.patcog.2022.108873_bib0050) 2019; 22
Xie (10.1016/j.patcog.2022.108873_bib0016) 2021
Szegedy (10.1016/j.patcog.2022.108873_bib0034) 2015
Wang (10.1016/j.patcog.2022.108873_bib0005) 2022; 60
Costa (10.1016/j.patcog.2022.108873_bib0012) 2011; volume 3
Zhang (10.1016/j.patcog.2022.108873_bib0018) 1999; 10
He (10.1016/j.patcog.2022.108873_bib0032) 2016
Lei (10.1016/j.patcog.2022.108873_bib0002) 2022
Yan (10.1016/j.patcog.2022.108873_bib0003) 2021; 24
Jin (10.1016/j.patcog.2022.108873_bib0051) 2021; 30
McCulloch (10.1016/j.patcog.2022.108873_bib0009) 1943; 5
Cybenko (10.1016/j.patcog.2022.108873_bib0021) 1989; 2
Geldmacher (10.1016/j.patcog.2022.108873_bib0008) 2010; volume 29
Shi (10.1016/j.patcog.2022.108873_bib0004) 2022; 122
Du (10.1016/j.patcog.2022.108873_bib0017) 2021
Shi (10.1016/j.patcog.2022.108873_bib0043) 2020
Li (10.1016/j.patcog.2022.108873_bib0031) 2014
Ristani (10.1016/j.patcog.2022.108873_bib0026) 2016
Quan (10.1016/j.patcog.2022.108873_bib0054) 2019
Gao (10.1016/j.patcog.2022.108873_bib0010) 2019; volume 30
Broomhead (10.1016/j.patcog.2022.108873_bib0013) 1988
Russakovsky (10.1016/j.patcog.2022.108873_bib0024) 2015; 115
Simonyan (10.1016/j.patcog.2022.108873_bib0033) 2014
Deng (10.1016/j.patcog.2022.108873_bib0040) 2019
Si (10.1016/j.patcog.2022.108873_bib0045) 2018
Li (10.1016/j.patcog.2022.108873_bib0047) 2018
Shoujue (10.1016/j.patcog.2022.108873_sbref0019) 2005; 67
Liao (10.1016/j.patcog.2022.108873_bib0044) 2014
Tay (10.1016/j.patcog.2022.108873_bib0048) 2019
Sun (10.1016/j.patcog.2022.108873_bib0046) 2018
Xia (10.1016/j.patcog.2022.108873_bib0052) 2019
Liu (10.1016/j.patcog.2022.108873_bib0039) 2022
Wang (10.1016/j.patcog.2022.108873_bib0035) 2021; 429
Ge (10.1016/j.patcog.2022.108873_bib0053) 2020; 33
Li (10.1016/j.patcog.2022.108873_bib0042) 2021
Kemelmacher-Shlizerman (10.1016/j.patcog.2022.108873_bib0025) 2016
Huang (10.1016/j.patcog.2022.108873_bib0029) 2008
Wang (10.1016/j.patcog.2022.108873_bib0007) 2021
Taigman (10.1016/j.patcog.2022.108873_bib0036) 2014
Zhang (10.1016/j.patcog.2022.108873_bib0014) 2021; 33
Wang (10.1016/j.patcog.2022.108873_bib0041) 2018
Dai (10.1016/j.patcog.2022.108873_bib0049) 2019
Schroff (10.1016/j.patcog.2022.108873_bib0037) 2015
Koch (10.1016/j.patcog.2022.108873_bib0011) 2000; volume 3
Suykens (10.1016/j.patcog.2022.108873_bib0027) 1999; 9
Wang (10.1016/j.patcog.2022.108873_bib0020) 2001; 29
Wang (10.1016/j.patcog.2022.108873_bib0006) 2022; 124
References_xml – start-page: 6817
  year: 2020
  end-page: 6826
  ident: bib0043
  article-title: Towards universal representation learning for deep face recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: bib0021
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of control, signals and systems
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0024
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vis
– year: 2022
  ident: bib0039
  article-title: Sphereface revived: unifying hyperspherical face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 1998
  ident: bib0023
  article-title: An introduction to genetic algorithms
– start-page: 1701
  year: 2014
  end-page: 1708
  ident: bib0036
  article-title: Deepface: Closing the gap to human-level performance in face verification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 5363
  year: 2018
  end-page: 5372
  ident: bib0045
  article-title: Dual attention matching network for context-aware feature sequence based person re-identification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 24
  start-page: 1665
  year: 2021
  end-page: 1677
  ident: bib0003
  article-title: Beyond triplet loss: person re-identification with fine-grained difference-aware pairwise loss
  publication-title: IEEE Trans Multimedia
– volume: 140
  start-page: 294
  year: 2021
  end-page: 308
  ident: bib0015
  article-title: Self-organized operational neural networks with generative neurons
  publication-title: Neural Networks
– volume: 29
  start-page: 577
  year: 2001
  end-page: 580
  ident: bib0020
  article-title: Discussion on the basic mathematical models of neurons in general purpose neurocomputer
  publication-title: Acta Electronica Sinica
– volume: volume 3
  start-page: 5
  year: 2011
  ident: bib0012
  article-title: One cell to rule them all, and in the dendrites bind them
  publication-title: Frontiers in Synaptic Neuroscience
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib0027
  article-title: Least squares support vector machine classifiers
  publication-title: Neural processing letters
– volume: 117
  start-page: 107975
  year: 2021
  ident: bib0001
  article-title: GR-RNN: global-context residual recurrent neural networks for writer identification
  publication-title: Pattern Recognit
– start-page: 5265
  year: 2018
  end-page: 5274
  ident: bib0041
  article-title: Cosface: Large margin cosine loss for deep face recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 15629
  year: 2021
  end-page: 15637
  ident: bib0042
  article-title: Spherical confidence learning for face recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2021
  ident: bib0007
  article-title: Encoder-x: solving unknown coefficients automatically in polynomial fitting by using an autoencoder
  publication-title: IEEE Trans Neural Netw Learn Syst
– year: 2008
  ident: bib0029
  article-title: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments
  publication-title: Workshop on faces in’Real-Life’Images: detection, alignment, and recognition
– volume: 22
  start-page: 2597
  year: 2019
  end-page: 2609
  ident: bib0050
  article-title: A strong baseline and batch normalization neck for deep person re-identification
  publication-title: IEEE Trans Multimedia
– year: 1988
  ident: bib0013
  article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks
  publication-title: Technical Report
– start-page: 4873
  year: 2016
  end-page: 4882
  ident: bib0025
  article-title: The megaface benchmark: 1 million faces for recognition at scale
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0032
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 17
  year: 2016
  end-page: 35
  ident: bib0026
  article-title: Performance measures and a data set for multi-target, multi-camera tracking
  publication-title: European Conference on Computer Vision
– start-page: 108841
  year: 2022
  ident: bib0002
  article-title: An entity-weights-based convolutional neural network for large-sale complex knowledge embedding
  publication-title: Pattern Recognit
– volume: volume 30
  start-page: 601
  year: 2019
  end-page: 614
  ident: bib0010
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2021
  ident: bib0016
  article-title: Gpca: a probabilistic framework for gaussian process embedded channel attention
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2014
  ident: bib0033
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Computer Science
– volume: 33
  start-page: 11309
  year: 2020
  end-page: 11321
  ident: bib0053
  article-title: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id
  publication-title: Adv Neural Inf Process Syst
– volume: volume 29
  start-page: 257
  year: 2010
  ident: bib0008
  article-title: The neurobiology of learning and memory
  publication-title: Journal of Neuro-Ophthalmology
– start-page: 1116
  year: 2015
  end-page: 1124
  ident: bib0030
  article-title: Scalable person re-identification: A benchmark
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 429
  start-page: 215
  year: 2021
  end-page: 244
  ident: bib0035
  article-title: Deep face recognition: a survey
  publication-title: Neurocomputing
– volume: 10
  start-page: 925
  year: 1999
  end-page: 929
  ident: bib0018
  article-title: A geometrical representation of mcculloch-pitts neural model and its applications
  publication-title: IEEE Trans. Neural Networks
– start-page: 152
  year: 2014
  end-page: 159
  ident: bib0031
  article-title: Deepreid: Deep filter pairing neural network for person re-identification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 4690
  year: 2019
  end-page: 4699
  ident: bib0040
  article-title: Arcface: Additive angular margin loss for deep face recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 3750
  year: 2019
  end-page: 3759
  ident: bib0054
  article-title: Auto-reid: Searching for a part-aware convnet for person re-identification
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 124
  start-page: 108498
  year: 2022
  ident: bib0006
  article-title: Uncertainty estimation for stereo matching based on evidential deep learning
  publication-title: Pattern Recognit
– volume: 122
  start-page: 108351
  year: 2022
  ident: bib0004
  article-title: Loss functions for pose guided person image generation
  publication-title: Pattern Recognit
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0034
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3691
  year: 2019
  end-page: 3701
  ident: bib0049
  article-title: Batch dropblock network for person re-identification and beyond
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 815
  year: 2015
  end-page: 823
  ident: bib0037
  article-title: Facenet: A unified embedding for face recognition and clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3760
  year: 2019
  end-page: 3769
  ident: bib0052
  article-title: Second-order non-local attention networks for person re-identification
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– start-page: 2285
  year: 2018
  end-page: 2294
  ident: bib0047
  article-title: Harmonious attention network for person re-identification
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 67
  start-page: 9
  year: 2005
  end-page: 28
  ident: bib0019
  article-title: Geometrical learning, descriptive geometry, and biomimetic pattern recognition
  publication-title: Neurocomputing
– volume: 60
  start-page: 1
  year: 2022
  end-page: 15
  ident: bib0005
  article-title: Learning discriminative features by covering local geometric space for point cloud analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 480
  year: 2018
  end-page: 496
  ident: bib0046
  article-title: Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: bib0009
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biophys
– year: 1985
  ident: bib0022
  article-title: Learning internal representations by error propagation
  publication-title: Technical Report
– start-page: 7134
  year: 2019
  end-page: 7143
  ident: bib0048
  article-title: Aanet: Attribute attention network for person re-identifications
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 33
  start-page: 2951
  year: 2021
  end-page: 2970
  ident: bib0014
  article-title: Flexible transmitter network
  publication-title: Neural Comput
– year: 2021
  ident: bib0017
  article-title: Progressive learning of category-consistent multi-granularity features for fine-grained visual classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2009
  ident: bib0028
  article-title: Learning multiple layers of features from tiny images
  publication-title: Technical Report
– start-page: 1
  year: 2014
  end-page: 8
  ident: bib0044
  article-title: A benchmark study of large-scale unconstrained face recognition
  publication-title: IEEE International Joint Conference on Biometrics
– volume: 30
  start-page: 3376
  year: 2021
  end-page: 3390
  ident: bib0051
  article-title: Cdnet: complementary depth network for rgb-d salient object detection
  publication-title: IEEE Trans. Image Process.
– volume: volume 3
  start-page: 1171
  year: 2000
  end-page: 1177
  ident: bib0011
  article-title: The role of single neurons in information processing
  publication-title: Nature Neuroscience
– start-page: 499
  year: 2016
  end-page: 515
  ident: bib0038
  article-title: A discriminative feature learning approach for deep face recognition
  publication-title: European Conference on Computer Vision
– start-page: 4690
  year: 2019
  ident: 10.1016/j.patcog.2022.108873_bib0040
  article-title: Arcface: Additive angular margin loss for deep face recognition
– year: 2021
  ident: 10.1016/j.patcog.2022.108873_bib0017
  article-title: Progressive learning of category-consistent multi-granularity features for fine-grained visual classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 480
  year: 2018
  ident: 10.1016/j.patcog.2022.108873_bib0046
  article-title: Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)
– volume: 67
  start-page: 9
  year: 2005
  ident: 10.1016/j.patcog.2022.108873_sbref0019
  article-title: Geometrical learning, descriptive geometry, and biomimetic pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.11.034
– volume: volume 30
  start-page: 601
  year: 2019
  ident: 10.1016/j.patcog.2022.108873_bib0010
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2022.108873_bib0024
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– year: 1985
  ident: 10.1016/j.patcog.2022.108873_bib0022
  article-title: Learning internal representations by error propagation
– start-page: 1701
  year: 2014
  ident: 10.1016/j.patcog.2022.108873_bib0036
  article-title: Deepface: Closing the gap to human-level performance in face verification
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 10.1016/j.patcog.2022.108873_bib0021
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of control, signals and systems
  doi: 10.1007/BF02551274
– start-page: 3691
  year: 2019
  ident: 10.1016/j.patcog.2022.108873_bib0049
  article-title: Batch dropblock network for person re-identification and beyond
– volume: volume 3
  start-page: 5
  year: 2011
  ident: 10.1016/j.patcog.2022.108873_bib0012
  article-title: One cell to rule them all, and in the dendrites bind them
– year: 1988
  ident: 10.1016/j.patcog.2022.108873_bib0013
  article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks
– start-page: 4873
  year: 2016
  ident: 10.1016/j.patcog.2022.108873_bib0025
  article-title: The megaface benchmark: 1 million faces for recognition at scale
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 10.1016/j.patcog.2022.108873_bib0009
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– volume: 429
  start-page: 215
  year: 2021
  ident: 10.1016/j.patcog.2022.108873_bib0035
  article-title: Deep face recognition: a survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.081
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2022.108873_bib0032
  article-title: Deep residual learning for image recognition
– volume: 22
  start-page: 2597
  issue: 10
  year: 2019
  ident: 10.1016/j.patcog.2022.108873_bib0050
  article-title: A strong baseline and batch normalization neck for deep person re-identification
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2019.2958756
– year: 2014
  ident: 10.1016/j.patcog.2022.108873_bib0033
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Computer Science
– start-page: 3750
  year: 2019
  ident: 10.1016/j.patcog.2022.108873_bib0054
  article-title: Auto-reid: Searching for a part-aware convnet for person re-identification
– year: 2021
  ident: 10.1016/j.patcog.2022.108873_bib0007
  article-title: Encoder-x: solving unknown coefficients automatically in polynomial fitting by using an autoencoder
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 117
  start-page: 107975
  year: 2021
  ident: 10.1016/j.patcog.2022.108873_bib0001
  article-title: GR-RNN: global-context residual recurrent neural networks for writer identification
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.107975
– volume: 124
  start-page: 108498
  year: 2022
  ident: 10.1016/j.patcog.2022.108873_bib0006
  article-title: Uncertainty estimation for stereo matching based on evidential deep learning
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.108498
– volume: volume 3
  start-page: 1171
  year: 2000
  ident: 10.1016/j.patcog.2022.108873_bib0011
  article-title: The role of single neurons in information processing
– start-page: 2285
  year: 2018
  ident: 10.1016/j.patcog.2022.108873_bib0047
  article-title: Harmonious attention network for person re-identification
– year: 2021
  ident: 10.1016/j.patcog.2022.108873_bib0016
  article-title: Gpca: a probabilistic framework for gaussian process embedded channel attention
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2021.3102955
– volume: 122
  start-page: 108351
  year: 2022
  ident: 10.1016/j.patcog.2022.108873_bib0004
  article-title: Loss functions for pose guided person image generation
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.108351
– start-page: 1
  year: 2015
  ident: 10.1016/j.patcog.2022.108873_bib0034
  article-title: Going deeper with convolutions
– start-page: 152
  year: 2014
  ident: 10.1016/j.patcog.2022.108873_bib0031
  article-title: Deepreid: Deep filter pairing neural network for person re-identification
– start-page: 815
  year: 2015
  ident: 10.1016/j.patcog.2022.108873_bib0037
  article-title: Facenet: A unified embedding for face recognition and clustering
– year: 2009
  ident: 10.1016/j.patcog.2022.108873_bib0028
  article-title: Learning multiple layers of features from tiny images
– volume: 33
  start-page: 2951
  issue: 11
  year: 2021
  ident: 10.1016/j.patcog.2022.108873_bib0014
  article-title: Flexible transmitter network
  publication-title: Neural Comput
– start-page: 5363
  year: 2018
  ident: 10.1016/j.patcog.2022.108873_bib0045
  article-title: Dual attention matching network for context-aware feature sequence based person re-identification
– volume: 140
  start-page: 294
  year: 2021
  ident: 10.1016/j.patcog.2022.108873_bib0015
  article-title: Self-organized operational neural networks with generative neurons
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.02.028
– start-page: 7134
  year: 2019
  ident: 10.1016/j.patcog.2022.108873_bib0048
  article-title: Aanet: Attribute attention network for person re-identifications
– volume: 10
  start-page: 925
  issue: 4
  year: 1999
  ident: 10.1016/j.patcog.2022.108873_bib0018
  article-title: A geometrical representation of mcculloch-pitts neural model and its applications
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.774263
– start-page: 3760
  year: 2019
  ident: 10.1016/j.patcog.2022.108873_bib0052
  article-title: Second-order non-local attention networks for person re-identification
– volume: 33
  start-page: 11309
  year: 2020
  ident: 10.1016/j.patcog.2022.108873_bib0053
  article-title: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id
  publication-title: Adv Neural Inf Process Syst
– start-page: 499
  year: 2016
  ident: 10.1016/j.patcog.2022.108873_bib0038
  article-title: A discriminative feature learning approach for deep face recognition
– year: 1998
  ident: 10.1016/j.patcog.2022.108873_bib0023
– volume: 24
  start-page: 1665
  year: 2021
  ident: 10.1016/j.patcog.2022.108873_bib0003
  article-title: Beyond triplet loss: person re-identification with fine-grained difference-aware pairwise loss
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2021.3069562
– year: 2022
  ident: 10.1016/j.patcog.2022.108873_bib0039
  article-title: Sphereface revived: unifying hyperspherical face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 15629
  year: 2021
  ident: 10.1016/j.patcog.2022.108873_bib0042
  article-title: Spherical confidence learning for face recognition
– start-page: 1
  year: 2014
  ident: 10.1016/j.patcog.2022.108873_bib0044
  article-title: A benchmark study of large-scale unconstrained face recognition
– start-page: 108841
  year: 2022
  ident: 10.1016/j.patcog.2022.108873_bib0002
  article-title: An entity-weights-based convolutional neural network for large-sale complex knowledge embedding
  publication-title: Pattern Recognit
– start-page: 6817
  year: 2020
  ident: 10.1016/j.patcog.2022.108873_bib0043
  article-title: Towards universal representation learning for deep face recognition
– start-page: 1116
  year: 2015
  ident: 10.1016/j.patcog.2022.108873_bib0030
  article-title: Scalable person re-identification: A benchmark
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.patcog.2022.108873_bib0027
  article-title: Least squares support vector machine classifiers
  publication-title: Neural processing letters
  doi: 10.1023/A:1018628609742
– year: 2008
  ident: 10.1016/j.patcog.2022.108873_bib0029
  article-title: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments
– start-page: 17
  year: 2016
  ident: 10.1016/j.patcog.2022.108873_bib0026
  article-title: Performance measures and a data set for multi-target, multi-camera tracking
– start-page: 5265
  year: 2018
  ident: 10.1016/j.patcog.2022.108873_bib0041
  article-title: Cosface: Large margin cosine loss for deep face recognition
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.patcog.2022.108873_bib0005
  article-title: Learning discriminative features by covering local geometric space for point cloud analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 30
  start-page: 3376
  year: 2021
  ident: 10.1016/j.patcog.2022.108873_bib0051
  article-title: Cdnet: complementary depth network for rgb-d salient object detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3060167
– volume: volume 29
  start-page: 257
  year: 2010
  ident: 10.1016/j.patcog.2022.108873_bib0008
  article-title: The neurobiology of learning and memory
– volume: 29
  start-page: 577
  issue: 5
  year: 2001
  ident: 10.1016/j.patcog.2022.108873_bib0020
  article-title: Discussion on the basic mathematical models of neurons in general purpose neurocomputer
  publication-title: Acta Electronica Sinica
SSID ssj0017142
Score 2.6536925
Snippet •A more flexible HCF neuron model for DNNs is introduced; it constructs geometries in an n-dimensional space by changing weights and hyper-parameters and thus,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108873
SubjectTerms Back propagation
Computer vision
DNNs
Heuristic algorithm
Neuron modeling
Title HCFNN: High-order coverage function neural network for image classification
URI https://dx.doi.org/10.1016/j.patcog.2022.108873
Volume 131
WOSCitedRecordID wos000841964700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4FLeastFPnADXmVxEkcc6uqVgWkqIcillPk2A7KCtJVu4vKv--M7SS7pSr0wCWKHMeJMl_mYX-eIeQdt9JoGUXMRMKyNDUNU6kSLM-hGS6Cx1y4YhOiLIvZTJ6G3SWXrpyA6Lri6kou_quooQ2EjVtn7yHuYVBogHMQOhxB7HD8J8GfHB6XJQb6SOFgLrXme41ETWTnoBlzEsc8liCdzrPAHdmw_Yk9NLrTyB8aRRZ811OXihO3vwTO0biCX4bKKLN2jdfrp1a_2na-GiH4beWWQ1T7WwWbiWygdujZrU9DQAQbD9MQQbXymPEk4huqNWh4rxxj1Gj8Vr3tpxDm0wXYn_PvU3zAdOy-mSb7hvkaSIU9X21e-VEqHKXyozwkW4nIZDEhWwcfj2afhoUmEac-oXx4-353paMA_vk2t3svax7J2VOyHUIJeuAh8Iw8sN1z8qQv00GD1n5BPjtEfKAjHmiPB9rjgXo80IAHCnigDg90Ew8vyZfjo7PDExZqaDCd8HzJIP6P6ySzhuvaGCWbvIYAElqKpil0rPNccZXJOoNfU4Fur7NcppGVYAl0CqEnf0Um3Xlndwg1URZZ05haYF48lUoTKylMnSV1akwW7xLef5tKhwTzWOfkR3WXZHYJG-5a-AQrf-kv-s9eBSfRO38VYOnOO_fu-aTX5PEI9DdksrxY2X3ySP9atpcXbwOQrgHGC4lp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HCFNN%3A+High-order+coverage+function+neural+network+for+image+classification&rft.jtitle=Pattern+recognition&rft.au=Ning%2C+Xin&rft.au=Tian%2C+Weijuan&rft.au=Yu%2C+Zaiyang&rft.au=Li%2C+Weijun&rft.date=2022-11-01&rft.issn=0031-3203&rft.volume=131&rft.spage=108873&rft_id=info:doi/10.1016%2Fj.patcog.2022.108873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_108873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon