HCFNN: High-order coverage function neural network for image classification
•A more flexible HCF neuron model for DNNs is introduced; it constructs geometries in an n-dimensional space by changing weights and hyper-parameters and thus, possesses higher variability and plasticity. Furthermore, the approximation theorem and proof for arbitrary continuous infinite functions ar...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition Jg. 131; S. 108873 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.11.2022
|
| Schlagworte: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A more flexible HCF neuron model for DNNs is introduced; it constructs geometries in an n-dimensional space by changing weights and hyper-parameters and thus, possesses higher variability and plasticity. Furthermore, the approximation theorem and proof for arbitrary continuous infinite functions are presented, and the fitting ability of the HCF neuron 95 model is demonstrated.•HCFNN architecture based on the HCF neuron is proposed; it is used to mine specific feature representations and achieve adaptive parameter learning. Next, a novel adaptive optimization method for weights and hyper-parameters is proposed to achieve effective network learning. The 100 learned network model has better expression and learning ability with fewer neurons.•We conduct experiments on nine datasets in several domains, including the two-spirals problem, natural object recognition, face recognition, and person re-ID. Experimental results show that the proposed method has better 105 learning performance and generalization ability than the commonly used M-P and RBF neural networks. In addition, our method can improve the performance of various image recognition tasks and acquire good generalization.
Recent advances in deep neural networks (DNNs) have mainly focused on innovations in network architecture and loss function. In this paper, we introduce a flexible high-order coverage function (HCF) neuron model to replace the fully-connected (FC) layers. The approximation theorem and proof for the HCF are also presented to demonstrate its fitting ability. Unlike the FC layers, which cannot handle high-dimensional data well, the HCF utilizes weight coefficients and hyper-parameters to mine underlying geometries with arbitrary shapes in an n-dimensional space. To explore the power and potential of our HCF neuron model, a high-order coverage function neural network (HCFNN) is proposed, which incorporates the HCF neuron as the building block. Moreover, a novel adaptive optimization method for weights and hyper-parameters is designed to achieve effective network learning. Comprehensive experiments on nine datasets in several domains validate the effectiveness and generalizability of the HCF and HCFNN. The proposed method provides a new perspective for further developments in DNNs and ensures wide application in the field of image classification. The source code is available at https://github.com/Tough2011/HCFNet.git |
|---|---|
| AbstractList | •A more flexible HCF neuron model for DNNs is introduced; it constructs geometries in an n-dimensional space by changing weights and hyper-parameters and thus, possesses higher variability and plasticity. Furthermore, the approximation theorem and proof for arbitrary continuous infinite functions are presented, and the fitting ability of the HCF neuron 95 model is demonstrated.•HCFNN architecture based on the HCF neuron is proposed; it is used to mine specific feature representations and achieve adaptive parameter learning. Next, a novel adaptive optimization method for weights and hyper-parameters is proposed to achieve effective network learning. The 100 learned network model has better expression and learning ability with fewer neurons.•We conduct experiments on nine datasets in several domains, including the two-spirals problem, natural object recognition, face recognition, and person re-ID. Experimental results show that the proposed method has better 105 learning performance and generalization ability than the commonly used M-P and RBF neural networks. In addition, our method can improve the performance of various image recognition tasks and acquire good generalization.
Recent advances in deep neural networks (DNNs) have mainly focused on innovations in network architecture and loss function. In this paper, we introduce a flexible high-order coverage function (HCF) neuron model to replace the fully-connected (FC) layers. The approximation theorem and proof for the HCF are also presented to demonstrate its fitting ability. Unlike the FC layers, which cannot handle high-dimensional data well, the HCF utilizes weight coefficients and hyper-parameters to mine underlying geometries with arbitrary shapes in an n-dimensional space. To explore the power and potential of our HCF neuron model, a high-order coverage function neural network (HCFNN) is proposed, which incorporates the HCF neuron as the building block. Moreover, a novel adaptive optimization method for weights and hyper-parameters is designed to achieve effective network learning. Comprehensive experiments on nine datasets in several domains validate the effectiveness and generalizability of the HCF and HCFNN. The proposed method provides a new perspective for further developments in DNNs and ensures wide application in the field of image classification. The source code is available at https://github.com/Tough2011/HCFNet.git |
| ArticleNumber | 108873 |
| Author | Yu, Zaiyang Li, Weijun Bai, Xiao Ning, Xin Tian, Weijuan Wang, Yuebao |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0001-7897-1673 surname: Ning fullname: Ning, Xin organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China – sequence: 2 givenname: Weijuan surname: Tian fullname: Tian, Weijuan organization: Cognitive Computing Technology Joint Laboratory, Wave Group, Beijing, 100083, China – sequence: 3 givenname: Zaiyang surname: Yu fullname: Yu, Zaiyang organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China – sequence: 4 givenname: Weijun orcidid: 0000-0001-9668-2883 surname: Li fullname: Li, Weijun email: wjli@semi.ac.cn organization: Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China – sequence: 5 givenname: Xiao surname: Bai fullname: Bai, Xiao email: baixiao@buaa.edu.cn organization: School of Computer Science and Engineering, Beihang University, Beijing, China – sequence: 6 givenname: Yuebao surname: Wang fullname: Wang, Yuebao email: yuebao17@163.com organization: Cognitive Computing Technology Joint Laboratory, Wave Group, Beijing, 100083, China |
| BookMark | eNqFUEtOwzAUtFCRaAs3YJELpPgTO0kXSKiiFFGVDawt58UuLiGu7LSI29chrFjAaqR5M6N5M0Gj1rUaoWuCZwQTcbOb7VUHbjujmNJIFUXOztCYREg5yegIjTFmJGUUsws0CWGHMcnjYYyeVovlZjNPVnb7ljpfa5-AO2qvtjoxhxY669qk1Qevmgjdp_PviXE-sR-9AhoVgjUWVK-7ROdGNUFf_eAUvS7vXxardP388Li4W6dAmehSyjNSUa5rBlVdq9KIKs_yyBTGFEBACMUULyteQ6ko5RUXZYZ1iXMMWUEFm6JsyAXvQvDayL2PffyXJFj2g8idHAaR_SByGCTa5r9sYLvv4p1XtvnPfDuYdXzsaLWXAaxuQdfWa-hk7ezfAScRzYDH |
| CitedBy_id | crossref_primary_10_1007_s11042_023_16870_0 crossref_primary_10_1016_j_eswa_2024_125157 crossref_primary_10_1007_s11042_023_16243_7 crossref_primary_10_1016_j_eswa_2024_125874 crossref_primary_10_1016_j_cmpb_2024_108080 crossref_primary_10_3390_electronics12071531 crossref_primary_10_3389_fevo_2023_1159152 crossref_primary_10_1016_j_displa_2023_102496 crossref_primary_10_1111_exsy_13579 crossref_primary_10_1007_s11042_023_17986_z crossref_primary_10_1007_s11227_024_06799_y crossref_primary_10_4018_JOEUC_384397 crossref_primary_10_1155_2022_4846103 crossref_primary_10_3389_fnbot_2022_1006755 crossref_primary_10_1109_TIV_2023_3304852 crossref_primary_10_1155_2022_1317439 crossref_primary_10_3390_app122311915 crossref_primary_10_1007_s11042_023_16105_2 crossref_primary_10_3389_fenrg_2023_1269059 crossref_primary_10_1155_2022_2819029 crossref_primary_10_1155_2022_4258577 crossref_primary_10_1109_JAS_2023_123813 crossref_primary_10_1016_j_neunet_2025_107820 crossref_primary_10_1007_s10044_024_01276_x crossref_primary_10_1007_s11042_023_16680_4 crossref_primary_10_1007_s11431_024_2680_3 crossref_primary_10_1016_j_patcog_2025_111974 crossref_primary_10_1049_cvi2_12146 crossref_primary_10_1049_cvi2_12189 crossref_primary_10_1016_j_heliyon_2024_e37167 crossref_primary_10_34133_plantphenomics_0208 crossref_primary_10_1155_2022_1231601 crossref_primary_10_3390_info14030183 crossref_primary_10_1007_s00371_023_03157_6 crossref_primary_10_1155_2022_9124952 crossref_primary_10_1016_j_sigpro_2023_108996 crossref_primary_10_1155_2022_3048928 crossref_primary_10_1155_2024_6054172 crossref_primary_10_1007_s11042_023_16594_1 crossref_primary_10_1016_j_patcog_2024_110823 crossref_primary_10_1155_2022_1668750 crossref_primary_10_1007_s00138_024_01563_x crossref_primary_10_1016_j_sigpro_2023_108954 crossref_primary_10_3389_fpubh_2023_1160478 crossref_primary_10_1155_2022_7672692 crossref_primary_10_1007_s00500_023_09536_4 crossref_primary_10_1186_s13677_023_00470_2 crossref_primary_10_1016_j_ins_2024_120130 crossref_primary_10_3389_fevo_2023_1155401 crossref_primary_10_1016_j_displa_2023_102588 crossref_primary_10_3389_fncom_2025_1545971 crossref_primary_10_1016_j_eswa_2023_121167 crossref_primary_10_7717_peerj_cs_1462 crossref_primary_10_3390_electronics12143171 crossref_primary_10_3389_fnbot_2023_1269105 crossref_primary_10_1016_j_sigpro_2024_109619 crossref_primary_10_1109_JSEN_2023_3267001 crossref_primary_10_3390_rs15010231 crossref_primary_10_1016_j_sigpro_2023_108962 crossref_primary_10_4018_JOEUC_345245 crossref_primary_10_3390_electronics12061395 crossref_primary_10_1016_j_displa_2023_102513 crossref_primary_10_1109_ACCESS_2023_3316885 crossref_primary_10_32604_cmc_2023_042466 crossref_primary_10_3389_fevo_2023_1272707 crossref_primary_10_1080_00949655_2024_2439453 crossref_primary_10_1016_j_inffus_2023_102128 crossref_primary_10_1016_j_neunet_2025_107124 crossref_primary_10_3390_electronics11223797 crossref_primary_10_1016_j_sna_2024_115930 crossref_primary_10_1016_j_ipm_2022_103243 crossref_primary_10_1371_journal_pone_0307319 crossref_primary_10_4018_JOEUC_336481 crossref_primary_10_1007_s11042_024_18810_y crossref_primary_10_3389_fnbot_2023_1329589 crossref_primary_10_3390_electronics12071643 crossref_primary_10_3390_electronics13234820 crossref_primary_10_3389_fevo_2023_1176872 crossref_primary_10_3390_electronics11233995 crossref_primary_10_1007_s11042_022_14307_8 crossref_primary_10_3389_fnbot_2022_1000646 crossref_primary_10_1016_j_aej_2024_12_030 crossref_primary_10_4018_JOEUC_354413 crossref_primary_10_3390_electronics12224566 crossref_primary_10_1109_JBHI_2023_3247861 crossref_primary_10_1016_j_compeleceng_2023_108890 crossref_primary_10_4018_JOEUC_357249 crossref_primary_10_1007_s11042_024_19327_0 crossref_primary_10_1155_2022_3575130 crossref_primary_10_1016_j_displa_2023_102368 crossref_primary_10_1016_j_patcog_2022_109216 crossref_primary_10_1016_j_foodchem_2024_140795 |
| Cites_doi | 10.1016/j.neucom.2004.11.034 10.1007/s11263-015-0816-y 10.1007/BF02551274 10.1007/BF02478259 10.1016/j.neucom.2020.10.081 10.1109/TMM.2019.2958756 10.1016/j.patcog.2021.107975 10.1016/j.patcog.2021.108498 10.1109/TPAMI.2021.3102955 10.1016/j.patcog.2021.108351 10.1016/j.neunet.2021.02.028 10.1109/72.774263 10.1109/TMM.2021.3069562 10.1023/A:1018628609742 10.1109/TIP.2021.3060167 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2022.108873 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2022_108873 S0031320322003545 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c236t-2541b25ed3cbdda9f6b747b258ff8c1c66a3a59b5dc9a225b56940e9070c48263 |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841964700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 03:52:32 EST 2025 Tue Nov 18 20:04:03 EST 2025 Fri Feb 23 02:40:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Back propagation Computer vision Heuristic algorithm Neuron modeling DNNs |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c236t-2541b25ed3cbdda9f6b747b258ff8c1c66a3a59b5dc9a225b56940e9070c48263 |
| ORCID | 0000-0001-7897-1673 0000-0001-9668-2883 |
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2022_108873 crossref_citationtrail_10_1016_j_patcog_2022_108873 elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108873 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Si, Zhang, Li, Kuen, Kong, Kot, Wang (bib0045) 2018 Wen, Zhang, Li, Qiao (bib0038) 2016 Wang, Wang, Zhou, Ji, Gong, Zhou, Li, Liu (bib0041) 2018 Zhang, Zhang (bib0018) 1999; 10 Schroff, Kalenichenko, Philbin (bib0037) 2015 Suykens, Vandewalle (bib0027) 1999; 9 Gao, Zhou, Wang, Cheng, Yachi, Wang (bib0010) 2019; volume 30 Li, Zhu, Gong (bib0047) 2018 Shi, Wang, Zheng, Hua, Tang (bib0004) 2022; 122 Wang, Deng (bib0035) 2021; 429 Krizhevsky (bib0028) 2009 Huang, Mattar, Berg, Learned-Miller (bib0029) 2008 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0034) 2015 Mitchell (bib0023) 1998 Rumelhart, Hinton, Williams (bib0022) 1985 Liao, Lei, Yi, Li (bib0044) 2014 Geldmacher, David (bib0008) 2010; volume 29 Wang, Wang, Zhang, Zhang, Bai, Ning, Zhou, Hancock (bib0006) 2022; 124 Luo, Jiang, Gu, Liu, Liao, Lai, Gu (bib0050) 2019; 22 Yan, Pang, Bai, Liu, Ning, Gu, Zhou (bib0003) 2021; 24 Taigman, Yang, Ranzato, Wolf (bib0036) 2014 Sun, Zheng, Yang, Tian, Wang (bib0046) 2018 Tay, Roy, Yap (bib0048) 2019 Quan, Dong, Wu, Zhu, Yang (bib0054) 2019 Xie, Ma, Chang, Zhang, Guo (bib0016) 2021 Liu, Wen, Raj, Singh, Weller (bib0039) 2022 Costa, Rui (bib0012) 2011; volume 3 Zhang, Zhou (bib0014) 2021; 33 Li, Zhao, Xiao, Wang (bib0031) 2014 McCulloch, Pitts (bib0009) 1943; 5 Du, Xie, Ma, Chang, Song, Guo (bib0017) 2021 Jin, Xu, Han, Zhang, Cheng (bib0051) 2021; 30 Kemelmacher-Shlizerman, Seitz, Miller, Brossard (bib0025) 2016 Deng, Guo, Xue, Zafeiriou (bib0040) 2019 Wang, Ning, Sun, Zhang, Li, Bai (bib0005) 2022; 60 Zheng, Shen, Tian, Wang, Wang, Tian (bib0030) 2015 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0024) 2015; 115 Kiranyaz, Malik, Abdallah, Ince, Iosifidis, Gabbouj (bib0015) 2021; 140 Xia, Gong, Zhang, Poellabauer (bib0052) 2019 Shi, Yu, Sohn, Chandraker, Jain (bib0043) 2020 Dai, Chen, Gu, Zhu, Tan (bib0049) 2019 Ristani, Solera, Zou, Cucchiara, Tomasi (bib0026) 2016 Broomhead, Lowe (bib0013) 1988 He, Schomaker (bib0001) 2021; 117 Wang, Li, Zhang, Sun, Chen, Yu, Ning (bib0007) 2021 Cybenko (bib0021) 1989; 2 Lei, Yang, Haq, Zhang, Francis (bib0002) 2022 Simonyan, Zisserman (bib0033) 2014 Li, Xu, Xu, Shen, Li, Hooi (bib0042) 2021 He, Zhang, Ren, Sun (bib0032) 2016 Koch, Segev (bib0011) 2000; volume 3 Ge, Zhu, Chen, Zhao (bib0053) 2020; 33 Wang, Li (bib0020) 2001; 29 Shoujue, Jiangliang (bib0019) 2005; 67 Krizhevsky (10.1016/j.patcog.2022.108873_bib0028) 2009 Wen (10.1016/j.patcog.2022.108873_bib0038) 2016 Rumelhart (10.1016/j.patcog.2022.108873_bib0022) 1985 Kiranyaz (10.1016/j.patcog.2022.108873_bib0015) 2021; 140 He (10.1016/j.patcog.2022.108873_bib0001) 2021; 117 Zheng (10.1016/j.patcog.2022.108873_bib0030) 2015 Mitchell (10.1016/j.patcog.2022.108873_bib0023) 1998 Luo (10.1016/j.patcog.2022.108873_bib0050) 2019; 22 Xie (10.1016/j.patcog.2022.108873_bib0016) 2021 Szegedy (10.1016/j.patcog.2022.108873_bib0034) 2015 Wang (10.1016/j.patcog.2022.108873_bib0005) 2022; 60 Costa (10.1016/j.patcog.2022.108873_bib0012) 2011; volume 3 Zhang (10.1016/j.patcog.2022.108873_bib0018) 1999; 10 He (10.1016/j.patcog.2022.108873_bib0032) 2016 Lei (10.1016/j.patcog.2022.108873_bib0002) 2022 Yan (10.1016/j.patcog.2022.108873_bib0003) 2021; 24 Jin (10.1016/j.patcog.2022.108873_bib0051) 2021; 30 McCulloch (10.1016/j.patcog.2022.108873_bib0009) 1943; 5 Cybenko (10.1016/j.patcog.2022.108873_bib0021) 1989; 2 Geldmacher (10.1016/j.patcog.2022.108873_bib0008) 2010; volume 29 Shi (10.1016/j.patcog.2022.108873_bib0004) 2022; 122 Du (10.1016/j.patcog.2022.108873_bib0017) 2021 Shi (10.1016/j.patcog.2022.108873_bib0043) 2020 Li (10.1016/j.patcog.2022.108873_bib0031) 2014 Ristani (10.1016/j.patcog.2022.108873_bib0026) 2016 Quan (10.1016/j.patcog.2022.108873_bib0054) 2019 Gao (10.1016/j.patcog.2022.108873_bib0010) 2019; volume 30 Broomhead (10.1016/j.patcog.2022.108873_bib0013) 1988 Russakovsky (10.1016/j.patcog.2022.108873_bib0024) 2015; 115 Simonyan (10.1016/j.patcog.2022.108873_bib0033) 2014 Deng (10.1016/j.patcog.2022.108873_bib0040) 2019 Si (10.1016/j.patcog.2022.108873_bib0045) 2018 Li (10.1016/j.patcog.2022.108873_bib0047) 2018 Shoujue (10.1016/j.patcog.2022.108873_sbref0019) 2005; 67 Liao (10.1016/j.patcog.2022.108873_bib0044) 2014 Tay (10.1016/j.patcog.2022.108873_bib0048) 2019 Sun (10.1016/j.patcog.2022.108873_bib0046) 2018 Xia (10.1016/j.patcog.2022.108873_bib0052) 2019 Liu (10.1016/j.patcog.2022.108873_bib0039) 2022 Wang (10.1016/j.patcog.2022.108873_bib0035) 2021; 429 Ge (10.1016/j.patcog.2022.108873_bib0053) 2020; 33 Li (10.1016/j.patcog.2022.108873_bib0042) 2021 Kemelmacher-Shlizerman (10.1016/j.patcog.2022.108873_bib0025) 2016 Huang (10.1016/j.patcog.2022.108873_bib0029) 2008 Wang (10.1016/j.patcog.2022.108873_bib0007) 2021 Taigman (10.1016/j.patcog.2022.108873_bib0036) 2014 Zhang (10.1016/j.patcog.2022.108873_bib0014) 2021; 33 Wang (10.1016/j.patcog.2022.108873_bib0041) 2018 Dai (10.1016/j.patcog.2022.108873_bib0049) 2019 Schroff (10.1016/j.patcog.2022.108873_bib0037) 2015 Koch (10.1016/j.patcog.2022.108873_bib0011) 2000; volume 3 Suykens (10.1016/j.patcog.2022.108873_bib0027) 1999; 9 Wang (10.1016/j.patcog.2022.108873_bib0020) 2001; 29 Wang (10.1016/j.patcog.2022.108873_bib0006) 2022; 124 |
| References_xml | – start-page: 6817 year: 2020 end-page: 6826 ident: bib0043 article-title: Towards universal representation learning for deep face recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: bib0021 article-title: Approximation by superpositions of a sigmoidal function publication-title: Mathematics of control, signals and systems – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib0024 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis – year: 2022 ident: bib0039 article-title: Sphereface revived: unifying hyperspherical face recognition publication-title: IEEE Trans Pattern Anal Mach Intell – year: 1998 ident: bib0023 article-title: An introduction to genetic algorithms – start-page: 1701 year: 2014 end-page: 1708 ident: bib0036 article-title: Deepface: Closing the gap to human-level performance in face verification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 5363 year: 2018 end-page: 5372 ident: bib0045 article-title: Dual attention matching network for context-aware feature sequence based person re-identification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 24 start-page: 1665 year: 2021 end-page: 1677 ident: bib0003 article-title: Beyond triplet loss: person re-identification with fine-grained difference-aware pairwise loss publication-title: IEEE Trans Multimedia – volume: 140 start-page: 294 year: 2021 end-page: 308 ident: bib0015 article-title: Self-organized operational neural networks with generative neurons publication-title: Neural Networks – volume: 29 start-page: 577 year: 2001 end-page: 580 ident: bib0020 article-title: Discussion on the basic mathematical models of neurons in general purpose neurocomputer publication-title: Acta Electronica Sinica – volume: volume 3 start-page: 5 year: 2011 ident: bib0012 article-title: One cell to rule them all, and in the dendrites bind them publication-title: Frontiers in Synaptic Neuroscience – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib0027 article-title: Least squares support vector machine classifiers publication-title: Neural processing letters – volume: 117 start-page: 107975 year: 2021 ident: bib0001 article-title: GR-RNN: global-context residual recurrent neural networks for writer identification publication-title: Pattern Recognit – start-page: 5265 year: 2018 end-page: 5274 ident: bib0041 article-title: Cosface: Large margin cosine loss for deep face recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 15629 year: 2021 end-page: 15637 ident: bib0042 article-title: Spherical confidence learning for face recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2021 ident: bib0007 article-title: Encoder-x: solving unknown coefficients automatically in polynomial fitting by using an autoencoder publication-title: IEEE Trans Neural Netw Learn Syst – year: 2008 ident: bib0029 article-title: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments publication-title: Workshop on faces in’Real-Life’Images: detection, alignment, and recognition – volume: 22 start-page: 2597 year: 2019 end-page: 2609 ident: bib0050 article-title: A strong baseline and batch normalization neck for deep person re-identification publication-title: IEEE Trans Multimedia – year: 1988 ident: bib0013 article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks publication-title: Technical Report – start-page: 4873 year: 2016 end-page: 4882 ident: bib0025 article-title: The megaface benchmark: 1 million faces for recognition at scale publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 770 year: 2016 end-page: 778 ident: bib0032 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 17 year: 2016 end-page: 35 ident: bib0026 article-title: Performance measures and a data set for multi-target, multi-camera tracking publication-title: European Conference on Computer Vision – start-page: 108841 year: 2022 ident: bib0002 article-title: An entity-weights-based convolutional neural network for large-sale complex knowledge embedding publication-title: Pattern Recognit – volume: volume 30 start-page: 601 year: 2019 end-page: 614 ident: bib0010 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2021 ident: bib0016 article-title: Gpca: a probabilistic framework for gaussian process embedded channel attention publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2014 ident: bib0033 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Computer Science – volume: 33 start-page: 11309 year: 2020 end-page: 11321 ident: bib0053 article-title: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id publication-title: Adv Neural Inf Process Syst – volume: volume 29 start-page: 257 year: 2010 ident: bib0008 article-title: The neurobiology of learning and memory publication-title: Journal of Neuro-Ophthalmology – start-page: 1116 year: 2015 end-page: 1124 ident: bib0030 article-title: Scalable person re-identification: A benchmark publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 429 start-page: 215 year: 2021 end-page: 244 ident: bib0035 article-title: Deep face recognition: a survey publication-title: Neurocomputing – volume: 10 start-page: 925 year: 1999 end-page: 929 ident: bib0018 article-title: A geometrical representation of mcculloch-pitts neural model and its applications publication-title: IEEE Trans. Neural Networks – start-page: 152 year: 2014 end-page: 159 ident: bib0031 article-title: Deepreid: Deep filter pairing neural network for person re-identification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 4690 year: 2019 end-page: 4699 ident: bib0040 article-title: Arcface: Additive angular margin loss for deep face recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 3750 year: 2019 end-page: 3759 ident: bib0054 article-title: Auto-reid: Searching for a part-aware convnet for person re-identification publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 124 start-page: 108498 year: 2022 ident: bib0006 article-title: Uncertainty estimation for stereo matching based on evidential deep learning publication-title: Pattern Recognit – volume: 122 start-page: 108351 year: 2022 ident: bib0004 article-title: Loss functions for pose guided person image generation publication-title: Pattern Recognit – start-page: 1 year: 2015 end-page: 9 ident: bib0034 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3691 year: 2019 end-page: 3701 ident: bib0049 article-title: Batch dropblock network for person re-identification and beyond publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 815 year: 2015 end-page: 823 ident: bib0037 article-title: Facenet: A unified embedding for face recognition and clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3760 year: 2019 end-page: 3769 ident: bib0052 article-title: Second-order non-local attention networks for person re-identification publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – start-page: 2285 year: 2018 end-page: 2294 ident: bib0047 article-title: Harmonious attention network for person re-identification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 67 start-page: 9 year: 2005 end-page: 28 ident: bib0019 article-title: Geometrical learning, descriptive geometry, and biomimetic pattern recognition publication-title: Neurocomputing – volume: 60 start-page: 1 year: 2022 end-page: 15 ident: bib0005 article-title: Learning discriminative features by covering local geometric space for point cloud analysis publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 480 year: 2018 end-page: 496 ident: bib0046 article-title: Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline) publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: bib0009 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Math Biophys – year: 1985 ident: bib0022 article-title: Learning internal representations by error propagation publication-title: Technical Report – start-page: 7134 year: 2019 end-page: 7143 ident: bib0048 article-title: Aanet: Attribute attention network for person re-identifications publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 33 start-page: 2951 year: 2021 end-page: 2970 ident: bib0014 article-title: Flexible transmitter network publication-title: Neural Comput – year: 2021 ident: bib0017 article-title: Progressive learning of category-consistent multi-granularity features for fine-grained visual classification publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2009 ident: bib0028 article-title: Learning multiple layers of features from tiny images publication-title: Technical Report – start-page: 1 year: 2014 end-page: 8 ident: bib0044 article-title: A benchmark study of large-scale unconstrained face recognition publication-title: IEEE International Joint Conference on Biometrics – volume: 30 start-page: 3376 year: 2021 end-page: 3390 ident: bib0051 article-title: Cdnet: complementary depth network for rgb-d salient object detection publication-title: IEEE Trans. Image Process. – volume: volume 3 start-page: 1171 year: 2000 end-page: 1177 ident: bib0011 article-title: The role of single neurons in information processing publication-title: Nature Neuroscience – start-page: 499 year: 2016 end-page: 515 ident: bib0038 article-title: A discriminative feature learning approach for deep face recognition publication-title: European Conference on Computer Vision – start-page: 4690 year: 2019 ident: 10.1016/j.patcog.2022.108873_bib0040 article-title: Arcface: Additive angular margin loss for deep face recognition – year: 2021 ident: 10.1016/j.patcog.2022.108873_bib0017 article-title: Progressive learning of category-consistent multi-granularity features for fine-grained visual classification publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 480 year: 2018 ident: 10.1016/j.patcog.2022.108873_bib0046 article-title: Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline) – volume: 67 start-page: 9 year: 2005 ident: 10.1016/j.patcog.2022.108873_sbref0019 article-title: Geometrical learning, descriptive geometry, and biomimetic pattern recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2004.11.034 – volume: volume 30 start-page: 601 year: 2019 ident: 10.1016/j.patcog.2022.108873_bib0010 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.patcog.2022.108873_bib0024 article-title: Imagenet large scale visual recognition challenge publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – year: 1985 ident: 10.1016/j.patcog.2022.108873_bib0022 article-title: Learning internal representations by error propagation – start-page: 1701 year: 2014 ident: 10.1016/j.patcog.2022.108873_bib0036 article-title: Deepface: Closing the gap to human-level performance in face verification – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 10.1016/j.patcog.2022.108873_bib0021 article-title: Approximation by superpositions of a sigmoidal function publication-title: Mathematics of control, signals and systems doi: 10.1007/BF02551274 – start-page: 3691 year: 2019 ident: 10.1016/j.patcog.2022.108873_bib0049 article-title: Batch dropblock network for person re-identification and beyond – volume: volume 3 start-page: 5 year: 2011 ident: 10.1016/j.patcog.2022.108873_bib0012 article-title: One cell to rule them all, and in the dendrites bind them – year: 1988 ident: 10.1016/j.patcog.2022.108873_bib0013 article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks – start-page: 4873 year: 2016 ident: 10.1016/j.patcog.2022.108873_bib0025 article-title: The megaface benchmark: 1 million faces for recognition at scale – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 10.1016/j.patcog.2022.108873_bib0009 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – volume: 429 start-page: 215 year: 2021 ident: 10.1016/j.patcog.2022.108873_bib0035 article-title: Deep face recognition: a survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.081 – start-page: 770 year: 2016 ident: 10.1016/j.patcog.2022.108873_bib0032 article-title: Deep residual learning for image recognition – volume: 22 start-page: 2597 issue: 10 year: 2019 ident: 10.1016/j.patcog.2022.108873_bib0050 article-title: A strong baseline and batch normalization neck for deep person re-identification publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2019.2958756 – year: 2014 ident: 10.1016/j.patcog.2022.108873_bib0033 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Computer Science – start-page: 3750 year: 2019 ident: 10.1016/j.patcog.2022.108873_bib0054 article-title: Auto-reid: Searching for a part-aware convnet for person re-identification – year: 2021 ident: 10.1016/j.patcog.2022.108873_bib0007 article-title: Encoder-x: solving unknown coefficients automatically in polynomial fitting by using an autoencoder publication-title: IEEE Trans Neural Netw Learn Syst – volume: 117 start-page: 107975 year: 2021 ident: 10.1016/j.patcog.2022.108873_bib0001 article-title: GR-RNN: global-context residual recurrent neural networks for writer identification publication-title: Pattern Recognit doi: 10.1016/j.patcog.2021.107975 – volume: 124 start-page: 108498 year: 2022 ident: 10.1016/j.patcog.2022.108873_bib0006 article-title: Uncertainty estimation for stereo matching based on evidential deep learning publication-title: Pattern Recognit doi: 10.1016/j.patcog.2021.108498 – volume: volume 3 start-page: 1171 year: 2000 ident: 10.1016/j.patcog.2022.108873_bib0011 article-title: The role of single neurons in information processing – start-page: 2285 year: 2018 ident: 10.1016/j.patcog.2022.108873_bib0047 article-title: Harmonious attention network for person re-identification – year: 2021 ident: 10.1016/j.patcog.2022.108873_bib0016 article-title: Gpca: a probabilistic framework for gaussian process embedded channel attention publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3102955 – volume: 122 start-page: 108351 year: 2022 ident: 10.1016/j.patcog.2022.108873_bib0004 article-title: Loss functions for pose guided person image generation publication-title: Pattern Recognit doi: 10.1016/j.patcog.2021.108351 – start-page: 1 year: 2015 ident: 10.1016/j.patcog.2022.108873_bib0034 article-title: Going deeper with convolutions – start-page: 152 year: 2014 ident: 10.1016/j.patcog.2022.108873_bib0031 article-title: Deepreid: Deep filter pairing neural network for person re-identification – start-page: 815 year: 2015 ident: 10.1016/j.patcog.2022.108873_bib0037 article-title: Facenet: A unified embedding for face recognition and clustering – year: 2009 ident: 10.1016/j.patcog.2022.108873_bib0028 article-title: Learning multiple layers of features from tiny images – volume: 33 start-page: 2951 issue: 11 year: 2021 ident: 10.1016/j.patcog.2022.108873_bib0014 article-title: Flexible transmitter network publication-title: Neural Comput – start-page: 5363 year: 2018 ident: 10.1016/j.patcog.2022.108873_bib0045 article-title: Dual attention matching network for context-aware feature sequence based person re-identification – volume: 140 start-page: 294 year: 2021 ident: 10.1016/j.patcog.2022.108873_bib0015 article-title: Self-organized operational neural networks with generative neurons publication-title: Neural Networks doi: 10.1016/j.neunet.2021.02.028 – start-page: 7134 year: 2019 ident: 10.1016/j.patcog.2022.108873_bib0048 article-title: Aanet: Attribute attention network for person re-identifications – volume: 10 start-page: 925 issue: 4 year: 1999 ident: 10.1016/j.patcog.2022.108873_bib0018 article-title: A geometrical representation of mcculloch-pitts neural model and its applications publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.774263 – start-page: 3760 year: 2019 ident: 10.1016/j.patcog.2022.108873_bib0052 article-title: Second-order non-local attention networks for person re-identification – volume: 33 start-page: 11309 year: 2020 ident: 10.1016/j.patcog.2022.108873_bib0053 article-title: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id publication-title: Adv Neural Inf Process Syst – start-page: 499 year: 2016 ident: 10.1016/j.patcog.2022.108873_bib0038 article-title: A discriminative feature learning approach for deep face recognition – year: 1998 ident: 10.1016/j.patcog.2022.108873_bib0023 – volume: 24 start-page: 1665 year: 2021 ident: 10.1016/j.patcog.2022.108873_bib0003 article-title: Beyond triplet loss: person re-identification with fine-grained difference-aware pairwise loss publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2021.3069562 – year: 2022 ident: 10.1016/j.patcog.2022.108873_bib0039 article-title: Sphereface revived: unifying hyperspherical face recognition publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 15629 year: 2021 ident: 10.1016/j.patcog.2022.108873_bib0042 article-title: Spherical confidence learning for face recognition – start-page: 1 year: 2014 ident: 10.1016/j.patcog.2022.108873_bib0044 article-title: A benchmark study of large-scale unconstrained face recognition – start-page: 108841 year: 2022 ident: 10.1016/j.patcog.2022.108873_bib0002 article-title: An entity-weights-based convolutional neural network for large-sale complex knowledge embedding publication-title: Pattern Recognit – start-page: 6817 year: 2020 ident: 10.1016/j.patcog.2022.108873_bib0043 article-title: Towards universal representation learning for deep face recognition – start-page: 1116 year: 2015 ident: 10.1016/j.patcog.2022.108873_bib0030 article-title: Scalable person re-identification: A benchmark – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.patcog.2022.108873_bib0027 article-title: Least squares support vector machine classifiers publication-title: Neural processing letters doi: 10.1023/A:1018628609742 – year: 2008 ident: 10.1016/j.patcog.2022.108873_bib0029 article-title: Labeled faces in the wild: A database forstudying face recognition in unconstrained environments – start-page: 17 year: 2016 ident: 10.1016/j.patcog.2022.108873_bib0026 article-title: Performance measures and a data set for multi-target, multi-camera tracking – start-page: 5265 year: 2018 ident: 10.1016/j.patcog.2022.108873_bib0041 article-title: Cosface: Large margin cosine loss for deep face recognition – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.patcog.2022.108873_bib0005 article-title: Learning discriminative features by covering local geometric space for point cloud analysis publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 30 start-page: 3376 year: 2021 ident: 10.1016/j.patcog.2022.108873_bib0051 article-title: Cdnet: complementary depth network for rgb-d salient object detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3060167 – volume: volume 29 start-page: 257 year: 2010 ident: 10.1016/j.patcog.2022.108873_bib0008 article-title: The neurobiology of learning and memory – volume: 29 start-page: 577 issue: 5 year: 2001 ident: 10.1016/j.patcog.2022.108873_bib0020 article-title: Discussion on the basic mathematical models of neurons in general purpose neurocomputer publication-title: Acta Electronica Sinica |
| SSID | ssj0017142 |
| Score | 2.6536925 |
| Snippet | •A more flexible HCF neuron model for DNNs is introduced; it constructs geometries in an n-dimensional space by changing weights and hyper-parameters and thus,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108873 |
| SubjectTerms | Back propagation Computer vision DNNs Heuristic algorithm Neuron modeling |
| Title | HCFNN: High-order coverage function neural network for image classification |
| URI | https://dx.doi.org/10.1016/j.patcog.2022.108873 |
| Volume | 131 |
| WOSCitedRecordID | wos000841964700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4FLeastFPnADXmVxEkcc6uqVgWkqIcillPk2A7KCtJVu4vKv--M7SS7pSr0wCWKHMeJMl_mYX-eIeQdt9JoGUXMRMKyNDUNU6kSLM-hGS6Cx1y4YhOiLIvZTJ6G3SWXrpyA6Lri6kou_quooQ2EjVtn7yHuYVBogHMQOhxB7HD8J8GfHB6XJQb6SOFgLrXme41ETWTnoBlzEsc8liCdzrPAHdmw_Yk9NLrTyB8aRRZ811OXihO3vwTO0biCX4bKKLN2jdfrp1a_2na-GiH4beWWQ1T7WwWbiWygdujZrU9DQAQbD9MQQbXymPEk4huqNWh4rxxj1Gj8Vr3tpxDm0wXYn_PvU3zAdOy-mSb7hvkaSIU9X21e-VEqHKXyozwkW4nIZDEhWwcfj2afhoUmEac-oXx4-353paMA_vk2t3svax7J2VOyHUIJeuAh8Iw8sN1z8qQv00GD1n5BPjtEfKAjHmiPB9rjgXo80IAHCnigDg90Ew8vyZfjo7PDExZqaDCd8HzJIP6P6ySzhuvaGCWbvIYAElqKpil0rPNccZXJOoNfU4Fur7NcppGVYAl0CqEnf0Um3Xlndwg1URZZ05haYF48lUoTKylMnSV1akwW7xLef5tKhwTzWOfkR3WXZHYJG-5a-AQrf-kv-s9eBSfRO38VYOnOO_fu-aTX5PEI9DdksrxY2X3ySP9atpcXbwOQrgHGC4lp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HCFNN%3A+High-order+coverage+function+neural+network+for+image+classification&rft.jtitle=Pattern+recognition&rft.au=Ning%2C+Xin&rft.au=Tian%2C+Weijuan&rft.au=Yu%2C+Zaiyang&rft.au=Li%2C+Weijun&rft.date=2022-11-01&rft.issn=0031-3203&rft.volume=131&rft.spage=108873&rft_id=info:doi/10.1016%2Fj.patcog.2022.108873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_108873 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |