Korovkin-type theorems and local approximation problems

Of concern are local approximation problems for sequences of positive linear operators acting on linear subspaces of functions defined on a metric space. A Korovkin-type theorem is established in such a framework together with several consequences related to one dimensional, multidimensional and inf...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expositiones mathematicae Ročník 40; číslo 4; s. 1229 - 1243
Hlavní autor: Altomare, Francesco
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier GmbH 01.12.2022
Témata:
ISSN:0723-0869, 1878-0792
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Of concern are local approximation problems for sequences of positive linear operators acting on linear subspaces of functions defined on a metric space. A Korovkin-type theorem is established in such a framework together with several consequences related to one dimensional, multidimensional and infinite dimensional settings (Hilbert spaces). Furthermore, some applications are discussed which concern classical sequences of positive linear operators including (one dimensional and multidimensional) Bernstein operators, Kantorovich operators, Szász–Mirakyan operators, Gauss–Weierstrass operators and Bernstein–Schnabl operators on convex subsets of Hilbert spaces. Finally the paper ends with a reassessment of a result of Korovkin concerning subspaces of bounded 2π− periodic functions on R and with an application related to sequences of convolution operators generated by positive approximate identities.
ISSN:0723-0869
1878-0792
DOI:10.1016/j.exmath.2022.06.001