Implementation of a Modified Swarm Intelligence Algorithm in Inventory Control Practices: A Case Study
Improving inventory control is one of the main requirements for monitoring inventory practices in many industrial sectors because of its impact on process flow and productivity. An electric power transmission and distribution com-pany was chosen as a case study in this research due to the suffering...
Saved in:
| Published in: | Industrial Engineering & Management Systems Vol. 24; no. 3; pp. 354 - 373 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
대한산업공학회
01.09.2025
|
| Subjects: | |
| ISSN: | 1598-7248, 2234-6473 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Improving inventory control is one of the main requirements for monitoring inventory practices in many industrial sectors because of its impact on process flow and productivity. An electric power transmission and distribution com-pany was chosen as a case study in this research due to the suffering of inventory issues that the company has faced with an improper inventory control system leading to stock out and overstock of inventory items, which causes higher inventory costs. This research aims to minimize inventory costs for twenty tries (products). A classical combined model of Particle Swarm Optimization (PSO) Intelligence and an Artificial Neural Network (ANN) was implemented to create the cost objective function. Two modified algorithms of PSO for (linear inertia weight) and modified PSO for (non-linear inertia weight) were used to compare the findings with the classical PSO. The results suggest that using a modified PSO with Non-Linear Inertia Weight (NLIW) where the total cost is ($2533200) is superior to the classical PSO of the entire cost of ($11069000) and a modified PSO with Linear Inertia Weight (LIW) at a total cost of (8266400$). KCI Citation Count: 0 |
|---|---|
| AbstractList | Improving inventory control is one of the main requirements for monitoring inventory practices in many industrial sectors because of its impact on process flow and productivity. An electric power transmission and distribution com-pany was chosen as a case study in this research due to the suffering of inventory issues that the company has faced with an improper inventory control system leading to stock out and overstock of inventory items, which causes higher inventory costs. This research aims to minimize inventory costs for twenty tries (products). A classical combined model of Particle Swarm Optimization (PSO) Intelligence and an Artificial Neural Network (ANN) was implemented to create the cost objective function. Two modified algorithms of PSO for (linear inertia weight) and modified PSO for (non-linear inertia weight) were used to compare the findings with the classical PSO. The results suggest that using a modified PSO with Non-Linear Inertia Weight (NLIW) where the total cost is ($2533200) is superior to the classical PSO of the entire cost of ($11069000) and a modified PSO with Linear Inertia Weight (LIW) at a total cost of (8266400$). KCI Citation Count: 0 |
| Author | Al Saffar, Iman Q. Hamdan, Ayat Deah |
| Author_xml | – sequence: 1 givenname: Ayat Deah surname: Hamdan fullname: Hamdan, Ayat Deah – sequence: 2 givenname: Iman Q. surname: Al Saffar fullname: Al Saffar, Iman Q. |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003253572$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNotkMlOwzAARC1UJErpD3DyGSnB8ZpyiyKWSEUgWs6W66VYTezKCaD-PQlwmsO8mcO7BLMQgwXgukC5wATfetv1OUaY5ZjmJCeMnoE5xoRmnAoyA_OCrcpMYFpegGXf-x1ihAguWDkHrumOre1sGNTgY4DRQQWfo_HOWwM33yp1sAmDbVu_t0FbWLX7mPzw0UEfxuZrXMZ0gnUMQ4otfE1KD17b_g5WsFa9hZvh05yuwLlTbW-X_7kA7w_32_opW788NnW1zjQmbMiY4NRas-N4h6hwJVXY6dJobiiylCFhFCtEQZQQiJecE2Uc0arQBBmMVwVZgJu_35CcPGgvo_K_uY_ykGT1tm1kgQRnZTHB-A_WKfZ9sk4ek-9UOo2InMzKyayczEpMJZGjWfIDLxZuxw |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ACYCR |
| DOI | 10.7232/iems.2025.24.3.354 |
| DatabaseName | CrossRef Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2234-6473 |
| EndPage | 373 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_10765811 10_7232_iems_2025_24_3_354 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION .UV ACYCR |
| ID | FETCH-LOGICAL-c235t-5764eedb62b047f84a2fc8dc6d40e4507da51713a77068663adf3ca1c30d22913 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603443900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1598-7248 |
| IngestDate | Thu Oct 16 03:18:05 EDT 2025 Wed Oct 29 21:08:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c235t-5764eedb62b047f84a2fc8dc6d40e4507da51713a77068663adf3ca1c30d22913 |
| PageCount | 20 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10765811 crossref_primary_10_7232_iems_2025_24_3_354 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Industrial Engineering & Management Systems |
| PublicationYear | 2025 |
| Publisher | 대한산업공학회 |
| Publisher_xml | – name: 대한산업공학회 |
| SSID | ssib053376758 ssib007833225 ssib022564908 ssib008451553 ssib036278095 ssib010715498 ssib044739636 |
| Score | 2.310962 |
| Snippet | Improving inventory control is one of the main requirements for monitoring inventory practices in many industrial sectors because of its impact on process flow... |
| SourceID | nrf crossref |
| SourceType | Open Website Index Database |
| StartPage | 354 |
| SubjectTerms | 산업공학 |
| Title | Implementation of a Modified Swarm Intelligence Algorithm in Inventory Control Practices: A Case Study |
| URI | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003253572 |
| Volume | 24 |
| WOSCitedRecordID | wos001603443900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Industrial Engineering & Management Systems, 2025, 24(3), , pp.354-373 |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2234-6473 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044739636 issn: 1598-7248 databaseCode: M~E dateStart: 20020101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbawoELAgGi5SFLcKsSNn7EXm6rqog9UBW1SL1Z3jguUXezVbqUcuGn8FsZP-LNFiHRA5fsxtqMYs-34xl7vjFCb6vSUiOtyErLWcZIxTMtOc9G1rDZiEtRV9IfNiGOjuTZ2fh4a-tXz4W5nou2lTc348v_qmpoA2U76uwd1J2EQgN8B6XDFdQO139SvK_3u4iUojbwHz8tTWOds3nyXXeLyB2JdTgn8_Nl16y-LtzSx9TnoLt994OYw34caVRXkcMOs55PPtzYDh4cADIocOhhtc6v2aiOHhbNTVh-nfzQK7B866XpyXz_RFsbkr-nbpvhcz5cnyA8JWAlk-oqlpJQTzOvfRv4JCwrWTjEpLfDgUsd8UYHRpWGMtNxfqbhqdumX4BrCKppoBu5e42csJzm6dFhne1b81_KSoR4yElRToZyMhRhiiqQsY3uEQH9cKmhPw-TvRKSbthDydyBOcneQWTtCuAl-wY_Ld0-a38PvoOQozUvmsGAgD1M7iF44q7Ujmdz9oMYeF_uNd_92dUN32q77ezAVTp9hB7GGAdPAjYfo626fYLsJi7x0mKNe1xij0s8xCVOuMRNixMuccQlTrh8jyfYoRJ7VD5FXz4cnh58zOIhH1lFKF9lEO8y8NNmJYEBEFYyTWwlTVUaNqoZRCtG80IUVAvh2Ewl1cbSShcVHRlCxgV9hnbaZVs_R5iLseGWmJpqzspZNS5nxjO9GcTEM1vsov1-eNRlqOWi_q7zXfQGRlBdVI1yJdjd5_lSXXQKAs0pPCfAdy-KvTvJfIEerP8iL9HOqvtWv0L3q-tVc9W99uD6DTeDmXE |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+a+Modified+Swarm+Intelligence+Algorithm+in+Inventory+Control+Practices%3A+A+Case+Study&rft.jtitle=Industrial+Engineering+%26+Management+Systems&rft.au=Hamdan%2C+Ayat+Deah&rft.au=Al+Saffar%2C+Iman+Q.&rft.date=2025-09-01&rft.issn=1598-7248&rft.eissn=2234-6473&rft.volume=24&rft.issue=3&rft.spage=354&rft.epage=373&rft_id=info:doi/10.7232%2Fiems.2025.24.3.354&rft.externalDBID=n%2Fa&rft.externalDocID=10_7232_iems_2025_24_3_354 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-7248&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-7248&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-7248&client=summon |