Implementation of a Modified Swarm Intelligence Algorithm in Inventory Control Practices: A Case Study

Improving inventory control is one of the main requirements for monitoring inventory practices in many industrial sectors because of its impact on process flow and productivity. An electric power transmission and distribution com-pany was chosen as a case study in this research due to the suffering...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Industrial Engineering & Management Systems Ročník 24; číslo 3; s. 354 - 373
Hlavní autoři: Hamdan, Ayat Deah, Al Saffar, Iman Q.
Médium: Journal Article
Jazyk:angličtina
Vydáno: 대한산업공학회 01.09.2025
Témata:
ISSN:1598-7248, 2234-6473
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Improving inventory control is one of the main requirements for monitoring inventory practices in many industrial sectors because of its impact on process flow and productivity. An electric power transmission and distribution com-pany was chosen as a case study in this research due to the suffering of inventory issues that the company has faced with an improper inventory control system leading to stock out and overstock of inventory items, which causes higher inventory costs. This research aims to minimize inventory costs for twenty tries (products). A classical combined model of Particle Swarm Optimization (PSO) Intelligence and an Artificial Neural Network (ANN) was implemented to create the cost objective function. Two modified algorithms of PSO for (linear inertia weight) and modified PSO for (non-linear inertia weight) were used to compare the findings with the classical PSO. The results suggest that using a modified PSO with Non-Linear Inertia Weight (NLIW) where the total cost is ($2533200) is superior to the classical PSO of the entire cost of ($11069000) and a modified PSO with Linear Inertia Weight (LIW) at a total cost of (8266400$). KCI Citation Count: 0
AbstractList Improving inventory control is one of the main requirements for monitoring inventory practices in many industrial sectors because of its impact on process flow and productivity. An electric power transmission and distribution com-pany was chosen as a case study in this research due to the suffering of inventory issues that the company has faced with an improper inventory control system leading to stock out and overstock of inventory items, which causes higher inventory costs. This research aims to minimize inventory costs for twenty tries (products). A classical combined model of Particle Swarm Optimization (PSO) Intelligence and an Artificial Neural Network (ANN) was implemented to create the cost objective function. Two modified algorithms of PSO for (linear inertia weight) and modified PSO for (non-linear inertia weight) were used to compare the findings with the classical PSO. The results suggest that using a modified PSO with Non-Linear Inertia Weight (NLIW) where the total cost is ($2533200) is superior to the classical PSO of the entire cost of ($11069000) and a modified PSO with Linear Inertia Weight (LIW) at a total cost of (8266400$). KCI Citation Count: 0
Author Al Saffar, Iman Q.
Hamdan, Ayat Deah
Author_xml – sequence: 1
  givenname: Ayat Deah
  surname: Hamdan
  fullname: Hamdan, Ayat Deah
– sequence: 2
  givenname: Iman Q.
  surname: Al Saffar
  fullname: Al Saffar, Iman Q.
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003253572$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotkMlOwzAARC1UJErpD3DyGSnB8ZpyiyKWSEUgWs6W66VYTezKCaD-PQlwmsO8mcO7BLMQgwXgukC5wATfetv1OUaY5ZjmJCeMnoE5xoRmnAoyA_OCrcpMYFpegGXf-x1ihAguWDkHrumOre1sGNTgY4DRQQWfo_HOWwM33yp1sAmDbVu_t0FbWLX7mPzw0UEfxuZrXMZ0gnUMQ4otfE1KD17b_g5WsFa9hZvh05yuwLlTbW-X_7kA7w_32_opW788NnW1zjQmbMiY4NRas-N4h6hwJVXY6dJobiiylCFhFCtEQZQQiJecE2Uc0arQBBmMVwVZgJu_35CcPGgvo_K_uY_ykGT1tm1kgQRnZTHB-A_WKfZ9sk4ek-9UOo2InMzKyayczEpMJZGjWfIDLxZuxw
ContentType Journal Article
DBID AAYXX
CITATION
ACYCR
DOI 10.7232/iems.2025.24.3.354
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2234-6473
EndPage 373
ExternalDocumentID oai_kci_go_kr_ARTI_10765811
10_7232_iems_2025_24_3_354
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
.UV
ACYCR
ID FETCH-LOGICAL-c235t-5764eedb62b047f84a2fc8dc6d40e4507da51713a77068663adf3ca1c30d22913
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603443900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1598-7248
IngestDate Thu Oct 16 03:18:05 EDT 2025
Wed Oct 29 21:08:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c235t-5764eedb62b047f84a2fc8dc6d40e4507da51713a77068663adf3ca1c30d22913
PageCount 20
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10765811
crossref_primary_10_7232_iems_2025_24_3_354
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Industrial Engineering & Management Systems
PublicationYear 2025
Publisher 대한산업공학회
Publisher_xml – name: 대한산업공학회
SSID ssib053376758
ssib007833225
ssib022564908
ssib008451553
ssib036278095
ssib010715498
ssib044739636
Score 2.310962
Snippet Improving inventory control is one of the main requirements for monitoring inventory practices in many industrial sectors because of its impact on process flow...
SourceID nrf
crossref
SourceType Open Website
Index Database
StartPage 354
SubjectTerms 산업공학
Title Implementation of a Modified Swarm Intelligence Algorithm in Inventory Control Practices: A Case Study
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003253572
Volume 24
WOSCitedRecordID wos001603443900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Industrial Engineering & Management Systems, 2025, 24(3), , pp.354-373
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2234-6473
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044739636
  issn: 1598-7248
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELW2hQMXBAJEy4cswa1K2NhOnHBbVUXsgaqoRerNcuO4RN1NqnQp5cJP4bcyEzvebBESPXBJdq3NKJ55Ox7bM8-EvK1EYZJMp5E0hYyEsSIqmOVRnsINcyozq_vDJuThYX56WhxNJr-GWpjrhWya_OamuPyvpoY2MDaWzt7B3EEoNMBnMDpcwexw_SfD93y_S19S1Lj6x0-tqS0Gm8ffdbf0tSOeh3O2OG-7evV1iUsf8z4HHffd930O-5Evo7ryNeww6vXJhxvbwaMDQEYEhz2s1vk1G-zobtHcuOXX2Q-9As-3XpqeLfaOtbUu-XuO2wyf4_H6BEtDAlZwqchYyhyfZlz1bRCTiCgT7hCTwQ-7WmqPNz5yqtzRTPvxmbunbrt-CaEhmKaGbsT4GjETMY_Do2Oe7VvjX8hKhPkQSlEoQ6EMxYTiCmRskXtMQj8wNfTnQfBXMucb_jAXeGBO8Hcws0YCvODf4KcZ7rMO3yF2kPl0XRctQCHgD0N4CJE4Uu301ZyDEl3dF77muz-7uhFbbTWdHYVKJ4_IQz_HoTOHzcdkUjVPiN3EJW0t1XTAJe1xSce4pAGXtG5owCX1uKQBl-_pjCIqaY_Kp-TLh4OT_Y-RP-QjKhlPVxHMdwXEaWcZAwVImwvNbJmbMjNiWgmYrRidJjLhWkqsZsq4NpaXOin51DBWJPwZ2W7apnpOqOQVqIufaZFAVG0SrXUGKjMsZRUSU-6QvUE96tJxuai_23yHvAENqouyVkjBjvfzVl10Ciaac3hOQuyeJLt3kvmCPFj_RV6S7VX3rXpF7pfXq_qqe92D6zdQLJio
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+a+Modified+Swarm+Intelligence+Algorithm+in+Inventory+Control+Practices%3A+A+Case+Study&rft.jtitle=Industrial+Engineering+%26+Management+Systems&rft.au=Hamdan%2C+Ayat+Deah&rft.au=Al+Saffar%2C+Iman+Q.&rft.date=2025-09-01&rft.issn=1598-7248&rft.eissn=2234-6473&rft.volume=24&rft.issue=3&rft.spage=354&rft.epage=373&rft_id=info:doi/10.7232%2Fiems.2025.24.3.354&rft.externalDBID=n%2Fa&rft.externalDocID=10_7232_iems_2025_24_3_354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-7248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-7248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-7248&client=summon