Application of linear ordinary differential equations to the stability control of long time lag networks

Optimal control based on the exact synchronization of linear ordinary differential equations can provide conditions for the existence of optimal control of long-time lag network stability. In this paper, we first generalize network control systems, time lag systems, and modern control system stabili...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and nonlinear sciences Vol. 9; no. 1
Main Author: Yao, Haiyan
Format: Journal Article
Language:English
Published: Beirut Sciendo 01.01.2024
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Subjects:
ISSN:2444-8656, 2444-8656
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optimal control based on the exact synchronization of linear ordinary differential equations can provide conditions for the existence of optimal control of long-time lag network stability. In this paper, we first generalize network control systems, time lag systems, and modern control system stability theory to discuss long-time lag network stability analysis and control problems. The numerical solution method for solving ordinary differential equations with boundary conditions is proposed by combining the numerical solution method for initial value problems of differential equations and the iterative method for solving nonlinear equations. Finally, the fixed-time synchronization problem of complex networks with time-varying time lags under periodic intermittent control is studied. Two intermittent control strategies are designed based on the linear ordinary differential equation algorithm, and the convergence analysis of the synchronization error and the synchronization criterion are given. Numerical values show that the synchronization error converges to zero (< 1.0 − 5) in 0.32s, while the convergence times are 0.55s and 0.90s. The fixed times of the three methods are calculated to be = 0.52, = 0.71 and = 1.32, respectively, and the synchronization error system converges faster under the method in the paper. The numerical simulation results verify the effectiveness of linear ordinary differential equations in controlling the stability of long-time lag networks.
AbstractList Optimal control based on the exact synchronization of linear ordinary differential equations can provide conditions for the existence of optimal control of long-time lag network stability. In this paper, we first generalize network control systems, time lag systems, and modern control system stability theory to discuss long-time lag network stability analysis and control problems. The numerical solution method for solving ordinary differential equations with boundary conditions is proposed by combining the numerical solution method for initial value problems of differential equations and the iterative method for solving nonlinear equations. Finally, the fixed-time synchronization problem of complex networks with time-varying time lags under periodic intermittent control is studied. Two intermittent control strategies are designed based on the linear ordinary differential equation algorithm, and the convergence analysis of the synchronization error and the synchronization criterion are given. Numerical values show that the synchronization error converges to zero (< 1.0 − 5) in 0.32s, while the convergence times are 0.55s and 0.90s. The fixed times of the three methods are calculated to be = 0.52, = 0.71 and = 1.32, respectively, and the synchronization error system converges faster under the method in the paper. The numerical simulation results verify the effectiveness of linear ordinary differential equations in controlling the stability of long-time lag networks.
Optimal control based on the exact synchronization of linear ordinary differential equations can provide conditions for the existence of optimal control of long-time lag network stability. In this paper, we first generalize network control systems, time lag systems, and modern control system stability theory to discuss long-time lag network stability analysis and control problems. The numerical solution method for solving ordinary differential equations with boundary conditions is proposed by combining the numerical solution method for initial value problems of differential equations and the iterative method for solving nonlinear equations. Finally, the fixed-time synchronization problem of complex networks with time-varying time lags under periodic intermittent control is studied. Two intermittent control strategies are designed based on the linear ordinary differential equation algorithm, and the convergence analysis of the synchronization error and the synchronization criterion are given. Numerical values show that the synchronization error converges to zero (< 1.0 e − 5) in 0.32s, while the convergence times are 0.55s and 0.90s. The fixed times of the three methods are calculated to be T * = 0.52, T 1 = 0.71 and T 2 = 1.32, respectively, and the synchronization error system converges faster under the method in the paper. The numerical simulation results verify the effectiveness of linear ordinary differential equations in controlling the stability of long-time lag networks.
Optimal control based on the exact synchronization of linear ordinary differential equations can provide conditions for the existence of optimal control of long-time lag network stability. In this paper, we first generalize network control systems, time lag systems, and modern control system stability theory to discuss long-time lag network stability analysis and control problems. The numerical solution method for solving ordinary differential equations with boundary conditions is proposed by combining the numerical solution method for initial value problems of differential equations and the iterative method for solving nonlinear equations. Finally, the fixed-time synchronization problem of complex networks with time-varying time lags under periodic intermittent control is studied. Two intermittent control strategies are designed based on the linear ordinary differential equation algorithm, and the convergence analysis of the synchronization error and the synchronization criterion are given. Numerical values show that the synchronization error converges to zero (< 1.0e − 5) in 0.32s, while the convergence times are 0.55s and 0.90s. The fixed times of the three methods are calculated to be T* = 0.52, T1 = 0.71 and T2 = 1.32, respectively, and the synchronization error system converges faster under the method in the paper. The numerical simulation results verify the effectiveness of linear ordinary differential equations in controlling the stability of long-time lag networks.
Author Yao, Haiyan
Author_xml – sequence: 1
  givenname: Haiyan
  surname: Yao
  fullname: Yao, Haiyan
  email: yaohaiyan8505@126.com
  organization: Liaocheng University Dongchang College, Liaocheng, Shandong, 252000, China
BookMark eNp1kD9PwzAUxC1UJErpB2CzxJxgO3biiKmq-CchscBsOclL65Laqe2o6rcnbZFgYXo3_O5O767RxDoLCN1SkjJeyHu9tSFlhGUpSwkRBbtAU8Y5T2Qu8skffYXmIWwIGVGa5TmbovWi7ztT62icxa7FnbGgPXa-MVb7A25M24IHG43uMOyGExhwdDiuAYeoK9OZeMC1s9G77hTh7ApHswXc6RW2EPfOf4UbdNnqLsD8587Q59Pjx_IleXt_fl0u3pKaZYImIEnJNa8qKfOKclJXVHDCSipyLlheN6KSmhcF0ILXUEiuZQZNAw0pW12Bzmbo7pzbe7cbIES1cYO3Y6XKaEkpIyITI0XPVO1dCB5a1XuzHR9WlKjjpuq4qTpuqpg6bTp6Hs6eve4i-AZWfjiM4rfgX29Js29k-YGn
Cites_doi 10.1016/j.chaos.2021.111374
10.1109/TCYB.2018.2803754
10.1109/TSG.2015.2474815
10.1515/gmj-2016-0077
10.1109/TR.2021.3063492
10.1007/s11071-017-3905-3
10.1063/1.5111686
10.1016/j.csda.2022.107483
10.3390/en14185820
10.1109/TIE.2018.2870384
10.1016/j.neucom.2017.09.050
10.1103/PhysRevLett.122.058301
10.1007/s11139-015-9753-1
10.1016/j.sysconle.2017.07.012
10.1007/s11071-017-3455-8
10.1016/j.automatica.2019.03.017
10.1109/TPWRS.2020.3032471
10.3390/en14216899
10.1002/mma.6064
ContentType Journal Article
Copyright 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/amns.2023.2.00572
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2444-8656
ExternalDocumentID 10_2478_amns_2023_2_00572
10_2478_amns_2023_2_0057291
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AFFHD
AFKRA
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
CCPQU
EBS
M~E
OK1
PHGZM
PHGZT
PIMPY
QD8
SLJYH
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2351-e8094a4bb886b140cb1540291564526cd5b8a477e174ce784a83edded09fabea3
IEDL.DBID PIMPY
ISSN 2444-8656
IngestDate Sun Oct 19 01:30:53 EDT 2025
Sat Nov 29 05:04:27 EST 2025
Sat Nov 29 01:25:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2351-e8094a4bb886b140cb1540291564526cd5b8a477e174ce784a83edded09fabea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/3191120535?pq-origsite=%requestingapplication%
PQID 3191120535
PQPubID 6761185
PageCount 16
ParticipantIDs proquest_journals_3191120535
crossref_primary_10_2478_amns_2023_2_00572
walterdegruyter_journals_10_2478_amns_2023_2_0057291
PublicationCentury 2000
PublicationDate 2024-01-01
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Beirut
PublicationPlace_xml – name: Beirut
PublicationTitle Applied mathematics and nonlinear sciences
PublicationYear 2024
Publisher Sciendo
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Publisher_xml – name: Sciendo
– name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
References 2024101012340894475_j_amns.2023.2.00572_ref_009
2024101012340894475_j_amns.2023.2.00572_ref_008
2024101012340894475_j_amns.2023.2.00572_ref_019
2024101012340894475_j_amns.2023.2.00572_ref_007
2024101012340894475_j_amns.2023.2.00572_ref_018
2024101012340894475_j_amns.2023.2.00572_ref_006
2024101012340894475_j_amns.2023.2.00572_ref_017
2024101012340894475_j_amns.2023.2.00572_ref_001
2024101012340894475_j_amns.2023.2.00572_ref_012
2024101012340894475_j_amns.2023.2.00572_ref_011
2024101012340894475_j_amns.2023.2.00572_ref_010
2024101012340894475_j_amns.2023.2.00572_ref_021
2024101012340894475_j_amns.2023.2.00572_ref_020
2024101012340894475_j_amns.2023.2.00572_ref_005
2024101012340894475_j_amns.2023.2.00572_ref_016
2024101012340894475_j_amns.2023.2.00572_ref_004
2024101012340894475_j_amns.2023.2.00572_ref_015
2024101012340894475_j_amns.2023.2.00572_ref_003
2024101012340894475_j_amns.2023.2.00572_ref_014
2024101012340894475_j_amns.2023.2.00572_ref_002
2024101012340894475_j_amns.2023.2.00572_ref_013
References_xml – ident: 2024101012340894475_j_amns.2023.2.00572_ref_003
  doi: 10.1016/j.chaos.2021.111374
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_005
  doi: 10.1109/TCYB.2018.2803754
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_016
  doi: 10.1109/TSG.2015.2474815
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_018
  doi: 10.1515/gmj-2016-0077
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_011
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_002
  doi: 10.1109/TR.2021.3063492
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_013
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_001
  doi: 10.1007/s11071-017-3905-3
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_006
  doi: 10.1063/1.5111686
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_021
  doi: 10.1016/j.csda.2022.107483
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_015
  doi: 10.3390/en14185820
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_007
  doi: 10.1109/TIE.2018.2870384
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_008
  doi: 10.1016/j.neucom.2017.09.050
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_010
  doi: 10.1103/PhysRevLett.122.058301
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_017
  doi: 10.1007/s11139-015-9753-1
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_009
  doi: 10.1016/j.sysconle.2017.07.012
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_020
  doi: 10.1007/s11071-017-3455-8
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_014
  doi: 10.1016/j.automatica.2019.03.017
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_012
  doi: 10.1109/TPWRS.2020.3032471
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_004
  doi: 10.3390/en14216899
– ident: 2024101012340894475_j_amns.2023.2.00572_ref_019
  doi: 10.1002/mma.6064
SSID ssj0002313662
Score 2.2426322
Snippet Optimal control based on the exact synchronization of linear ordinary differential equations can provide conditions for the existence of optimal control of...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms 78-02
Fixed-time synchronization
Intermittent control
Network control systems
Ordinary differential equations
Structural stability
Systems stability
Time-lag systems
Title Application of linear ordinary differential equations to the stability control of long time lag networks
URI https://reference-global.com/article/10.2478/amns.2023.2.00572
https://www.proquest.com/docview/3191120535
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: BENPR
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2444-8656
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002313662
  issn: 2444-8656
  databaseCode: PIMPY
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFH7o5sHL_I3zFzl4Euq2JG3Tk6goenAMUdBTSZNsCrPVtVP23_vSpg4FPXkPofRLXr6X9_J9AIcyMkIxZG6SBZig-Fp7yEK4RyPeZUzj3pSyNJsI-33x8BAN3PPo3LVV1jGxDNSV2rPt28Yg3NGZsjfmHVw4SBSsNsnJ65tnPaRsrdUZaixC0wpvdRvQHFzfDB6_7lyQy7AgoFVxk_JQdORLajW7KTu2up1-SL8fT3PO2fooq9fajCbTWVFXS8tD6HLlfz9_FVqOjJLTavWswYJJ12HFEVPitn2-AU-n8zI3yYbEUlM5IZi3lq95Se2ygtFiTMxbpR6ekyIjSC8J8s-yA3dGXF98OUWWjog1tidjOSJp1Yyeb8L95cXd-ZXnLBo8RZnf84zA9FDyJBEiSDBXUwlSsi6NrASNTwOl_URIHoYGEx9lQsGlYAYjqu5GQ5kYybagkWap2QaScC0509xYl0DDlDCBDqSIpBgy01OiDUc1MvFrpcQRYwZjYYwtjLGFMaZxCWMb9moYYrcp83j-19vAf-A5H_XrnFFv5-9Zd2EZx_PqgmYPGsVkavZhSb0Xz_nkAJpnF_3B7YFblJ9avvQN
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RBalcgNIiFmjrQ3uplLJrO4lzqCrUFrECVnugEpxcx55dkCCBTQDtn-I3dpxHV60ENw69JyMn83n8zcMzAB9MgsoKYm5GROSghM4FxEJkwBPZE8LR3jSmGjYRD4fq9DQZLcBDexfGl1W2NrEy1C63Pka-S1AhauC7kXy9vgn81CifXW1HaNSwOMTZPblsxZfBd9LvR873f5x8OwiaqQKB5SLsB6jIozEyTZWKUnIvbEososcT3zUl5JF1YaqMjGMkrm4xVtIogWQEXC8ZmxSNILkvYFES2HsdWBwNjkdnf6I6xJZEFPE6fcplrHbNVea7gnPx2XcGDWP-9wE4Z7Ur91V-3OFkejsr23xsdcztr_5vP2gNVhpCzfbqHfAKFjBbh9WGXLPGdBWv4Xxvnqpn-Zh5em2mjNZZ3Uhm7aQYsniXDG_qDugFK3NGFJkRh66qiGesqe2vROTZhJUXV8guzYRldUF98QZ-Psv3bkAnyzPcBJZKZ6RwEv2kQxRWYeQioxKjxgL7VnXhU6t7fV13E9HkhXmgaA8U7YGiua6A0oWdVtG6MSyFnmu5C_IfxMyfelRm0t96Wup7eHlwcnykjwbDw21YpndlHXDagU45vcW3sGTvyoti-q6BPoNfzw2m3yqeQ3E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+linear+ordinary+differential+equations+to+the+stability+control+of+long+time+lag+networks&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Yao%2C+Haiyan&rft.date=2024-01-01&rft.issn=2444-8656&rft.eissn=2444-8656&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2478%2Famns.2023.2.00572&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_amns_2023_2_00572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon