A fuzzy zeroing neural network and its application on dynamic Hill cipher
Cryptography is the core of information security, and the Hill cipher is one of the most important methods for cryptography. For the purpose of the improvement in the security of traditional Hill cipher (THC) with time-invariant key, a new dynamic Hill cipher (DHC) method with time-varying key is pr...
Uložené v:
| Vydané v: | Neural computing & applications Ročník 37; číslo 17; s. 10605 - 10619 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.06.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cryptography is the core of information security, and the Hill cipher is one of the most important methods for cryptography. For the purpose of the improvement in the security of traditional Hill cipher (THC) with time-invariant key, a new dynamic Hill cipher (DHC) method with time-varying key is proposed in this paper, which replaced the time-invariant matrix key of the THC with a time-varying matrix key for encryption. In order to ensure the efficiency and accuracy of the proposed DHC, the zeroing neural network (ZNN) is adopted to solve the time-varying key inversion (TVKI) matrix of the DHC decryption. Generally, conventional zeroing neural network (C-ZNN) models cannot effectively deal with the noises, and their convergence and robustness cannot be guaranteed in noisy environments. For the purpose of ensuring the robustness of the ZNN model for solving the TVKI matrix of the DHC decryption, a fuzzy activation function is designed, and a new fuzzy ZNN (FZNN) is constructed to solve the TVKI matrix of the DHC decryption. Comparative simulation results of the FZNN model with other C-ZNN models for solving the TVKI matrix of the DHC demonstrate that the FZNN model converges to the theoretical solution of the TVKI matrix within 0.8s in noisy environment, while other C-ZNN models take more than 0.8s or fail due to noises, which further validates the superior performances of the FZNN model. In addition, the encryption and decryption experiments on strings and RGB images are provided to prove the security of the proposed DHC, and comparative simulation results show that DHC has high feasibility and security in information encryption. |
|---|---|
| AbstractList | Cryptography is the core of information security, and the Hill cipher is one of the most important methods for cryptography. For the purpose of the improvement in the security of traditional Hill cipher (THC) with time-invariant key, a new dynamic Hill cipher (DHC) method with time-varying key is proposed in this paper, which replaced the time-invariant matrix key of the THC with a time-varying matrix key for encryption. In order to ensure the efficiency and accuracy of the proposed DHC, the zeroing neural network (ZNN) is adopted to solve the time-varying key inversion (TVKI) matrix of the DHC decryption. Generally, conventional zeroing neural network (C-ZNN) models cannot effectively deal with the noises, and their convergence and robustness cannot be guaranteed in noisy environments. For the purpose of ensuring the robustness of the ZNN model for solving the TVKI matrix of the DHC decryption, a fuzzy activation function is designed, and a new fuzzy ZNN (FZNN) is constructed to solve the TVKI matrix of the DHC decryption. Comparative simulation results of the FZNN model with other C-ZNN models for solving the TVKI matrix of the DHC demonstrate that the FZNN model converges to the theoretical solution of the TVKI matrix within 0.8s in noisy environment, while other C-ZNN models take more than 0.8s or fail due to noises, which further validates the superior performances of the FZNN model. In addition, the encryption and decryption experiments on strings and RGB images are provided to prove the security of the proposed DHC, and comparative simulation results show that DHC has high feasibility and security in information encryption. |
| Author | Lei, Xiaoyang Jin, Jie Wu, Lianghong Lu, Ming Li, Zhijing Chen, Chaoyang |
| Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0002-7386-8412 surname: Jin fullname: Jin, Jie email: jj67123@hnust.edu.cn organization: School of Information Engineering, Changsha Medical University, School of Information and Electrical Engineering, Hunan University of Science and Technology – sequence: 2 givenname: Xiaoyang surname: Lei fullname: Lei, Xiaoyang email: 13219776613@163.com organization: School of Information Engineering, Changsha Medical University – sequence: 3 givenname: Chaoyang surname: Chen fullname: Chen, Chaoyang organization: School of Information and Electrical Engineering, Hunan University of Science and Technology – sequence: 4 givenname: Ming surname: Lu fullname: Lu, Ming organization: School of Information and Electrical Engineering, Hunan University of Science and Technology – sequence: 5 givenname: Lianghong surname: Wu fullname: Wu, Lianghong organization: School of Information and Electrical Engineering, Hunan University of Science and Technology – sequence: 6 givenname: Zhijing surname: Li fullname: Li, Zhijing organization: School of Information and Electrical Engineering, Hunan University of Science and Technology |
| BookMark | eNp9kE9Lw0AQxRepYFv9Ap4WPEdn_6XJsRS1hYIXPS-bzaZuTTdxN0GaT-_aCIKHwsAcZn7z3rwZmrjGGYRuCdwTgMVDABCUJEB5QkDkeTJcoCnhjCUMRDZBU8h5HKecXaFZCHsA4GkmpmizxFU_DEc8GN9Yt8PO9F7VsXVfjf_AypXYdgGrtq2tVp1tHI5VHp06WI3Xtq6xtu278dfoslJ1MDe_fY7enh5fV-tk-_K8WS23iaaMD0lBBc0NcBBlXhWZIryoQFc5UToteM6oMKQUhupo3lSlECCKXLFFqggjBVdsju7Gu61vPnsTOrlveu-ipGSUcEpTwnjcouOW9k0I3lSy9fag_FESkD-RyTEyGSOTp8jkEKHsH6Rtd_q588rW51E2oiHquJ3xf67OUN_Lv4L7 |
| CitedBy_id | crossref_primary_10_3390_sym17081359 crossref_primary_10_1007_s11071_025_11526_0 |
| Cites_doi | 10.1016/j.asoc.2014.10.004 10.1049/cit2.12161 10.1016/j.matcom.2022.02.019 10.1109/TII.2022.3155599 10.1109/ADCONS.2013.33 10.1109/TII.2021.3099819 10.1109/TFUZZ.2020.3005272 10.1088/1742-6596/1899/1/012116 10.3389/fbioe.2020.00737 10.1109/TII.2023.3241683 10.1007/s12596-023-01313-8 10.1109/TNNLS.2021.3106640 10.1016/j.neucom.2023.01.008 10.1016/j.eswa.2022.118735 10.1109/AIMS52415.2021.9466039 10.1109/ICICICT.2014.6781311 10.1016/j.ipl.2015.03.007 10.1002/sec.137 10.1109/ACCESS.2020.3036927 10.1109/TCYB.2019.2906263 10.1109/TFUZZ.2016.2612264 10.1109/TFUZZ.2018.2868898 10.1109/TNNLS.2020.2966294 10.33795/jip.v7i2.394 10.1109/TSMC.2019.2963072 10.3389/fnbot.2022.928636 10.4271/06-11-01-0001 10.1109/TFUZZ.2019.2914618 10.1007/s00521-023-08621-x 10.1007/s00521-021-06465-x 10.1109/TETCI.2024.3356163 10.1109/TII.2022.3220873 10.1007/s11071-022-07995-2 10.1016/j.neucom.2020.02.121 10.1109/TII.2021.3093115 10.1109/TNNLS.2020.3042761 10.1142/S0218127422502108 10.1109/TETCI.2023.3301793 10.1109/TFUZZ.2021.3115969 10.1016/j.matcom.2023.01.012 10.1016/j.chaos.2021.110962 10.1007/3-540-48910-X_28 10.1016/j.bbadis.2020.165916 10.1109/TCYB.2022.3179312 10.1109/JAS.2023.123273 10.1109/TNNLS.2023.3315332 10.1109/TII.2022.3217482 10.1109/ECIE52353.2021.00059 10.1007/s00521-022-08039-x 10.1007/s00521-023-08460-w 10.1109/TNNLS.2022.3175899 10.1109/TCYB.2021.3051261 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-024-10599-z |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 10619 |
| ExternalDocumentID | 10_1007_s00521_024_10599_z |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PMFND PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AHWEU AIXLP CITATION PQGLB |
| ID | FETCH-LOGICAL-c234z-b2529e0405d9fb8a14bf0cf91ac6b49325e1d5e2c433efd5505b9a376a131b4a3 |
| IEDL.DBID | RSV |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 08:23:54 EST 2025 Tue Nov 18 21:27:16 EST 2025 Sat Nov 29 07:53:24 EST 2025 Sun Jun 01 01:14:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | Hill cipher Encryption and decryption Robustness Zeroing neural network (ZNN) Fuzzy theory |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c234z-b2529e0405d9fb8a14bf0cf91ac6b49325e1d5e2c433efd5505b9a376a131b4a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7386-8412 |
| PQID | 3214226134 |
| PQPubID | 2043988 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3214226134 crossref_primary_10_1007_s00521_024_10599_z crossref_citationtrail_10_1007_s00521_024_10599_z springer_journals_10_1007_s00521_024_10599_z |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | R Behera (10599_CR26) 2023; 35 E Albahrani (10599_CR8) 2020; 51 W Li (10599_CR19) 2020; 50 H Huang (10599_CR4) 2022 M Toorani (10599_CR16) 2011; 4 J Jin (10599_CR39) 2024; 8 VN Katsikis (10599_CR55) 2021; 30 J Jin (10599_CR58) 2023; 70 B Acharya (10599_CR11) 2008; 4 MA Lone (10599_CR17) 2023; 111 Z Zhang (10599_CR37) 2022; 25 RK Hasoun (10599_CR15) 2021; 12 J Jin (10599_CR44) 2022; 130 Y Li (10599_CR53) 2018; 27 J Jin (10599_CR33) 2023; 53 J Dai (10599_CR60) 2021; 18 J Jin (10599_CR34) 2024 B Liao (10599_CR43) 2022; 16 D Gerontitis (10599_CR21) 2023; 35 M Jabiullah (10599_CR9) 2021; 4 Z Zhang (10599_CR54) 2020; 28 W Li (10599_CR22) 2022; 34 J Jin (10599_CR45) 2023; 207 10599_CR10 P Cao (10599_CR36) 2023 10599_CR14 B He (10599_CR41) 2020; 8 L Jia (10599_CR56) 2021; 29 10599_CR13 10599_CR12 10599_CR18 10599_CR59 Y Zhang (10599_CR24) 2015; 115 YS Mahmoud (10599_CR47) 2018; 11 SA Soleymani (10599_CR1) 2021; 29 B Liao (10599_CR42) 2024; 244 B Liao (10599_CR30) 2024; 9 S Feng (10599_CR46) 2017; 25 L Xiao (10599_CR25) 2023; 34 10599_CR40 Y Zhang (10599_CR23) 2024; 35 L Xiao (10599_CR28) 2023; 526 L Xiao (10599_CR31) 2020; 31 Z Sun (10599_CR49) 2022; 10 L Xiao (10599_CR29) 2022; 33 J Dai (10599_CR57) 2021; 18 Y Kong (10599_CR51) 2023; 212 J Jin (10599_CR27) 2023; 19 M Ma (10599_CR35) 2024; 33 X Yu (10599_CR48) 2020; 51 10599_CR7 10599_CR6 10599_CR5 L Xiao (10599_CR32) 2020; 402 Z Sun (10599_CR50) 2023; 19 10599_CR2 J Zhu (10599_CR61) 2022; 197 Z Sun (10599_CR20) 2023; 35 H Lin (10599_CR3) 2022; 18 10599_CR38 P Zhou (10599_CR52) 2020; 9 |
| References_xml | – ident: 10599_CR7 doi: 10.1016/j.asoc.2014.10.004 – volume: 9 start-page: 197 issue: 1 year: 2024 ident: 10599_CR30 publication-title: CAAI Trans Intell Technol doi: 10.1049/cit2.12161 – volume: 197 start-page: 291 year: 2022 ident: 10599_CR61 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.02.019 – volume: 18 start-page: 8839 issue: 12 year: 2022 ident: 10599_CR3 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3155599 – ident: 10599_CR5 doi: 10.1109/ADCONS.2013.33 – volume: 18 start-page: 2560 issue: 4 year: 2021 ident: 10599_CR60 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2021.3099819 – volume: 29 start-page: 2603 issue: 9 year: 2021 ident: 10599_CR56 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2020.3005272 – ident: 10599_CR12 doi: 10.1088/1742-6596/1899/1/012116 – volume: 8 start-page: 737 year: 2020 ident: 10599_CR41 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00737 – volume: 19 start-page: 10786 year: 2023 ident: 10599_CR50 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2023.3241683 – ident: 10599_CR14 doi: 10.1007/s12596-023-01313-8 – volume: 34 start-page: 2413 issue: 5 year: 2023 ident: 10599_CR25 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3106640 – volume: 526 start-page: 158 year: 2023 ident: 10599_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.01.008 – volume: 212 year: 2023 ident: 10599_CR51 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118735 – ident: 10599_CR13 doi: 10.1109/AIMS52415.2021.9466039 – ident: 10599_CR6 doi: 10.1109/ICICICT.2014.6781311 – volume: 4 start-page: 1 issue: 1 year: 2021 ident: 10599_CR9 publication-title: J Netw Secur Data Min – volume: 115 start-page: 703 issue: 9 year: 2015 ident: 10599_CR24 publication-title: Inf Process Lett doi: 10.1016/j.ipl.2015.03.007 – volume: 4 start-page: 207 issue: 2 year: 2011 ident: 10599_CR16 publication-title: Security Commun Netw doi: 10.1002/sec.137 – volume: 9 start-page: 69481 year: 2020 ident: 10599_CR52 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3036927 – volume: 50 start-page: 3195 issue: 7 year: 2020 ident: 10599_CR19 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2906263 – volume: 25 start-page: 1293 issue: 5 year: 2017 ident: 10599_CR46 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2016.2612264 – volume: 27 start-page: 96 issue: 1 year: 2018 ident: 10599_CR53 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2018.2868898 – volume: 29 issue: 16 year: 2021 ident: 10599_CR1 publication-title: Veh Commun – volume: 33 issue: 2 year: 2024 ident: 10599_CR35 publication-title: Chin Phys B – volume: 31 start-page: 5339 issue: 12 year: 2020 ident: 10599_CR31 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.2966294 – volume: 12 start-page: 1071 issue: 2 year: 2021 ident: 10599_CR15 publication-title: Int J Nonlinear Anal Appl – ident: 10599_CR10 doi: 10.33795/jip.v7i2.394 – volume: 51 start-page: 6994 issue: 11 year: 2020 ident: 10599_CR48 publication-title: IEEE Trans Syst Man Cybern: Syst doi: 10.1109/TSMC.2019.2963072 – volume: 16 year: 2022 ident: 10599_CR43 publication-title: Front Neurorobot doi: 10.3389/fnbot.2022.928636 – volume: 11 start-page: 5 issue: 1 year: 2018 ident: 10599_CR47 publication-title: SAE Int J Passenger Cars Mech Syst doi: 10.4271/06-11-01-0001 – volume: 28 start-page: 684 issue: 4 year: 2020 ident: 10599_CR54 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2019.2914618 – volume: 35 start-page: 17537 year: 2023 ident: 10599_CR26 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08621-x – volume: 244 year: 2024 ident: 10599_CR42 publication-title: Expert Syst Appl – volume: 34 start-page: 1329 year: 2022 ident: 10599_CR22 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06465-x – year: 2024 ident: 10599_CR34 publication-title: IEEE Trans Emerg Topics Comput Intell doi: 10.1109/TETCI.2024.3356163 – volume: 19 start-page: 8691 issue: 8 year: 2023 ident: 10599_CR27 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3220873 – volume: 111 start-page: 5919 issue: 6 year: 2023 ident: 10599_CR17 publication-title: Nonlinear Dyn doi: 10.1007/s11071-022-07995-2 – volume: 402 start-page: 395 year: 2020 ident: 10599_CR32 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.121 – volume: 4 start-page: 114 year: 2008 ident: 10599_CR11 publication-title: Proc ICTAETS – volume: 130 year: 2022 ident: 10599_CR44 publication-title: Appl Soft Comput – volume: 18 start-page: 2434 issue: 4 year: 2021 ident: 10599_CR57 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2021.3093115 – volume: 33 start-page: 1535 issue: 4 year: 2022 ident: 10599_CR29 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3042761 – ident: 10599_CR38 doi: 10.1142/S0218127422502108 – volume: 8 start-page: 364 issue: 1 year: 2024 ident: 10599_CR39 publication-title: IEEE Trans Emerg Topics Comput Intell doi: 10.1109/TETCI.2023.3301793 – volume: 30 start-page: 3426 issue: 9 year: 2021 ident: 10599_CR55 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2021.3115969 – volume: 207 start-page: 482 year: 2023 ident: 10599_CR45 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2023.01.012 – volume: 70 start-page: 4201 issue: 11 year: 2023 ident: 10599_CR58 publication-title: IEEE Trans Circuits Syst II Express Briefs – ident: 10599_CR59 doi: 10.1016/j.chaos.2021.110962 – ident: 10599_CR2 doi: 10.1007/3-540-48910-X_28 – ident: 10599_CR40 doi: 10.1016/j.bbadis.2020.165916 – volume: 53 start-page: 3887 issue: 6 year: 2023 ident: 10599_CR33 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2022.3179312 – volume: 10 start-page: 1766 year: 2022 ident: 10599_CR49 publication-title: IEEE/CAA J Autom Sinica doi: 10.1109/JAS.2023.123273 – year: 2023 ident: 10599_CR36 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2023.3315332 – year: 2022 ident: 10599_CR4 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3217482 – volume: 51 year: 2020 ident: 10599_CR8 publication-title: J Inf Secur Appl – ident: 10599_CR18 doi: 10.1109/ECIE52353.2021.00059 – volume: 35 start-page: 6813 year: 2023 ident: 10599_CR20 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-08039-x – volume: 35 start-page: 14129 year: 2023 ident: 10599_CR21 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08460-w – volume: 35 start-page: 559 issue: 1 year: 2024 ident: 10599_CR23 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3175899 – volume: 25 start-page: 8781 issue: 9 year: 2022 ident: 10599_CR37 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3051261 |
| SSID | ssj0004685 |
| Score | 2.3819737 |
| Snippet | Cryptography is the core of information security, and the Hill cipher is one of the most important methods for cryptography. For the purpose of the improvement... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10605 |
| SubjectTerms | Artificial Intelligence Color imagery Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Cryptography Data Mining and Knowledge Discovery Encryption Image Processing and Computer Vision Invariants Neural networks Probability and Statistics in Computer Science Robustness (mathematics) S.I.: Timely Advances of Deep Learning with applications and Data Driven Modeling Security Special Issue on Timely Advances of Deep Learning with applications and Data Driven Modeling |
| Title | A fuzzy zeroing neural network and its application on dynamic Hill cipher |
| URI | https://link.springer.com/article/10.1007/s00521-024-10599-z https://www.proquest.com/docview/3214226134 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86ffDF-YnTKXnwTQtLk6zN4xDHBBniF3srzRcMRifrJti_3kvazikqKPStyREuudxd7uOH0DkRmisJkmalkAGzzMG8RCRIO8waCzookr67_m00HMajkbirisLyOtu9Dkn6m3pZ7OZeMMH1DVngbAIRFOtoA9Rd7AAb7h-eV6ohPRAn-C0up4fRqlTmexqf1dGHjfklLOq1Tb_5v3XuoO3KusS98jjsojWT7aFmjdyAK0HeRzc9bBdF8YYLM5sCcezaWsLErEwKx2mm8Xie45XwNoZPl_D1eDCeTLAau44EB-ipf_14NQgqUIVAhZQVgQx5KAyILtfCyjglTNqOsoKkqisZWHPcEM1NqBilxmrnwEiRwjWUEkokS-khamTTzBwhHFpQbiKSjBPNjFZgacZUG2255KHushYiNW8TVXUcd8AXk2TZK9nzKgFeJZ5XSdFCF8s5L2W_jV9Ht-stSyrZyxMHvQRGJaGwgMt6iz5-_0zt-G_DT9BW6MCA_ZNMGzXms4U5RZvqdT7OZ2f-TL4DPxzbYw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BX1xfuJ0ah5808Ly0XV5HOLYcA7RKXsrzRcURifrJti_3iRttykqKPStyREuudxdkvv9ALhETPqCG0vTnHGPamppXgLkRQ2qlTY-KOAOXb8fDAat0Yg9FEVhafnavbySdDv1otjNnmCa1BdTz8YEzMvWwQY1Hssi5j8-vaxUQzoiTpO32Dc9lBSlMt_L-OyOljHml2tR52061f-NcxfsFNElbOfLYQ-sqWQfVEvmBlgY8gHotaGeZ9k7zNR0YoRDC2tpOib5o3AYJRLGsxSuXG9D88mcvh524_EYitgiEhyC587t8KbrFaQKnsCEZh7HPmbKmK4vmeatCFGuG0IzFIkmpyaa8xWSvsKCEqK0tAkMZ5HZhiJEEKcROQKVZJKoYwCxNs6NBZz6SFIlhYk0W0QqqX3uY9mkNYBK3YaiQBy3xBfjcIGV7HQVGl2FTldhVgNXiz6vOd7Gr63r5ZSFhe2loaVeMkElImYA1-UULX__LO3kb80vwFZ3eN8P-73B3SnYxpYY2B3P1EFlNp2rM7Ap3mZxOj136_MDkJPeRw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuJ0ah5807IlTbblcahjwzEGfrC30nxBYXRj6wT715uk7TZFBRH61iQNl1zvLrn7_QC4RkxSwY2mac64RzSxNC9N5IV1opU2NqjJHbp-vzkYtEYjNlyr4nfZ7sWVZFbTYFGa4qQ2lbq2LHyzp5kmDMbEs_4B89JNsEVsIr2N159e1yojHSmniWFsfg_x87KZ78f4bJpW_uaXK1JneTrl_895H-zlXidsZ9vkAGyo-BCUC0YHmCv4Eei1oV6k6TtM1WxiPgQt3KXpGGfJ4jCMJYySOVy79obmkRmtPexG4zEUkUUqOAYvnYfnu66Xky14Avsk9TimmCmj0lQyzVshIlzXhWYoFA1OjJdHFZJUYUF8X2lpAxvOQvN7CpGPOAn9E1CKJ7E6BRBrY_RYkxOKJFFSGA-05UslNeUUywapAFTIORA5ErklxBgHSwxlJ6vAyCpwsgrSCrhZ9plmOBy_tq4WyxfkOjkPLCWTcTaRbyZwWyzX6vXPo539rfkV2Bned4J-b_B4Dnax5Qt2pzZVUEpmC3UBtsVbEs1nl26rfgDFt-cr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+zeroing+neural+network+and+its+application+on+dynamic+Hill+cipher&rft.jtitle=Neural+computing+%26+applications&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=17&rft.spage=10605&rft.epage=10619&rft_id=info:doi/10.1007%2Fs00521-024-10599-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |