An adaptive learning paradigm: event detection through a novel dynamic arithmetic optimization-based ensemble SVM for data stream classification

Data stream mining is the process of generating continuous data stream records such as internet search, phone conversations, sensor data, etc. However it performs huge tasks such as frequency counting, clustering, analysis as well as classification. Mining information from data streams is often cons...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of information technology (Singapore. Online) Ročník 16; číslo 5; s. 3049 - 3055
Hlavní autoři: Vidya, R. Mary, Ramakrishna, M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.06.2024
Springer Nature B.V
Témata:
ISSN:2511-2104, 2511-2112
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Data stream mining is the process of generating continuous data stream records such as internet search, phone conversations, sensor data, etc. However it performs huge tasks such as frequency counting, clustering, analysis as well as classification. Mining information from data streams is often considered as a complicated process due to the rapid change in the underlying concept which is often referred to as concept drift and the high speed of data arrival. Moreover the data stream classification process is not stationary where each transmission is evolved with time. In addition to this, it cannot able to handle imbalanced data and is not able to accommodate new classes. To overcome this problem, an Ensemble Learning model based Support Vector Machine (ESVM) is proposed to perform the data stream classification. To achieve higher diversity, each base SVM is trained with different feature subsets and updated during the presence of new data instances. However, the selection of optimal feature subsets from high dimensional data streams is complex due to the increase in size and computational cost. Hence Dynamic Accelerated Function (DAF) and Dynamic Candidate Solution (DCS) approaches are developed that diminish the classification error and improve the performance with the best fitness value. The performances of the proposed methods is validated based on accuracy, precision, F-score, kappa, and relative error. The experimental result demonstrates that the proposed model is efficient when evaluated in terms of classification accuracy, rapid training, processing time, kappa score and attained an accuracy of 91.45%.
AbstractList Data stream mining is the process of generating continuous data stream records such as internet search, phone conversations, sensor data, etc. However it performs huge tasks such as frequency counting, clustering, analysis as well as classification. Mining information from data streams is often considered as a complicated process due to the rapid change in the underlying concept which is often referred to as concept drift and the high speed of data arrival. Moreover the data stream classification process is not stationary where each transmission is evolved with time. In addition to this, it cannot able to handle imbalanced data and is not able to accommodate new classes. To overcome this problem, an Ensemble Learning model based Support Vector Machine (ESVM) is proposed to perform the data stream classification. To achieve higher diversity, each base SVM is trained with different feature subsets and updated during the presence of new data instances. However, the selection of optimal feature subsets from high dimensional data streams is complex due to the increase in size and computational cost. Hence Dynamic Accelerated Function (DAF) and Dynamic Candidate Solution (DCS) approaches are developed that diminish the classification error and improve the performance with the best fitness value. The performances of the proposed methods is validated based on accuracy, precision, F-score, kappa, and relative error. The experimental result demonstrates that the proposed model is efficient when evaluated in terms of classification accuracy, rapid training, processing time, kappa score and attained an accuracy of 91.45%.
Author Vidya, R. Mary
Ramakrishna, M.
Author_xml – sequence: 1
  givenname: R. Mary
  surname: Vidya
  fullname: Vidya, R. Mary
  email: maryvidya78@gmail.com
  organization: Vemana Institute of Technology, Visvesvaraya Technological University
– sequence: 2
  givenname: M.
  surname: Ramakrishna
  fullname: Ramakrishna, M.
  organization: Vemana Institute of Technology, Visvesvaraya Technological University
BookMark eNp9kUtrGzEUhUVxoUmaP9CVIOtJ9ZiHnJ0xbVJIyKKPrbga3bFVZiRHkg2TX9Gf3LEdEsjCq3sW5zv3wDknMx88EvKFs2vOWPM1lVw1rGCiLBhXUhTjB3ImKs4LwbmYvWpWfiKXKTnDJBe1rBp-Rv4tPAULm-x2SHuE6J1f0Q1EsG413FDcoc_UYsY2u-BpXsewXa0pUB922FM7ehhcSyG6vB4wTzJMYYN7hr2_MJDQUvQJB9Mj_fnngXYhUgsZaMoRYaBtD1OpzrUH4jP52EGf8PLlXpDf37_9Wt4V94-3P5aL-6IVshwLKUyFdTW3Xdkoa5WyHGyHrVEcGsRaSDMHVRvOjGwMGotQ2cYqy2oxh0bJC3J1zN3E8LTFlPXfsI1-eqmlqCrBS1bWk0sdXW0MKUXsdOvyoWeO4HrNmd5PoI8T6GkCfZhAjxMq3qGb6AaI42lIHqE0mf0K41urE9R_cGWf7w
CitedBy_id crossref_primary_10_1007_s41870_024_02218_w
Cites_doi 10.1007/s41870-023-01583-2
10.1016/j.inffus.2018.01.003
10.1007/s10489-018-1280-5
10.1007/s11390-020-9999-y
10.1007/s11704-010-0508-2
10.1007/s41870-023-01499-x
10.1016/j.knosys.2018.09.032
10.1007/s41870-017-0036-5
10.1109/ACCESS.2022.3146374
10.1016/j.asoc.2021.107378
10.1007/s41870-023-01416-2
10.1007/s41870-023-01506-1
ContentType Journal Article
Copyright Bharati Vidyapeeth's Institute of Computer Applications and Management 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Bharati Vidyapeeth's Institute of Computer Applications and Management 2024.
Copyright_xml – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2024.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s41870-024-01832-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2511-2112
EndPage 3055
ExternalDocumentID 10_1007_s41870_024_01832_y
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z7Z
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
JQ2
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c234y-32b5e659df478dd88d1adfecb81a7ee623b9a86b10b37bebdea5d7d8d0629a783
IEDL.DBID RSV
ISSN 2511-2104
IngestDate Tue Sep 30 03:20:28 EDT 2025
Sat Nov 29 03:11:49 EST 2025
Tue Nov 18 22:35:36 EST 2025
Fri Feb 21 02:40:07 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Ensemble support vector machine
Error minimization
Data stream
Feature selection
Dynamic arithmetic optimization algorithm
Candidate feature subset
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c234y-32b5e659df478dd88d1adfecb81a7ee623b9a86b10b37bebdea5d7d8d0629a783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255214046
PQPubID 2034493
PageCount 7
ParticipantIDs proquest_journals_3255214046
crossref_citationtrail_10_1007_s41870_024_01832_y
crossref_primary_10_1007_s41870_024_01832_y
springer_journals_10_1007_s41870_024_01832_y
PublicationCentury 2000
PublicationDate 20240600
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationSubtitle An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management
PublicationTitle International journal of information technology (Singapore. Online)
PublicationTitleAbbrev Int. j. inf. tecnol
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Yu, Wang, Lai (CR12) 2010; 4
Gajjar, Saxena, Acharya, Shah, Bhatt, Nguyen (CR4) 2023
CR15
Wen, Liu (CR9) 2020; 35
CR14
Aman, Agbo, N’guessan, Kone (CR2) 2023
CR13
Junior, do Carmo Nicoletti M (CR7) 2019; 45
Le, Vo, Fournier-Viger, Lee, Baik (CR10) 2019; 49
Anagra, Bahiuddin, Priatomo, Winarno, Darmo, Sandhy, Mazlan (CR3) 2023
Cheriyan, Chitra (CR5) 2023
Jain (CR1) 2017; 9
Du, Zhang, Gang, Zhang, Chen (CR8) 2021; 107
Khodadadi, Snasel, Mirjalili (CR11) 2022; 10
Ren, Zhu, Liao, Li, Wang, Li, Chen, Li (CR6) 2019; 163
L Yu (1832_CR12) 2010; 4
P Gajjar (1832_CR4) 2023
1832_CR15
YM Wen (1832_CR9) 2020; 35
I Anagra (1832_CR3) 2023
T Le (1832_CR10) 2019; 49
1832_CR14
1832_CR13
N Khodadadi (1832_CR11) 2022; 10
S Ren (1832_CR6) 2019; 163
H Du (1832_CR8) 2021; 107
S Cheriyan (1832_CR5) 2023
V Jain (1832_CR1) 2017; 9
SS Aman (1832_CR2) 2023
JRB Junior (1832_CR7) 2019; 45
References_xml – year: 2023
  ident: CR2
  article-title: Design of a data storage and retrieval ontology for the efficient integration of information in artificial intelligence systems
  publication-title: Int J Inform Technol
  doi: 10.1007/s41870-023-01583-2
– volume: 45
  start-page: 66
  year: 2019
  end-page: 78
  ident: CR7
  article-title: An iterative boosting-based ensemble for streaming data classification
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2018.01.003
– volume: 49
  start-page: 478
  issue: 2
  year: 2019
  end-page: 495
  ident: CR10
  article-title: SPPC: a new tree structure for mining erasable patterns in data streams
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1280-5
– volume: 35
  start-page: 295
  issue: 2
  year: 2020
  end-page: 304
  ident: CR9
  article-title: Semi-supervised classification of data streams by BIRCH ensemble and local structure mapping
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-020-9999-y
– volume: 4
  start-page: 196
  issue: 2
  year: 2010
  end-page: 203
  ident: CR12
  article-title: Developing an SVM-based ensemble learning system for customer risk identification collaborating with customer relationship management
  publication-title: Frontiers of Computer Science in China
  doi: 10.1007/s11704-010-0508-2
– ident: CR14
– ident: CR15
– year: 2023
  ident: CR3
  article-title: Detection of coal wagon load distributions based on geometrical features using extreme learning machine methods
  publication-title: Int J Inform Technol
  doi: 10.1007/s41870-023-01499-x
– volume: 163
  start-page: 705
  year: 2019
  end-page: 722
  ident: CR6
  article-title: Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.09.032
– volume: 9
  start-page: 303
  issue: 3
  year: 2017
  end-page: 310
  ident: CR1
  article-title: Perspective analysis of telecommunication fraud detection using data stream analytics and neural network classification based data mining
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-017-0036-5
– volume: 10
  start-page: 16188
  year: 2022
  end-page: 16208
  ident: CR11
  article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3146374
– ident: CR13
– volume: 107
  year: 2021
  ident: CR8
  article-title: Online ensemble learning algorithm for imbalanced data stream
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107378
– year: 2023
  ident: CR5
  article-title: MR-AMFO-CNN: an intelligent recommendation system using optimized deep learning classifications
  publication-title: Int J Inform Technol
  doi: 10.1007/s41870-023-01416-2
– year: 2023
  ident: CR4
  article-title: Liquidt: stock market analysis using liquid time-constant neural networks
  publication-title: Int J Inform Technol
  doi: 10.1007/s41870-023-01506-1
– year: 2023
  ident: 1832_CR2
  publication-title: Int J Inform Technol
  doi: 10.1007/s41870-023-01583-2
– volume: 35
  start-page: 295
  issue: 2
  year: 2020
  ident: 1832_CR9
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-020-9999-y
– volume: 107
  year: 2021
  ident: 1832_CR8
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107378
– volume: 10
  start-page: 16188
  year: 2022
  ident: 1832_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3146374
– year: 2023
  ident: 1832_CR4
  publication-title: Int J Inform Technol
  doi: 10.1007/s41870-023-01506-1
– year: 2023
  ident: 1832_CR3
  publication-title: Int J Inform Technol
  doi: 10.1007/s41870-023-01499-x
– volume: 49
  start-page: 478
  issue: 2
  year: 2019
  ident: 1832_CR10
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1280-5
– volume: 163
  start-page: 705
  year: 2019
  ident: 1832_CR6
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.09.032
– volume: 9
  start-page: 303
  issue: 3
  year: 2017
  ident: 1832_CR1
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-017-0036-5
– volume: 4
  start-page: 196
  issue: 2
  year: 2010
  ident: 1832_CR12
  publication-title: Frontiers of Computer Science in China
  doi: 10.1007/s11704-010-0508-2
– ident: 1832_CR15
– volume: 45
  start-page: 66
  year: 2019
  ident: 1832_CR7
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2018.01.003
– year: 2023
  ident: 1832_CR5
  publication-title: Int J Inform Technol
  doi: 10.1007/s41870-023-01416-2
– ident: 1832_CR13
– ident: 1832_CR14
SSID ssib031263571
ssj0002710285
Score 2.257223
Snippet Data stream mining is the process of generating continuous data stream records such as internet search, phone conversations, sensor data, etc. However it...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3049
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Classification
Clustering
Computer Imaging
Computer Science
Data transmission
Ensemble learning
Image Processing and Computer Vision
Machine Learning
Optimization
Original Research
Pattern Recognition and Graphics
Software Engineering
Support vector machines
Vision
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUocGgPhUJRt3xoDr21VpM42ThcEEIgDoCQaBHiEvljsoA22YVdkPZf8JPxeB0WKsGl58SOohl73tgz7zH2Q8lIOxjqMlUlDE8rEXOt3HKvJBY6MqqofJXv-VF-ciIvLorTcOA2CmWV7Z7oN2o7MHRG_ls47JsQF0x3Z3jLSTWKbleDhMYHtkAsCSTdcJpdtv4kYmJaCXDnxl-yUTilqkYC1txlO2noo_HddGksSYUlobIM5-h88jpWzQDoP3emPhQdLP3vTyyzzwGEwu7Ua76wOWxW2KcX1ISr7HG3AWXVkHZDCNISPSCicHvdq7fBEz-BxbEv5Wog6P2AgmbwgH2wU6V7cKn4-KqmTkkYuMnq0PbJKXpacDk01rqPcHZ-DA4-AxWsAvWvqBoMAXuqZPIjvrK_B_t_9g55UG_gJhHphItEZ9jNClulubRWShsrW6HRMlY5ooNdulCyq-NIi1yjtqgym1tpo25SqFyKNTbfDBr8xkAkDjUqKTHL07TQqKLIYKpNlgsbua91WNzaqTSB2pwUNvrlMymzt23pbFt625aTDvv5PGY4JfZ49-2N1qBlWOSjcmbNDvvVusTs8duzfX9_tnX2MfFeSGc9G2x-fHePm2zRPIyvR3db3sWfAGHuAu0
  priority: 102
  providerName: ProQuest
Title An adaptive learning paradigm: event detection through a novel dynamic arithmetic optimization-based ensemble SVM for data stream classification
URI https://link.springer.com/article/10.1007/s41870-024-01832-y
https://www.proquest.com/docview/3255214046
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: RSV
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB31gwMcaCkglpbVHLgVS0mcrB1upWqFVFitWlhVXCJ_pRRtslV3qbT_gp-Mx-tsAbVIcMklsRNpxp438cx7AK-VTLSHoT5TVdywvOYp08ov91q6UidGlXWo8h1_EMOhPD8vR7EpbNZVu3dHkmGnXjW75akkkZSMqia8H7LFOmz6cCdJsOH0bNx5EU-JXyWCnG_haI2CKNUyEpxmPsfJY_fM3dP-HqFuYecfJ6UhAB1v_d-nb8PjCDjxYOkhT2DNtTuw1Yk5YFzbO_DoF2bCp_DjoEVl1RVthhiVJS6QeMLt5UXzFgPvE1o3D5VcLUa5H1TYTm_cBO1S6B59Jj7_2lCjJE79ZE3s-mQUPC36FNo1euLwbPwRPXpGqldFal9RDRrC9VTIFEY8g8_HR58O37Mo3sBMxvMF45ku3KAobZ0Laa2UNlW2dkbLVAnnPOrSpZIDnSaaC-20daqwwkqbDLJSCcmfw0Y7bd0LQJ550KikdIXI81I7lSTG5doUgtvEv60HaWewykRmcxLYmFQrTuZggMoboAoGqBY92F-NuVryevz16b3OD6q4xmcV99lYRuxEgx686ex-e_v-2V7-2-O78DALrkO_fvZgY3793b2CB-Zmfjm77sPmu6Ph6LQP6yeC-euo-NIP6-En1rwDdw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VggQc-EYECswBTrDC9trZNRJCFVC1ShohUarezH65BMVOSEKR_wW_hN_IzsZuAIneeuBs71hav9l9szvzBuCJkpH2NNRHqooblpY8Zlp5dy-ly3VkVF6GLN_DoRiN5NFR_n4Dfna1MJRW2a2JYaG2U0Nn5C-4574JacH0X8--MuoaRberXQuNFSwGrvnuQ7bFq723_v8-TZKddwdvdlnbVYCZhKcN44nOXD_LbZkKaa2UNla2dEbLWAnnPB3QuZJ9HUeaC-20dSqzwkob9ZNcCcm93QtwMeVSkF8NBOvwy2NSdmnp1ZdwqUfbN2VREpFnPrpK27qdUL2XxpK6viSUBuIdizV_7o1rwvvXHW3Y-nau_2-TdgOutSQbt1decRM2XH0Lrv4mvXgbfmzXqKya0WqPbeuMYyQhdDs-rl5iELZC65YhVa3Gtp8RKqynJ26CtqlVNTao5uPl54oqQXHqjVVtWSsjdmDR1QtX6YnDD4f76MMDpIRcpPocVaGhwIUytcKIO_DxXKbkLmzW09rdA-SJZ8VKSpeJNM21U1FkXKpNJriN_Nd6EHe4KEwr3U4dRCbFqeh0wFLhsVQELBVND56djpmthEvOfHurA1DRLmKLYo2eHjzvILh-_G9r98-29hgu7x7sD4vh3mjwAK4kwQPoXGsLNpfzb-4hXDIny_Fi_ii4F8Kn84bmL2sVYtI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEF2VFiF64Bs1UGAOcAKrtteO10gIVbQRVUsUCagqLu5-jEuq2EmTUOR_we_h17GzWTeARG89cLZ3LK3f7L7ZfTPD2HMpQmVpqI1UJddBUvIoUNK6eykwV6GWeelUvocHWb8vjo7ywQr72ebCkKyyXRPdQm3Gms7It7jlvjHVgululV4WMdjpvZ2cBdRBim5a23YaC4jsY_Pdhm-zN3s79l-_iOPe7qd37wPfYSDQMU-agMcqxW6amzLJhDFCmEiaErUSkcwQLTVQuRRdFYWKZwqVQZmazAgTduNcZoJbu9fYWmZjTJITDtIvLZZ5RFVePNU6dRd8tJWTopJIfWAjrcTn8LhMviQS1AEmJkmIdbKg-XOfXJLfv-5r3TbYu_0_T-AddsuTb9heeMtdtoL1Pbb-W0nG--zHdg3SyAntAuBbapwAFUg3w5PqNbiCV2Bw7iRsNfg-RyChHp_jCExTy2qoQU6H868VZYjC2BqrfLprQKzBANYzrNQI4ePhB7BhA5BQFyhvR1agKaAhBZcb8YB9vpIpechW63GNGwx4bNmyFALTLElyhTIMNSZKpxk3of1ah0UtRgrtS7pTZ5FRcVGM2uGqsLgqHK6KpsNeXoyZLAqaXPr2Zgumwi9us2KJpA571cJx-fjf1h5dbu0Zu2ERWRzs9fcfs5uxcwY67tpkq_PpN3zCruvz-XA2feo8DdjxVSPzF65ba_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+learning+paradigm%3A+event+detection+through+a+novel+dynamic+arithmetic+optimization-based+ensemble+SVM+for+data+stream+classification&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Vidya%2C+R.+Mary&rft.au=Ramakrishna%2C+M.&rft.date=2024-06-01&rft.pub=Springer+Nature+Singapore&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=16&rft.issue=5&rft.spage=3049&rft.epage=3055&rft_id=info:doi/10.1007%2Fs41870-024-01832-y&rft.externalDocID=10_1007_s41870_024_01832_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon