An adaptive learning paradigm: event detection through a novel dynamic arithmetic optimization-based ensemble SVM for data stream classification
Data stream mining is the process of generating continuous data stream records such as internet search, phone conversations, sensor data, etc. However it performs huge tasks such as frequency counting, clustering, analysis as well as classification. Mining information from data streams is often cons...
Gespeichert in:
| Veröffentlicht in: | International journal of information technology (Singapore. Online) Jg. 16; H. 5; S. 3049 - 3055 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore
Springer Nature Singapore
01.06.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2511-2104, 2511-2112 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Data stream mining is the process of generating continuous data stream records such as internet search, phone conversations, sensor data, etc. However it performs huge tasks such as frequency counting, clustering, analysis as well as classification. Mining information from data streams is often considered as a complicated process due to the rapid change in the underlying concept which is often referred to as concept drift and the high speed of data arrival. Moreover the data stream classification process is not stationary where each transmission is evolved with time. In addition to this, it cannot able to handle imbalanced data and is not able to accommodate new classes. To overcome this problem, an Ensemble Learning model based Support Vector Machine (ESVM) is proposed to perform the data stream classification. To achieve higher diversity, each base SVM is trained with different feature subsets and updated during the presence of new data instances. However, the selection of optimal feature subsets from high dimensional data streams is complex due to the increase in size and computational cost. Hence Dynamic Accelerated Function (DAF) and Dynamic Candidate Solution (DCS) approaches are developed that diminish the classification error and improve the performance with the best fitness value. The performances of the proposed methods is validated based on accuracy, precision, F-score, kappa, and relative error. The experimental result demonstrates that the proposed model is efficient when evaluated in terms of classification accuracy, rapid training, processing time, kappa score and attained an accuracy of 91.45%. |
|---|---|
| AbstractList | Data stream mining is the process of generating continuous data stream records such as internet search, phone conversations, sensor data, etc. However it performs huge tasks such as frequency counting, clustering, analysis as well as classification. Mining information from data streams is often considered as a complicated process due to the rapid change in the underlying concept which is often referred to as concept drift and the high speed of data arrival. Moreover the data stream classification process is not stationary where each transmission is evolved with time. In addition to this, it cannot able to handle imbalanced data and is not able to accommodate new classes. To overcome this problem, an Ensemble Learning model based Support Vector Machine (ESVM) is proposed to perform the data stream classification. To achieve higher diversity, each base SVM is trained with different feature subsets and updated during the presence of new data instances. However, the selection of optimal feature subsets from high dimensional data streams is complex due to the increase in size and computational cost. Hence Dynamic Accelerated Function (DAF) and Dynamic Candidate Solution (DCS) approaches are developed that diminish the classification error and improve the performance with the best fitness value. The performances of the proposed methods is validated based on accuracy, precision, F-score, kappa, and relative error. The experimental result demonstrates that the proposed model is efficient when evaluated in terms of classification accuracy, rapid training, processing time, kappa score and attained an accuracy of 91.45%. |
| Author | Vidya, R. Mary Ramakrishna, M. |
| Author_xml | – sequence: 1 givenname: R. Mary surname: Vidya fullname: Vidya, R. Mary email: maryvidya78@gmail.com organization: Vemana Institute of Technology, Visvesvaraya Technological University – sequence: 2 givenname: M. surname: Ramakrishna fullname: Ramakrishna, M. organization: Vemana Institute of Technology, Visvesvaraya Technological University |
| BookMark | eNp9kUtrGzEUhUVxoUmaP9CVIOtJ9ZiHnJ0xbVJIyKKPrbga3bFVZiRHkg2TX9Gf3LEdEsjCq3sW5zv3wDknMx88EvKFs2vOWPM1lVw1rGCiLBhXUhTjB3ImKs4LwbmYvWpWfiKXKTnDJBe1rBp-Rv4tPAULm-x2SHuE6J1f0Q1EsG413FDcoc_UYsY2u-BpXsewXa0pUB922FM7ehhcSyG6vB4wTzJMYYN7hr2_MJDQUvQJB9Mj_fnngXYhUgsZaMoRYaBtD1OpzrUH4jP52EGf8PLlXpDf37_9Wt4V94-3P5aL-6IVshwLKUyFdTW3Xdkoa5WyHGyHrVEcGsRaSDMHVRvOjGwMGotQ2cYqy2oxh0bJC3J1zN3E8LTFlPXfsI1-eqmlqCrBS1bWk0sdXW0MKUXsdOvyoWeO4HrNmd5PoI8T6GkCfZhAjxMq3qGb6AaI42lIHqE0mf0K41urE9R_cGWf7w |
| CitedBy_id | crossref_primary_10_1007_s41870_024_02218_w |
| Cites_doi | 10.1007/s41870-023-01583-2 10.1016/j.inffus.2018.01.003 10.1007/s10489-018-1280-5 10.1007/s11390-020-9999-y 10.1007/s11704-010-0508-2 10.1007/s41870-023-01499-x 10.1016/j.knosys.2018.09.032 10.1007/s41870-017-0036-5 10.1109/ACCESS.2022.3146374 10.1016/j.asoc.2021.107378 10.1007/s41870-023-01416-2 10.1007/s41870-023-01506-1 |
| ContentType | Journal Article |
| Copyright | Bharati Vidyapeeth's Institute of Computer Applications and Management 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Bharati Vidyapeeth's Institute of Computer Applications and Management 2024. |
| Copyright_xml | – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2024. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s41870-024-01832-y |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2511-2112 |
| EndPage | 3055 |
| ExternalDocumentID | 10_1007_s41870_024_01832_y |
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AANZL AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGRTI AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z7Z Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ABUWG ACSTC AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- PHGZM PHGZT PQGLB 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK JQ2 L7M L~C L~D M0N P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c234y-32b5e659df478dd88d1adfecb81a7ee623b9a86b10b37bebdea5d7d8d0629a783 |
| IEDL.DBID | P5Z |
| ISSN | 2511-2104 |
| IngestDate | Tue Sep 30 03:20:28 EDT 2025 Sat Nov 29 03:11:49 EST 2025 Tue Nov 18 22:35:36 EST 2025 Fri Feb 21 02:40:07 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Ensemble support vector machine Error minimization Data stream Feature selection Dynamic arithmetic optimization algorithm Candidate feature subset |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c234y-32b5e659df478dd88d1adfecb81a7ee623b9a86b10b37bebdea5d7d8d0629a783 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3255214046 |
| PQPubID | 2034493 |
| PageCount | 7 |
| ParticipantIDs | proquest_journals_3255214046 crossref_citationtrail_10_1007_s41870_024_01832_y crossref_primary_10_1007_s41870_024_01832_y springer_journals_10_1007_s41870_024_01832_y |
| PublicationCentury | 2000 |
| PublicationDate | 20240600 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Heidelberg |
| PublicationSubtitle | An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management |
| PublicationTitle | International journal of information technology (Singapore. Online) |
| PublicationTitleAbbrev | Int. j. inf. tecnol |
| PublicationYear | 2024 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Yu, Wang, Lai (CR12) 2010; 4 Gajjar, Saxena, Acharya, Shah, Bhatt, Nguyen (CR4) 2023 CR15 Wen, Liu (CR9) 2020; 35 CR14 Aman, Agbo, N’guessan, Kone (CR2) 2023 CR13 Junior, do Carmo Nicoletti M (CR7) 2019; 45 Le, Vo, Fournier-Viger, Lee, Baik (CR10) 2019; 49 Anagra, Bahiuddin, Priatomo, Winarno, Darmo, Sandhy, Mazlan (CR3) 2023 Cheriyan, Chitra (CR5) 2023 Jain (CR1) 2017; 9 Du, Zhang, Gang, Zhang, Chen (CR8) 2021; 107 Khodadadi, Snasel, Mirjalili (CR11) 2022; 10 Ren, Zhu, Liao, Li, Wang, Li, Chen, Li (CR6) 2019; 163 L Yu (1832_CR12) 2010; 4 P Gajjar (1832_CR4) 2023 1832_CR15 YM Wen (1832_CR9) 2020; 35 I Anagra (1832_CR3) 2023 T Le (1832_CR10) 2019; 49 1832_CR14 1832_CR13 N Khodadadi (1832_CR11) 2022; 10 S Ren (1832_CR6) 2019; 163 H Du (1832_CR8) 2021; 107 S Cheriyan (1832_CR5) 2023 V Jain (1832_CR1) 2017; 9 SS Aman (1832_CR2) 2023 JRB Junior (1832_CR7) 2019; 45 |
| References_xml | – year: 2023 ident: CR2 article-title: Design of a data storage and retrieval ontology for the efficient integration of information in artificial intelligence systems publication-title: Int J Inform Technol doi: 10.1007/s41870-023-01583-2 – volume: 45 start-page: 66 year: 2019 end-page: 78 ident: CR7 article-title: An iterative boosting-based ensemble for streaming data classification publication-title: Inform Fusion doi: 10.1016/j.inffus.2018.01.003 – volume: 49 start-page: 478 issue: 2 year: 2019 end-page: 495 ident: CR10 article-title: SPPC: a new tree structure for mining erasable patterns in data streams publication-title: Appl Intell doi: 10.1007/s10489-018-1280-5 – volume: 35 start-page: 295 issue: 2 year: 2020 end-page: 304 ident: CR9 article-title: Semi-supervised classification of data streams by BIRCH ensemble and local structure mapping publication-title: J Comput Sci Technol doi: 10.1007/s11390-020-9999-y – volume: 4 start-page: 196 issue: 2 year: 2010 end-page: 203 ident: CR12 article-title: Developing an SVM-based ensemble learning system for customer risk identification collaborating with customer relationship management publication-title: Frontiers of Computer Science in China doi: 10.1007/s11704-010-0508-2 – ident: CR14 – ident: CR15 – year: 2023 ident: CR3 article-title: Detection of coal wagon load distributions based on geometrical features using extreme learning machine methods publication-title: Int J Inform Technol doi: 10.1007/s41870-023-01499-x – volume: 163 start-page: 705 year: 2019 end-page: 722 ident: CR6 article-title: Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.09.032 – volume: 9 start-page: 303 issue: 3 year: 2017 end-page: 310 ident: CR1 article-title: Perspective analysis of telecommunication fraud detection using data stream analytics and neural network classification based data mining publication-title: Int J Inf Technol doi: 10.1007/s41870-017-0036-5 – volume: 10 start-page: 16188 year: 2022 end-page: 16208 ident: CR11 article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146374 – ident: CR13 – volume: 107 year: 2021 ident: CR8 article-title: Online ensemble learning algorithm for imbalanced data stream publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107378 – year: 2023 ident: CR5 article-title: MR-AMFO-CNN: an intelligent recommendation system using optimized deep learning classifications publication-title: Int J Inform Technol doi: 10.1007/s41870-023-01416-2 – year: 2023 ident: CR4 article-title: Liquidt: stock market analysis using liquid time-constant neural networks publication-title: Int J Inform Technol doi: 10.1007/s41870-023-01506-1 – year: 2023 ident: 1832_CR2 publication-title: Int J Inform Technol doi: 10.1007/s41870-023-01583-2 – volume: 35 start-page: 295 issue: 2 year: 2020 ident: 1832_CR9 publication-title: J Comput Sci Technol doi: 10.1007/s11390-020-9999-y – volume: 107 year: 2021 ident: 1832_CR8 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107378 – volume: 10 start-page: 16188 year: 2022 ident: 1832_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146374 – year: 2023 ident: 1832_CR4 publication-title: Int J Inform Technol doi: 10.1007/s41870-023-01506-1 – year: 2023 ident: 1832_CR3 publication-title: Int J Inform Technol doi: 10.1007/s41870-023-01499-x – volume: 49 start-page: 478 issue: 2 year: 2019 ident: 1832_CR10 publication-title: Appl Intell doi: 10.1007/s10489-018-1280-5 – volume: 163 start-page: 705 year: 2019 ident: 1832_CR6 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.09.032 – volume: 9 start-page: 303 issue: 3 year: 2017 ident: 1832_CR1 publication-title: Int J Inf Technol doi: 10.1007/s41870-017-0036-5 – volume: 4 start-page: 196 issue: 2 year: 2010 ident: 1832_CR12 publication-title: Frontiers of Computer Science in China doi: 10.1007/s11704-010-0508-2 – ident: 1832_CR15 – volume: 45 start-page: 66 year: 2019 ident: 1832_CR7 publication-title: Inform Fusion doi: 10.1016/j.inffus.2018.01.003 – year: 2023 ident: 1832_CR5 publication-title: Int J Inform Technol doi: 10.1007/s41870-023-01416-2 – ident: 1832_CR13 – ident: 1832_CR14 |
| SSID | ssib031263571 ssj0002710285 |
| Score | 2.257223 |
| Snippet | Data stream mining is the process of generating continuous data stream records such as internet search, phone conversations, sensor data, etc. However it... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3049 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Classification Clustering Computer Imaging Computer Science Data transmission Ensemble learning Image Processing and Computer Vision Machine Learning Optimization Original Research Pattern Recognition and Graphics Software Engineering Support vector machines Vision |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RTxQxEJ4g-CAPoKjhAM08-Kab7La7t13eCJH4IjGAhLdNu9NDzO0e4Q6S-xf8ZGZ63UONmujztk2TmXa-2c58H8C7YkSNzXJKcmU5QVFUJFYkATWlqa3MkKe5IDZRHh-bi4vqS2wKm_bV7v2TZLipl81ueWZEJEVJ1QT7YTJ_Amsc7owINpycnvdepDPhV4kg53t4WpMgKrWMAqcTznHy2D3z-2V_jlCPsPOXl9IQgI42_2_rz2EjAk48WHjIC1jx3RZs9mIOGM_2Fqz_wEz4Eu4POrRkr-UyxKgscYnCE05Xl-0-Bt4nJD8LlVwdRrkftNhN7vwYaSF0j5yJz7610iiJE16sjV2fiQRPQk6hfevGHk_PPyOjZ5R6VZT2FdtiI7heCpnCjFfw9ejj2eGnJIo3JI3S-TzRyhV-WFQ0yktDZAxllkZseZPZ0ntGXa6y7AtZ6nTpvCNvCyrJUDpUlS2Nfg2r3aTz24Da-WzEJqWiCXiH70XnSkW-4nwx1dUAst5gdROZzUVgY1wvOZmDAWo2QB0MUM8H8H4553rB6_HX0Xu9H9TxjE9rzdmYEnai4QA-9HZ__Pzn1Xb-bfguPFPBdeTXzx6szm5u_Rt42tzNrqY3b4PvPwAFKf_i priority: 102 providerName: Springer Nature |
| Title | An adaptive learning paradigm: event detection through a novel dynamic arithmetic optimization-based ensemble SVM for data stream classification |
| URI | https://link.springer.com/article/10.1007/s41870-024-01832-y https://www.proquest.com/docview/3255214046 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2511-2112 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2511-2112 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2511-2112 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 2511-2112 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: RSV dateStart: 20170301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB3RlgMcKJ8itERz4AYr7F07XnNBbdUKCRFFLVQVF2vXs2mLYic0oVL-BT-Znc26ASR64ZKLsytZM555szvzHsCrfEy1STMSmTS-QJGUC8OSgIqSxJR64JfZIDZRDIf67KwcxQO3eWyr7GJiCNQ0rfmM_K3y2FcyF8zg_ey7YNUovl2NEhobsMUsCSzdMMq_dv6kUmZaiXDnW7hk43TKXY0MrIWvdrI4RxOm6bJUswqL5LYM7-hi-WeuWgPQv-5MQyo62v7fl3gIDyIIxb2V1zyCO659DPd_oyZ8Aj_3WjRkZhwNMUpLnCMThdPlefMOA_ETkluEVq4Wo94PGmyn126CtFK6R1-KLy4anpTEqd-siWOfgrMnoa-hXWMnDk9OP6GHz8gNq8jzK6bBmoE9dzKFFU_hy9Hh54MPIqo3iFqqbCmUtLkb5CWNs0ITaU2pobE3vU5N4ZyHXbY03hnSxKrCOkvO5FSQpmQgS1No9Qw222nrngMq69KxtyTldQA8PjBaW0hypS8YE1X2IO3sVNWR2pwVNibVDSlzsG3lbVsF21bLHry-WTNbEXvc-u_dzqBV_Mjn1dqaPXjTucT68b93e3H7bjtwTwYv5LOeXdhcXP1wL-Fufb24nF_1YWv_cDg67sPGx0L0g8P73-OT018OwwZX |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NgQQ88BtRGHAP8AQWiZ00DhJCEzBt6lYhMdDeMjvnbp2atLRlqP8Ffwl_Iz43WQGJve2B58SW5Xx3vovvvg_gWTqg0sQJiUQan6BISoVhSUBFUWRy3fXDbBCbyPp9fXCQf1yDn20vDJdVtj4xOGoal_yP_JXysa9kLpju28lXwapRfLvaSmgsYdFzi-8-ZZu92Xnvv-9zKbc-7L_bFo2qgCilShZCSZu6bprTIMk0kdYUGxr4JenYZM75cMDmxi8yjqzKrLPkTEoZaYq6MjeZVn7eS3A5UTpju-plosWvipnZpQmvTsKlHh_fXEXJgbzw2VXS9O2E7r0k1qz6IrkMxBuWWPx5Nq4C3r_uaMPRt3Xzf9u0W3CjCbJxc2kVt2HN1Xfg-m_Ui3fhx2aNhsyEvT020hlHyEToNDyqXmMgtkJy81CqVmOjZ4QG6_GpGyEtalMNSzTT4fy44k5QHPvJqqatVXB0QOjqmavsyOGnL3vo0wPkglzk_hxTYcmJC1dqhRH34POFbMl9WK_HtXsAqKyLBx45lJYhoPOO39pMkst9QhypvANxi4uibKjbWUFkVJyRTgcsFR5LRcBSsejAi7MxkyVxyblvb7QAKhonNitW6OnAyxaCq8f_nu3h-bM9havb-3u7xe5Ov_cIrslgAfxfawPW59Nv7jFcKU_nw9n0STAvhMOLhuYv1Vlitg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-EYsFJgDnMBq4iSbBAmhirKiKqxW4kMVl9TOOGXRJrvsLkX5F_wefh0er9MFJHrrgXNiy3LeeGbiN_MAHiUVlSqMScRS2QRFUiIUSwJGFAQqz_p2mHZiE-lwmB0c5KMN-NnVwjCtsjsT3UFN05L_kW9HNvaV3Aumv115WsRod_Bi9lWwghTftHZyGiuI7Jv2u03fFs_3du23fizl4NX7l6-FVxgQpYziVkRSJ6af5FTFaUaUZRQqquzyslClxtjQQOfKLjgMdJRqo8mohFLKKOjLXKVZZOc9B-dTm2MynXCUfOqwHIXc5cWHWl_cBR-7cmZUclAvbKYV-xoeV8kXhxkrwEimhFgjE-2ffnId_P51X-vc4ODq_7yB1-CKD75xZ2Ut12HDNDfg8m8tGW_Cj50GFakZewH0khpHyA3SaXxUP0PX8ArJLB2FrUGvc4QKm-mxmSC1jarHJar5ePm55gpRnNrJal_uKjhqIDTNwtR6YvDdx7do0wZkoi5y3Y6qseSEhhlcbsQt-HAmW3IbNptpY-4ARtqElUURJaUL9KxD0DqVZHKbKAdR3oOww0hR-pburCwyKU6aUTtcFRZXhcNV0fbgycmY2aqhyalvb3VgKvzhtijWSOrB0w6O68f_nu3u6bM9hIsWkcWbveH-PbgknTHw764t2FzOv5n7cKE8Xo4X8wfO0hAOzxqZvwAcumva |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive+learning+paradigm%3A+event+detection+through+a+novel+dynamic+arithmetic+optimization-based+ensemble+SVM+for+data+stream+classification&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Vidya%2C+R.+Mary&rft.au=Ramakrishna%2C+M.&rft.date=2024-06-01&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=16&rft.issue=5&rft.spage=3049&rft.epage=3055&rft_id=info:doi/10.1007%2Fs41870-024-01832-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41870_024_01832_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon |