Spectral analysis of operator matrices: limit point insights
This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices, denoted by T , on Banach spaces. We rigorously prove that transitioning from the accumulation set of the diagonal descent spectrum, denoted by...
Saved in:
| Published in: | Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche Vol. 71; no. 1; p. 16 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Milan
Springer Milan
01.03.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0430-3202, 1827-1510 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices, denoted by
T
, on Banach spaces. We rigorously prove that transitioning from the accumulation set of the diagonal descent spectrum, denoted by
Acc
σ
d
(
T
diag
)
, to that of the complete descent spectrum,
Acc
σ
d
(
T
)
, involves removing specific subsets within
Acc
σ
d
(
A
1
)
∩
Acc
σ
a
(
A
2
)
∩
Acc
σ
a
(
A
3
)
. Additionally, we present sufficient conditions that ensure the limit points of the descent spectrum of the operator matrix encompass the combined limit points of its diagonal entry spectra. This significantly addresses a longstanding question posed by Campbell (Linear Multilinear Algebra 14:195–198, 1983) regarding the limit points for the descent spectrum of the last
3
×
3
operator matrix form. Specifically, Campbell inquired about developing new methods to analyze the spectral properties of such matrices without resorting to partitioning their entries, a challenge that has remained unresolved for decades. Our findings provide a comprehensive solution, illustrating that a deeper understanding of the spectral behavior can be achieved by considering the entire matrix structure collectively. |
|---|---|
| AbstractList | This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices, denoted by T, on Banach spaces. We rigorously prove that transitioning from the accumulation set of the diagonal descent spectrum, denoted by Accσd(Tdiag), to that of the complete descent spectrum, Accσd(T), involves removing specific subsets within Accσd(A1)∩Accσa(A2)∩Accσa(A3). Additionally, we present sufficient conditions that ensure the limit points of the descent spectrum of the operator matrix encompass the combined limit points of its diagonal entry spectra. This significantly addresses a longstanding question posed by Campbell (Linear Multilinear Algebra 14:195–198, 1983) regarding the limit points for the descent spectrum of the last 3×3 operator matrix form. Specifically, Campbell inquired about developing new methods to analyze the spectral properties of such matrices without resorting to partitioning their entries, a challenge that has remained unresolved for decades. Our findings provide a comprehensive solution, illustrating that a deeper understanding of the spectral behavior can be achieved by considering the entire matrix structure collectively. This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices, denoted by T , on Banach spaces. We rigorously prove that transitioning from the accumulation set of the diagonal descent spectrum, denoted by Acc σ d ( T diag ) , to that of the complete descent spectrum, Acc σ d ( T ) , involves removing specific subsets within Acc σ d ( A 1 ) ∩ Acc σ a ( A 2 ) ∩ Acc σ a ( A 3 ) . Additionally, we present sufficient conditions that ensure the limit points of the descent spectrum of the operator matrix encompass the combined limit points of its diagonal entry spectra. This significantly addresses a longstanding question posed by Campbell (Linear Multilinear Algebra 14:195–198, 1983) regarding the limit points for the descent spectrum of the last 3 × 3 operator matrix form. Specifically, Campbell inquired about developing new methods to analyze the spectral properties of such matrices without resorting to partitioning their entries, a challenge that has remained unresolved for decades. Our findings provide a comprehensive solution, illustrating that a deeper understanding of the spectral behavior can be achieved by considering the entire matrix structure collectively. |
| ArticleNumber | 16 |
| Author | Bahloul, Aymen |
| Author_xml | – sequence: 1 givenname: Aymen orcidid: 0000-0001-9247-0269 surname: Bahloul fullname: Bahloul, Aymen email: aymen.bh94@gmail.com organization: Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax |
| BookMark | eNp9kEtLAzEUhYMo2Fb_gKsB19Gb1zzEjRRfUHChrsOdTKamTCdjkkL77x2tILjo6m7Od-7hm5Lj3veWkAsGVwyguI6MqVxR4JICqELQ7RGZsJIXlCkGx2QCUgAVHPgpmca4GkNSsmpCbl8Ha1LALsMeu110MfNt5gcbMPmQrTEFZ2y8yTq3dikbvOtT5vrolh8pnpGTFrtoz3_vjLw_3L_Nn-ji5fF5freghgu5pQpNLbEWedXUDMsKbVs0wNEaCVgA5lgqWQhjGpmXjbC2NoVqWyFthYIZI2bkct87BP-5sTHpld-EcW_Ugqs8LwFYNab4PmWCjzHYVg_BrTHsNAP9bUnvLenRkv6xpLcjVP6DjEuYnO9HKa47jIo9Gsc__dKGv1UHqC_INX_y |
| CitedBy_id | crossref_primary_10_1142_S1793557125500445 |
| Cites_doi | 10.2478/mjpaa-2022-0024 10.1515/gmj-2022-2210 10.1007/s43036-024-00341-w 10.1016/j.bulsci.2024.103400 10.1080/01630563.2022.2137811 10.1007/s12215-019-00410-7 10.1080/03081088308817556 10.1007/BF01351564 10.1515/gmj-2024-2047 10.1093/oso/9780198523819.001.0001 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive license to Università degli Studi di Ferrara 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive license to Università degli Studi di Ferrara 2024. |
| Copyright_xml | – notice: The Author(s) under exclusive license to Università degli Studi di Ferrara 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive license to Università degli Studi di Ferrara 2024. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11565-024-00573-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1827-1510 |
| ExternalDocumentID | 10_1007_s11565_024_00573_x |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~A9 AAPKM AAYXX ABBRH ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c234x-5acb4ab369db1a89aef7d02aec40a70a6a85473ccd468d3eebc75ff34e9a31cc3 |
| IEDL.DBID | RSV |
| ISSN | 0430-3202 |
| IngestDate | Sun Nov 30 04:22:26 EST 2025 Sat Nov 29 03:58:44 EST 2025 Tue Nov 18 21:16:31 EST 2025 Fri Feb 28 01:53:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 47A08 Upper triangular operator matrices Limit points Descent spectrum 47A11 Local spectral theory Banach spaces 47A10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c234x-5acb4ab369db1a89aef7d02aec40a70a6a85473ccd468d3eebc75ff34e9a31cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9247-0269 |
| PQID | 3256680019 |
| PQPubID | 2043981 |
| ParticipantIDs | proquest_journals_3256680019 crossref_primary_10_1007_s11565_024_00573_x crossref_citationtrail_10_1007_s11565_024_00573_x springer_journals_10_1007_s11565_024_00573_x |
| PublicationCentury | 2000 |
| PublicationDate | 20250300 2025-03-00 20250301 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
| PublicationDecade | 2020 |
| PublicationPlace | Milan |
| PublicationPlace_xml | – name: Milan – name: Heidelberg |
| PublicationSubtitle | SEZIONE VII - SCIENZE MATEMATICHE |
| PublicationTitle | Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche |
| PublicationTitleAbbrev | Ann Univ Ferrara |
| PublicationYear | 2025 |
| Publisher | Springer Milan Springer Nature B.V |
| Publisher_xml | – name: Springer Milan – name: Springer Nature B.V |
| References | H Boua (573_CR7) 2022; 8 DC Lay (573_CR11) 1970; 184 O Abad (573_CR1) 2024; 9 SF Zhang (573_CR14) 2011; 54 A Bahloul (573_CR5) 2024 573_CR2 A Bahloul (573_CR4) 2024; 38 KB Laursen (573_CR10) 2000 F Abdmouleh (573_CR3) 2023; 30 A Bahloul (573_CR6) 2022; 43 SL Campbell (573_CR9) 1983; 14 A Tajmouati (573_CR12) 2020; 69 M Burgos (573_CR8) 2006; 56 AE Taylor (573_CR13) 1980 |
| References_xml | – volume: 8 start-page: 358 issue: 3 year: 2022 ident: 573_CR7 publication-title: Moroccan J. Pure Appl. Anal. doi: 10.2478/mjpaa-2022-0024 – volume: 56 start-page: 259 issue: 2 year: 2006 ident: 573_CR8 publication-title: J. Oper. Theory – volume: 30 start-page: 161 issue: 2 year: 2023 ident: 573_CR3 publication-title: Georgian Math. J doi: 10.1515/gmj-2022-2210 – volume: 9 start-page: 40 year: 2024 ident: 573_CR1 publication-title: Adv. Oper. Theory doi: 10.1007/s43036-024-00341-w – ident: 573_CR2 doi: 10.1016/j.bulsci.2024.103400 – volume: 43 start-page: 1836 issue: 16 year: 2022 ident: 573_CR6 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2022.2137811 – volume: 69 start-page: 393 issue: 2 year: 2020 ident: 573_CR12 publication-title: Rendiconti del Circolo Matematico di Palermo Series 2 doi: 10.1007/s12215-019-00410-7 – volume: 14 start-page: 195 year: 1983 ident: 573_CR9 publication-title: Linear Multilinear Algebra doi: 10.1080/03081088308817556 – volume: 38 start-page: 5655 issue: 16 year: 2024 ident: 573_CR4 publication-title: Filomat – volume: 184 start-page: 197 year: 1970 ident: 573_CR11 publication-title: Math. Ann. doi: 10.1007/BF01351564 – volume-title: Introduction to Functional Analysis year: 1980 ident: 573_CR13 – year: 2024 ident: 573_CR5 publication-title: Georgian Math. J. doi: 10.1515/gmj-2024-2047 – volume-title: An Introduction to Local Spectral Theory year: 2000 ident: 573_CR10 doi: 10.1093/oso/9780198523819.001.0001 – volume: 54 start-page: 41 year: 2011 ident: 573_CR14 publication-title: Acta Math Sin. |
| SSID | ssj0054419 |
| Score | 2.3233209 |
| Snippet | This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16 |
| SubjectTerms | Algebraic Geometry Analysis Banach spaces Geometry History of Mathematical Sciences Investigations Mathematics Mathematics and Statistics Numerical Analysis Operators (mathematics) Spectral theory Spectrum analysis |
| Title | Spectral analysis of operator matrices: limit point insights |
| URI | https://link.springer.com/article/10.1007/s11565-024-00573-x https://www.proquest.com/docview/3256680019 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Link Journals customDbUrl: eissn: 1827-1510 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054419 issn: 0430-3202 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6ketCDb7G1Sg7eNLDdZF_iRcTixSK-6G3JJhMo1N3SrdKfb5LudlGooOfNhjBJZr4kM98HcG4igo64CKlO7NWNDgJqlnKPShOK0YRzu6Wc2EQ0GMTDYfJYFYWVdbZ7_STpPHVT7GaOGraamFPH4kcNclw34S62gg1Pz2-1_7WiWg70cmY8jG_zdzqr-_gejhqM-eNZ1EWb_s7_xrkL2xW6JDeL5bAHa5jvw9bDkpq1PIBrqzhvrzeIqPhISKFJMUH33k7eHWU_lldkbEufyKQY5TMyykt7iC8P4bV_93J7TysJBSp9xuc0EDLjImNhorKeiBOBOlKeL1ByT0SeCEVsxYelVDyMFUPMZBRozTgmgvWkZEfQyoscj4FkQkW-4DoxO5grH4WP6EUStQGRXCnZhl5tyVRW_OJW5mKcNszI1jKpsUzqLJPO23Cx_GeyYNf4tXW3nqC02mllygxmC2OLVNtwWU9I83l1b52_NT-BTd9K_7r0sy60ZtMPPIUN-TkbldMztwK_AMuE1tw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6ICuqDd3Fzah5800DbpDfxRcQxcRuiU_ZW0lxgMLuxTtnPN8naFYUJ-tw0hJPknC_JOd8HcKEjggopC7CKzdWN8n2sl7KLuQ7FUodzs6Ws2ETY7Ub9fvxUFIXlZbZ7-SRpPXVV7KaPGqaamGLL4oc1clyjOmIZxvznl7fS_xpRLQt6KdEexjP5O_XlfXwPRxXG_PEsaqNNc-d_49yF7QJdotv5ctiDFZntw1ZnQc2aH8CNUZw31xuIFXwkaKTQaCztezt6t5T9Mr9GQ1P6hMajQTZFgyw3h_j8EF6b9727Fi4kFDD3CJ1hn_GUspQEsUhdFsVMqlA4HpOcOix0WMAiIz7MuaBBJIiUKQ99pQiVMSMu5-QIVrNRJo8BpUyEHqMq1juYCk8yT0on5FJpEEmF4DVwS0smvOAXNzIXw6RiRjaWSbRlEmuZZFaDy8U_4zm7xq-tG-UEJcVOyxOiMVsQGaRag6tyQqrPy3ur_635OWy0ep120n7oPp7ApmdkgG0qWgNWp5MPeQrr_HM6yCdndjV-Aec32cA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRfTBu7g5NQ--adjapjfxRdShqGPghb2VNBcYzLasVfbzzcnaVQUF8blpCCcnOV-Sc74PoWMdEZRPmUdUCFc3ynWJdmWLcB2KpQ7nsKSM2ITf7wfDYTj4VMVvst2rJ8lZTQOwNCVFJxOqUxe-6WMHVBZTYhj9iEaRixQS6eG8_vhS7cUgsGUAMHX0bmNDLk_r5z6-hqYab357IjWRp7f-_zFvoLUSdeKLmZtsogWZbKHVhzlla76NzkGJHq49MCt5SnCqcJpJ8w6PXw2Vv8zP8BhKonCWjpICj5IcDvf5DnruXT9d3pBSWoFw26FT4jIeUxY7XihiiwUhk8oXXZtJTrvM7zKPBSBKzLmgXiAcKWPuu0o5VIbMsTh3dlEjSRO5h3DMhG8zqkK9sqmwJbOl7PpcKg0uqRC8iazKqhEvecdB_mIc1YzJYJlIWyYylommTXQy_yebsW782rpdTVZUrsA8cjSW8wJAsE10Wk1O_fnn3lp_a36ElgdXvej-tn-3j1ZsUAc2GWpt1Cgmb_IALfH3YpRPDo1jfgBvo-Kk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+analysis+of+operator+matrices%3A+limit+point+insights&rft.jtitle=Annali+dell%27Universit%C3%A0+di+Ferrara.+Sezione+7.+Scienze+matematiche&rft.au=Bahloul%2C+Aymen&rft.date=2025-03-01&rft.pub=Springer+Milan&rft.issn=0430-3202&rft.eissn=1827-1510&rft.volume=71&rft.issue=1&rft_id=info:doi/10.1007%2Fs11565-024-00573-x&rft.externalDocID=10_1007_s11565_024_00573_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0430-3202&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0430-3202&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0430-3202&client=summon |