Spectral analysis of operator matrices: limit point insights

This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices, denoted by T , on Banach spaces. We rigorously prove that transitioning from the accumulation set of the diagonal descent spectrum, denoted by...

Full description

Saved in:
Bibliographic Details
Published in:Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche Vol. 71; no. 1; p. 16
Main Author: Bahloul, Aymen
Format: Journal Article
Language:English
Published: Milan Springer Milan 01.03.2025
Springer Nature B.V
Subjects:
ISSN:0430-3202, 1827-1510
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices, denoted by T , on Banach spaces. We rigorously prove that transitioning from the accumulation set of the diagonal descent spectrum, denoted by Acc σ d ( T diag ) , to that of the complete descent spectrum, Acc σ d ( T ) , involves removing specific subsets within Acc σ d ( A 1 ) ∩ Acc σ a ( A 2 ) ∩ Acc σ a ( A 3 ) . Additionally, we present sufficient conditions that ensure the limit points of the descent spectrum of the operator matrix encompass the combined limit points of its diagonal entry spectra. This significantly addresses a longstanding question posed by Campbell (Linear Multilinear Algebra 14:195–198, 1983) regarding the limit points for the descent spectrum of the last 3 × 3 operator matrix form. Specifically, Campbell inquired about developing new methods to analyze the spectral properties of such matrices without resorting to partitioning their entries, a challenge that has remained unresolved for decades. Our findings provide a comprehensive solution, illustrating that a deeper understanding of the spectral behavior can be achieved by considering the entire matrix structure collectively.
AbstractList This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices, denoted by T, on Banach spaces. We rigorously prove that transitioning from the accumulation set of the diagonal descent spectrum, denoted by Accσd(Tdiag), to that of the complete descent spectrum, Accσd(T), involves removing specific subsets within Accσd(A1)∩Accσa(A2)∩Accσa(A3). Additionally, we present sufficient conditions that ensure the limit points of the descent spectrum of the operator matrix encompass the combined limit points of its diagonal entry spectra. This significantly addresses a longstanding question posed by Campbell (Linear Multilinear Algebra 14:195–198, 1983) regarding the limit points for the descent spectrum of the last 3×3 operator matrix form. Specifically, Campbell inquired about developing new methods to analyze the spectral properties of such matrices without resorting to partitioning their entries, a challenge that has remained unresolved for decades. Our findings provide a comprehensive solution, illustrating that a deeper understanding of the spectral behavior can be achieved by considering the entire matrix structure collectively.
This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices, denoted by T , on Banach spaces. We rigorously prove that transitioning from the accumulation set of the diagonal descent spectrum, denoted by Acc σ d ( T diag ) , to that of the complete descent spectrum, Acc σ d ( T ) , involves removing specific subsets within Acc σ d ( A 1 ) ∩ Acc σ a ( A 2 ) ∩ Acc σ a ( A 3 ) . Additionally, we present sufficient conditions that ensure the limit points of the descent spectrum of the operator matrix encompass the combined limit points of its diagonal entry spectra. This significantly addresses a longstanding question posed by Campbell (Linear Multilinear Algebra 14:195–198, 1983) regarding the limit points for the descent spectrum of the last 3 × 3 operator matrix form. Specifically, Campbell inquired about developing new methods to analyze the spectral properties of such matrices without resorting to partitioning their entries, a challenge that has remained unresolved for decades. Our findings provide a comprehensive solution, illustrating that a deeper understanding of the spectral behavior can be achieved by considering the entire matrix structure collectively.
ArticleNumber 16
Author Bahloul, Aymen
Author_xml – sequence: 1
  givenname: Aymen
  orcidid: 0000-0001-9247-0269
  surname: Bahloul
  fullname: Bahloul, Aymen
  email: aymen.bh94@gmail.com
  organization: Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax
BookMark eNp9kEtLAzEUhYMo2Fb_gKsB19Gb1zzEjRRfUHChrsOdTKamTCdjkkL77x2tILjo6m7Od-7hm5Lj3veWkAsGVwyguI6MqVxR4JICqELQ7RGZsJIXlCkGx2QCUgAVHPgpmca4GkNSsmpCbl8Ha1LALsMeu110MfNt5gcbMPmQrTEFZ2y8yTq3dikbvOtT5vrolh8pnpGTFrtoz3_vjLw_3L_Nn-ji5fF5freghgu5pQpNLbEWedXUDMsKbVs0wNEaCVgA5lgqWQhjGpmXjbC2NoVqWyFthYIZI2bkct87BP-5sTHpld-EcW_Ugqs8LwFYNab4PmWCjzHYVg_BrTHsNAP9bUnvLenRkv6xpLcjVP6DjEuYnO9HKa47jIo9Gsc__dKGv1UHqC_INX_y
CitedBy_id crossref_primary_10_1142_S1793557125500445
Cites_doi 10.2478/mjpaa-2022-0024
10.1515/gmj-2022-2210
10.1007/s43036-024-00341-w
10.1016/j.bulsci.2024.103400
10.1080/01630563.2022.2137811
10.1007/s12215-019-00410-7
10.1080/03081088308817556
10.1007/BF01351564
10.1515/gmj-2024-2047
10.1093/oso/9780198523819.001.0001
ContentType Journal Article
Copyright The Author(s) under exclusive license to Università degli Studi di Ferrara 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive license to Università degli Studi di Ferrara 2024.
Copyright_xml – notice: The Author(s) under exclusive license to Università degli Studi di Ferrara 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive license to Università degli Studi di Ferrara 2024.
DBID AAYXX
CITATION
DOI 10.1007/s11565-024-00573-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1827-1510
ExternalDocumentID 10_1007_s11565_024_00573_x
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~A9
AAPKM
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c234x-5acb4ab369db1a89aef7d02aec40a70a6a85473ccd468d3eebc75ff34e9a31cc3
IEDL.DBID RSV
ISSN 0430-3202
IngestDate Sun Nov 30 04:22:26 EST 2025
Sat Nov 29 03:58:44 EST 2025
Tue Nov 18 21:16:31 EST 2025
Fri Feb 28 01:53:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 47A08
Upper triangular operator matrices
Limit points
Descent spectrum
47A11
Local spectral theory
Banach spaces
47A10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c234x-5acb4ab369db1a89aef7d02aec40a70a6a85473ccd468d3eebc75ff34e9a31cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9247-0269
PQID 3256680019
PQPubID 2043981
ParticipantIDs proquest_journals_3256680019
crossref_primary_10_1007_s11565_024_00573_x
crossref_citationtrail_10_1007_s11565_024_00573_x
springer_journals_10_1007_s11565_024_00573_x
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
– name: Heidelberg
PublicationSubtitle SEZIONE VII - SCIENZE MATEMATICHE
PublicationTitle Annali dell'Università di Ferrara. Sezione 7. Scienze matematiche
PublicationTitleAbbrev Ann Univ Ferrara
PublicationYear 2025
Publisher Springer Milan
Springer Nature B.V
Publisher_xml – name: Springer Milan
– name: Springer Nature B.V
References H Boua (573_CR7) 2022; 8
DC Lay (573_CR11) 1970; 184
O Abad (573_CR1) 2024; 9
SF Zhang (573_CR14) 2011; 54
A Bahloul (573_CR5) 2024
573_CR2
A Bahloul (573_CR4) 2024; 38
KB Laursen (573_CR10) 2000
F Abdmouleh (573_CR3) 2023; 30
A Bahloul (573_CR6) 2022; 43
SL Campbell (573_CR9) 1983; 14
A Tajmouati (573_CR12) 2020; 69
M Burgos (573_CR8) 2006; 56
AE Taylor (573_CR13) 1980
References_xml – volume: 8
  start-page: 358
  issue: 3
  year: 2022
  ident: 573_CR7
  publication-title: Moroccan J. Pure Appl. Anal.
  doi: 10.2478/mjpaa-2022-0024
– volume: 56
  start-page: 259
  issue: 2
  year: 2006
  ident: 573_CR8
  publication-title: J. Oper. Theory
– volume: 30
  start-page: 161
  issue: 2
  year: 2023
  ident: 573_CR3
  publication-title: Georgian Math. J
  doi: 10.1515/gmj-2022-2210
– volume: 9
  start-page: 40
  year: 2024
  ident: 573_CR1
  publication-title: Adv. Oper. Theory
  doi: 10.1007/s43036-024-00341-w
– ident: 573_CR2
  doi: 10.1016/j.bulsci.2024.103400
– volume: 43
  start-page: 1836
  issue: 16
  year: 2022
  ident: 573_CR6
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2022.2137811
– volume: 69
  start-page: 393
  issue: 2
  year: 2020
  ident: 573_CR12
  publication-title: Rendiconti del Circolo Matematico di Palermo Series 2
  doi: 10.1007/s12215-019-00410-7
– volume: 14
  start-page: 195
  year: 1983
  ident: 573_CR9
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081088308817556
– volume: 38
  start-page: 5655
  issue: 16
  year: 2024
  ident: 573_CR4
  publication-title: Filomat
– volume: 184
  start-page: 197
  year: 1970
  ident: 573_CR11
  publication-title: Math. Ann.
  doi: 10.1007/BF01351564
– volume-title: Introduction to Functional Analysis
  year: 1980
  ident: 573_CR13
– year: 2024
  ident: 573_CR5
  publication-title: Georgian Math. J.
  doi: 10.1515/gmj-2024-2047
– volume-title: An Introduction to Local Spectral Theory
  year: 2000
  ident: 573_CR10
  doi: 10.1093/oso/9780198523819.001.0001
– volume: 54
  start-page: 41
  year: 2011
  ident: 573_CR14
  publication-title: Acta Math Sin.
SSID ssj0054419
Score 2.3233209
Snippet This paper explores the potential of local spectral theory to investigate the limit point set of the descent spectrum of upper triangular operator matrices,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16
SubjectTerms Algebraic Geometry
Analysis
Banach spaces
Geometry
History of Mathematical Sciences
Investigations
Mathematics
Mathematics and Statistics
Numerical Analysis
Operators (mathematics)
Spectral theory
Spectrum analysis
Title Spectral analysis of operator matrices: limit point insights
URI https://link.springer.com/article/10.1007/s11565-024-00573-x
https://www.proquest.com/docview/3256680019
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 1827-1510
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054419
  issn: 0430-3202
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6ketCDb7G1Sg7eNLDdZF_iRcTixSK-6G3JJhMo1N3SrdKfb5LudlGooOfNhjBJZr4kM98HcG4igo64CKlO7NWNDgJqlnKPShOK0YRzu6Wc2EQ0GMTDYfJYFYWVdbZ7_STpPHVT7GaOGraamFPH4kcNclw34S62gg1Pz2-1_7WiWg70cmY8jG_zdzqr-_gejhqM-eNZ1EWb_s7_xrkL2xW6JDeL5bAHa5jvw9bDkpq1PIBrqzhvrzeIqPhISKFJMUH33k7eHWU_lldkbEufyKQY5TMyykt7iC8P4bV_93J7TysJBSp9xuc0EDLjImNhorKeiBOBOlKeL1ByT0SeCEVsxYelVDyMFUPMZBRozTgmgvWkZEfQyoscj4FkQkW-4DoxO5grH4WP6EUStQGRXCnZhl5tyVRW_OJW5mKcNszI1jKpsUzqLJPO23Cx_GeyYNf4tXW3nqC02mllygxmC2OLVNtwWU9I83l1b52_NT-BTd9K_7r0sy60ZtMPPIUN-TkbldMztwK_AMuE1tw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6ICuqDd3Fzah5800DbpDfxRcQxcRuiU_ZW0lxgMLuxTtnPN8naFYUJ-tw0hJPknC_JOd8HcKEjggopC7CKzdWN8n2sl7KLuQ7FUodzs6Ws2ETY7Ub9fvxUFIXlZbZ7-SRpPXVV7KaPGqaamGLL4oc1clyjOmIZxvznl7fS_xpRLQt6KdEexjP5O_XlfXwPRxXG_PEsaqNNc-d_49yF7QJdotv5ctiDFZntw1ZnQc2aH8CNUZw31xuIFXwkaKTQaCztezt6t5T9Mr9GQ1P6hMajQTZFgyw3h_j8EF6b9727Fi4kFDD3CJ1hn_GUspQEsUhdFsVMqlA4HpOcOix0WMAiIz7MuaBBJIiUKQ99pQiVMSMu5-QIVrNRJo8BpUyEHqMq1juYCk8yT0on5FJpEEmF4DVwS0smvOAXNzIXw6RiRjaWSbRlEmuZZFaDy8U_4zm7xq-tG-UEJcVOyxOiMVsQGaRag6tyQqrPy3ur_635OWy0ep120n7oPp7ApmdkgG0qWgNWp5MPeQrr_HM6yCdndjV-Aec32cA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRfTBu7g5NQ--adjapjfxRdShqGPghb2VNBcYzLasVfbzzcnaVQUF8blpCCcnOV-Sc74PoWMdEZRPmUdUCFc3ynWJdmWLcB2KpQ7nsKSM2ITf7wfDYTj4VMVvst2rJ8lZTQOwNCVFJxOqUxe-6WMHVBZTYhj9iEaRixQS6eG8_vhS7cUgsGUAMHX0bmNDLk_r5z6-hqYab357IjWRp7f-_zFvoLUSdeKLmZtsogWZbKHVhzlla76NzkGJHq49MCt5SnCqcJpJ8w6PXw2Vv8zP8BhKonCWjpICj5IcDvf5DnruXT9d3pBSWoFw26FT4jIeUxY7XihiiwUhk8oXXZtJTrvM7zKPBSBKzLmgXiAcKWPuu0o5VIbMsTh3dlEjSRO5h3DMhG8zqkK9sqmwJbOl7PpcKg0uqRC8iazKqhEvecdB_mIc1YzJYJlIWyYylommTXQy_yebsW782rpdTVZUrsA8cjSW8wJAsE10Wk1O_fnn3lp_a36ElgdXvej-tn-3j1ZsUAc2GWpt1Cgmb_IALfH3YpRPDo1jfgBvo-Kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+analysis+of+operator+matrices%3A+limit+point+insights&rft.jtitle=Annali+dell%27Universit%C3%A0+di+Ferrara.+Sezione+7.+Scienze+matematiche&rft.au=Bahloul%2C+Aymen&rft.date=2025-03-01&rft.pub=Springer+Milan&rft.issn=0430-3202&rft.eissn=1827-1510&rft.volume=71&rft.issue=1&rft_id=info:doi/10.1007%2Fs11565-024-00573-x&rft.externalDocID=10_1007_s11565_024_00573_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0430-3202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0430-3202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0430-3202&client=summon