Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanide ions
The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated C...
Saved in:
| Published in: | Biochimica et biophysica acta Vol. 1268; no. 1; pp. 97 - 106 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
20.07.1995
|
| Subjects: | |
| ISSN: | 0167-4889, 0006-3002 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated Ca2+ and Mn2+ inflow by saturating concentrations of Gd3+ was 70 and 30%, respectively. Gd3+ also inhibited thapsigargin-stimulated Ca2+ and Mn2+ inflow with maximal inhibition of 70 and 40%, respectively. It is concluded that vasopressin and thapsigargin each activate two types of Ca2+ inflow processes, one which is sensitive and one which is insensitive to lanthanides. The nature of the pore of the lanthanide-sensitive Ca2+ channel was investigated further using different lanthanides as inhibitors. Tm3+, Gd3+, Eu3+, Nd3+ and La3+ each inhibited vasopressin-stimulated Ca2+ and Mn2+ inflow but had no effect on Ca2+ inflow in the absence of an agonist, or on vasopressin-stimulated release of Ca2+ from intracellular stores. Maximal inhibition of vasopressin-stimulated Ca2+ inflow in the presence of a saturating concentration of each lanthanide ranged from 70-90%. An equation which describes a 1:1 interaction of the lanthanide with a putative binding site in the Ca2+ channel gave a good fit to dose-response curves for the inhibition of vasopressin-stimulated Ca2+ inflow by each lanthanide. Lanthanides in the middle of the series exhibited the lowest dissociation constant (Kd) values. The Kd for Gd3+ increased with increasing extracellular Ca2+ concentration, suggesting competitive inhibition of Ca2+ binding by Gd3+. In the absence of lanthanide, vasopressin-stimulated Mn2+ inflow was substantially reduced when the plasma membrane was depolarised by increasing the extracellular K+ concentration. Changing the membrane potential had little effect on the maximum inhibition by Gd3+ of vasopressin-stimulated Mn2+ inflow. The Kd for inhibition of vasopressin-stimulated Ca2+ inflow by Gd3+, measured at the lowest attainable membrane potential, was about 6-fold lower than the Kd measured at the highest attainable membrane potential. The idea that there is a site in the vasopressin-stimulated lanthanide-sensitive Ca2+ channel composed of carboxylic acid groups which bind Ca2+, Mn2+ or a lanthanide ion is consistent with the data obtained using the different lanthanides. |
|---|---|
| AbstractList | The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated Ca2+ and Mn2+ inflow by saturating concentrations of Gd3+ was 70 and 30%, respectively. Gd3+ also inhibited thapsigargin-stimulated Ca2+ and Mn2+ inflow with maximal inhibition of 70 and 40%, respectively. It is concluded that vasopressin and thapsigargin each activate two types of Ca2+ inflow processes, one which is sensitive and one which is insensitive to lanthanides. The nature of the pore of the lanthanide-sensitive Ca2+ channel was investigated further using different lanthanides as inhibitors. Tm3+, Gd3+, Eu3+, Nd3+ and La3+ each inhibited vasopressin-stimulated Ca2+ and Mn2+ inflow but had no effect on Ca2+ inflow in the absence of an agonist, or on vasopressin-stimulated release of Ca2+ from intracellular stores. Maximal inhibition of vasopressin-stimulated Ca2+ inflow in the presence of a saturating concentration of each lanthanide ranged from 70-90%. An equation which describes a 1:1 interaction of the lanthanide with a putative binding site in the Ca2+ channel gave a good fit to dose-response curves for the inhibition of vasopressin-stimulated Ca2+ inflow by each lanthanide. Lanthanides in the middle of the series exhibited the lowest dissociation constant (Kd) values. The Kd for Gd3+ increased with increasing extracellular Ca2+ concentration, suggesting competitive inhibition of Ca2+ binding by Gd3+. In the absence of lanthanide, vasopressin-stimulated Mn2+ inflow was substantially reduced when the plasma membrane was depolarised by increasing the extracellular K+ concentration. Changing the membrane potential had little effect on the maximum inhibition by Gd3+ of vasopressin-stimulated Mn2+ inflow. The Kd for inhibition of vasopressin-stimulated Ca2+ inflow by Gd3+, measured at the lowest attainable membrane potential, was about 6-fold lower than the Kd measured at the highest attainable membrane potential. The idea that there is a site in the vasopressin-stimulated lanthanide-sensitive Ca2+ channel composed of carboxylic acid groups which bind Ca2+, Mn2+ or a lanthanide ion is consistent with the data obtained using the different lanthanides.The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated Ca2+ and Mn2+ inflow by saturating concentrations of Gd3+ was 70 and 30%, respectively. Gd3+ also inhibited thapsigargin-stimulated Ca2+ and Mn2+ inflow with maximal inhibition of 70 and 40%, respectively. It is concluded that vasopressin and thapsigargin each activate two types of Ca2+ inflow processes, one which is sensitive and one which is insensitive to lanthanides. The nature of the pore of the lanthanide-sensitive Ca2+ channel was investigated further using different lanthanides as inhibitors. Tm3+, Gd3+, Eu3+, Nd3+ and La3+ each inhibited vasopressin-stimulated Ca2+ and Mn2+ inflow but had no effect on Ca2+ inflow in the absence of an agonist, or on vasopressin-stimulated release of Ca2+ from intracellular stores. Maximal inhibition of vasopressin-stimulated Ca2+ inflow in the presence of a saturating concentration of each lanthanide ranged from 70-90%. An equation which describes a 1:1 interaction of the lanthanide with a putative binding site in the Ca2+ channel gave a good fit to dose-response curves for the inhibition of vasopressin-stimulated Ca2+ inflow by each lanthanide. Lanthanides in the middle of the series exhibited the lowest dissociation constant (Kd) values. The Kd for Gd3+ increased with increasing extracellular Ca2+ concentration, suggesting competitive inhibition of Ca2+ binding by Gd3+. In the absence of lanthanide, vasopressin-stimulated Mn2+ inflow was substantially reduced when the plasma membrane was depolarised by increasing the extracellular K+ concentration. Changing the membrane potential had little effect on the maximum inhibition by Gd3+ of vasopressin-stimulated Mn2+ inflow. The Kd for inhibition of vasopressin-stimulated Ca2+ inflow by Gd3+, measured at the lowest attainable membrane potential, was about 6-fold lower than the Kd measured at the highest attainable membrane potential. The idea that there is a site in the vasopressin-stimulated lanthanide-sensitive Ca2+ channel composed of carboxylic acid groups which bind Ca2+, Mn2+ or a lanthanide ion is consistent with the data obtained using the different lanthanides. The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated Ca2+ and Mn2+ inflow by saturating concentrations of Gd3+ was 70 and 30%, respectively. Gd3+ also inhibited thapsigargin-stimulated Ca2+ and Mn2+ inflow with maximal inhibition of 70 and 40%, respectively. It is concluded that vasopressin and thapsigargin each activate two types of Ca2+ inflow processes, one which is sensitive and one which is insensitive to lanthanides. The nature of the pore of the lanthanide-sensitive Ca2+ channel was investigated further using different lanthanides as inhibitors. Tm3+, Gd3+, Eu3+, Nd3+ and La3+ each inhibited vasopressin-stimulated Ca2+ and Mn2+ inflow but had no effect on Ca2+ inflow in the absence of an agonist, or on vasopressin-stimulated release of Ca2+ from intracellular stores. Maximal inhibition of vasopressin-stimulated Ca2+ inflow in the presence of a saturating concentration of each lanthanide ranged from 70-90%. An equation which describes a 1:1 interaction of the lanthanide with a putative binding site in the Ca2+ channel gave a good fit to dose-response curves for the inhibition of vasopressin-stimulated Ca2+ inflow by each lanthanide. Lanthanides in the middle of the series exhibited the lowest dissociation constant (Kd) values. The Kd for Gd3+ increased with increasing extracellular Ca2+ concentration, suggesting competitive inhibition of Ca2+ binding by Gd3+. In the absence of lanthanide, vasopressin-stimulated Mn2+ inflow was substantially reduced when the plasma membrane was depolarised by increasing the extracellular K+ concentration. Changing the membrane potential had little effect on the maximum inhibition by Gd3+ of vasopressin-stimulated Mn2+ inflow. The Kd for inhibition of vasopressin-stimulated Ca2+ inflow by Gd3+, measured at the lowest attainable membrane potential, was about 6-fold lower than the Kd measured at the highest attainable membrane potential. The idea that there is a site in the vasopressin-stimulated lanthanide-sensitive Ca2+ channel composed of carboxylic acid groups which bind Ca2+, Mn2+ or a lanthanide ion is consistent with the data obtained using the different lanthanides. |
| Author | Fernando, Kekulu C. Barritt, Greg J. |
| Author_xml | – sequence: 1 givenname: Kekulu C. surname: Fernando fullname: Fernando, Kekulu C. – sequence: 2 givenname: Greg J. surname: Barritt fullname: Barritt, Greg J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/7542927$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc9O3DAQxn2gorDwBkXyqSpCAdtJ1klvaNXSSkjsAc7WxJ6wrhI7tb2gfYk-M94_9NBDD6OR5pvvZ2u-U3LkvENCPnF2zRmf3-SSRdU07Ze2vmSMVbxYHpGTv-OP5DTGX2yryPqYHMu6Eq2QJ-TPYgUBdMJgIyTrHfU9TSukxr7AgC5RvR_rFTiHQ3zXVzhB8nqTkE4DxBHoiGMXwCENqHFKPhSZmykJDV2AuKLW9YN_pXETE450Ha17pgO4lMnWIM2vxDPyoYch4vmhz8jT92-Pix_F_cPdz8XtfaFFWaVCS4bStJ3sOs7AtFryGttelqWc664sTSNwjtW8AQHS9KLnJSJrRGsQuk7U5Yx83nOn4H-vMSY12qhxyN9Bv45Kyoo3jJV58eKwuO5GNGoKdoSwUYcDZv3rXtfBxxiwV9qm3cVSADsoztQ2ILVNQm2TUG2tdgGpZTZX_5jf8f-1vQHMxplN |
| CitedBy_id | crossref_primary_10_1016_S0167_4889_03_00099_5 crossref_primary_10_1016_S0167_4889_99_00147_0 crossref_primary_10_1039_C8CC05271A crossref_primary_10_1080_00103624_2012_693231 crossref_primary_10_1007_BF03179934 crossref_primary_10_1053_gast_2002_35994 crossref_primary_10_1152_ajpheart_2001_281_5_H1835 crossref_primary_10_1016_S1002_0721_07_60054_4 crossref_primary_10_1002_jcp_20390 crossref_primary_10_3892_ol_2018_7853 crossref_primary_10_1016_S0167_4889_00_00045_8 crossref_primary_10_1078_0932_4739_00022 crossref_primary_10_1096_fasebj_13_6_677 crossref_primary_10_1016_S0143_4160_96_90117_7 crossref_primary_10_1109_TPS_2002_804200 crossref_primary_10_1016_S0143_4160_03_00106_4 crossref_primary_10_1074_jbc_M707115200 crossref_primary_10_1038_sj_bjp_0702933 crossref_primary_10_1053_meta_2003_50094 crossref_primary_10_1134_S1021443707050184 crossref_primary_10_1046_j_1439_0396_2003_00432_x crossref_primary_10_1046_j_1471_4159_2000_0751162_x crossref_primary_10_1016_S0143_4160_97_90088_9 crossref_primary_10_1016_j_bbamcr_2008_01_016 |
| Cites_doi | 10.1042/bj2930395 10.1016/S0021-9258(18)42431-3 10.1038/366158a0 10.1016/S0021-9258(18)38190-0 10.1007/BFb0116554 10.1085/jgp.83.6.941 10.1042/bj2420043 10.1107/S0567739476001551 10.1038/355298a0 10.1016/S0021-9258(17)37535-X 10.1016/S0021-9258(18)90746-5 10.1113/jphysiol.1993.sp019835 10.1113/jphysiol.1993.sp019681 10.1042/bj3030351 10.1016/0092-8674(93)80061-I 10.1111/j.1432-1033.1994.tb18861.x 10.1016/S0021-9258(18)45858-9 10.1085/jgp.95.4.679 10.1016/0005-2736(92)90114-2 10.1111/j.1476-5381.1983.tb09405.x 10.1016/0014-5793(94)00481-1 10.1042/bj2840243 10.1038/328275a0 10.1017/S0033583500000354 10.1351/pac196920010093 10.1016/0143-4160(86)90026-6 10.1113/jphysiol.1972.sp009847 10.1016/0014-5793(90)81290-5 10.1038/361315a0 10.1038/355353a0 10.1152/physrev.1979.59.3.606 10.1515/bchm2.1932.210.1-2.33 10.1016/S0021-9258(18)55101-2 10.1016/S0006-291X(88)81367-6 10.1152/ajpcell.1984.246.5.C422 10.1016/S0021-9258(19)84809-3 10.1016/S0021-9258(18)63852-9 10.1042/bj2690579 10.1016/0143-4160(94)90013-2 10.1113/jphysiol.1988.sp017027 10.1210/edrv-14-5-610 10.1016/0898-6568(91)90056-Z 10.1016/0167-4889(94)90044-2 10.1038/366109a0 10.1002/jcp.1041330123 10.1042/bj2600821 10.1006/bbrc.1994.1808 10.1152/ajpcell.1991.261.6.C1018 10.1016/0006-2952(93)90032-R |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/0167-4889(95)00041-P |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| EndPage | 106 |
| ExternalDocumentID | 7542927 10_1016_0167_4889_95_00041_P |
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9DU 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABGSF ABMAC ABUDA ABWVN ABXDB ACDAQ ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEHWI AEIPS AEKER AEUPX AEXQZ AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CITATION CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE IXB J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XPP ZE2 ~G- ~HD -~X .55 .GJ AACTN ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 MVM NPM PKN TWZ UHS VH1 X7M XJT Y6R ZGI ~KM 7X8 ABUFD |
| ID | FETCH-LOGICAL-c234t-c70e7d9b7bb10ad9c715e9f73376cb33d82e6e468a2a7df2f13ee0829deabb253 |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1016_0167_4889_95_00041_P&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-4889 0006-3002 |
| IngestDate | Sun Nov 09 14:30:05 EST 2025 Wed Feb 19 02:33:48 EST 2025 Tue Nov 18 22:29:49 EST 2025 Sat Nov 29 01:48:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c234t-c70e7d9b7bb10ad9c715e9f73376cb33d82e6e468a2a7df2f13ee0829deabb253 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PMID | 7542927 |
| PQID | 77418003 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_77418003 pubmed_primary_7542927 crossref_citationtrail_10_1016_0167_4889_95_00041_P crossref_primary_10_1016_0167_4889_95_00041_P |
| PublicationCentury | 1900 |
| PublicationDate | 1995-07-20 |
| PublicationDateYYYYMMDD | 1995-07-20 |
| PublicationDate_xml | – month: 07 year: 1995 text: 1995-07-20 day: 20 |
| PublicationDecade | 1990 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Biochimica et biophysica acta |
| PublicationTitleAlternate | Biochim Biophys Acta |
| PublicationYear | 1995 |
| References | Barritt (10.1016/0167-4889(95)00041-P_BIB20) 1991; 3 Berridge (10.1016/0167-4889(95)00041-P_BIB2) 1993; 361 Fernando (10.1016/0167-4889(95)00041-P_BIB39) 1994; 303 Chow (10.1016/0167-4889(95)00041-P_BIB7) 1993; 293 Altin (10.1016/0167-4889(95)00041-P_BIB45) 1988; 153 Fernando (10.1016/0167-4889(95)00041-P_BIB29) 1994; 1222 Klotz (10.1016/0167-4889(95)00041-P_BIB43) 1985; 18 Koike (10.1016/0167-4889(95)00041-P_BIB51) 1994; 15 Putney (10.1016/0167-4889(95)00041-P_BIB3) 1993; 14 Blackmore (10.1016/0167-4889(95)00041-P_BIB38) 1984; 259 Hu (10.1016/0167-4889(95)00041-P_BIB48) 1994; 201 Benham (10.1016/0167-4889(95)00041-P_BIB18) 1987; 328 Crofts (10.1016/0167-4889(95)00041-P_BIB27) 1990; 269 Claret (10.1016/0167-4889(95)00041-P_BIB41) 1972; 223 Hansen (10.1016/0167-4889(95)00041-P_BIB23) 1991; 266 Llopis (10.1016/0167-4889(95)00041-P_BIB24) 1992; 284 Hoth (10.1016/0167-4889(95)00041-P_BIB13) 1993; 465 Kass (10.1016/0167-4889(95)00041-P_BIB28) 1990; 265 Striggow (10.1016/0167-4889(95)00041-P_BIB9) 1994; 222 Neher (10.1016/0167-4889(95)00041-P_BIB14) 1992; 355 Glennon (10.1016/0167-4889(95)00041-P_BIB25) 1992; 267 Takemura (10.1016/0167-4889(95)00041-P_BIB44) 1989; 264 Krebs (10.1016/0167-4889(95)00041-P_BIB40) 1932; 210 Clementi (10.1016/0167-4889(95)00041-P_BIB10) 1992; 267 Fasolato (10.1016/0167-4889(95)00041-P_BIB11) 1993; 90 Docherty (10.1016/0167-4889(95)00041-P_BIB30) 1988; 398 Yang (10.1016/0167-4889(95)00041-P_BIB52) 1993; 366 Savage (10.1016/0167-4889(95)00041-P_BIB46) 1989; 260 Berven (10.1016/0167-4889(95)00041-P_BIB47) 1994; 346 Nachshen (10.1016/0167-4889(95)00041-P_BIB31) 1984; 83 Diebler (10.1016/0167-4889(95)00041-P_BIB37) 1969; 20 Scheid (10.1016/0167-4889(95)00041-P_BIB49) 1984; 246 Sasaki (10.1016/0167-4889(95)00041-P_BIB50) 1987; 133 Missiaen (10.1016/0167-4889(95)00041-P_BIB15) 1994; 269 Kass (10.1016/0167-4889(95)00041-P_BIB21) 1989; 264 Putney (10.1016/0167-4889(95)00041-P_BIB4) 1986; 7 Altin (10.1016/0167-4889(95)00041-P_BIB6) 1987; 242 Nieboer (10.1016/0167-4889(95)00041-P_BIB36) 1975; 22 Rink (10.1016/0167-4889(95)00041-P_BIB1) 1990; 268 Bolton (10.1016/0167-4889(95)00041-P_BIB16) 1979; 59 Lansman (10.1016/0167-4889(95)00041-P_BIB32) 1990; 95 Mlinar (10.1016/0167-4889(95)00041-P_BIB33) 1993; 469 Popp (10.1016/0167-4889(95)00041-P_BIB35) 1992; 1108 Kass (10.1016/0167-4889(95)00041-P_BIB22) 1990; 265 Berry (10.1016/0167-4889(95)00041-P_BIB42) 1991; Vol. 21 Shannon (10.1016/0167-4889(95)00041-P_BIB54) 1976; A32 Strazzari (10.1016/0167-4889(95)00041-P_BIB26) 1993; 45 Putney (10.1016/0167-4889(95)00041-P_BIB5) 1993; 75 Bear (10.1016/0167-4889(95)00041-P_BIB34) 1991; 261 Hescheler (10.1016/0167-4889(95)00041-P_BIB19) 1993 Hansen (10.1016/0167-4889(95)00041-P_BIB8) 1991; 266 Yellen (10.1016/0167-4889(95)00041-P_BIB53) 1993; 366 Hoth (10.1016/0167-4889(95)00041-P_BIB12) 1992; 355 Bolton (10.1016/0167-4889(95)00041-P_BIB17) 1983; 78 |
| References_xml | – volume: 293 start-page: 395 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB7 publication-title: Biochem. J. doi: 10.1042/bj2930395 – volume: 267 start-page: 8230 year: 1992 ident: 10.1016/0167-4889(95)00041-P_BIB25 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42431-3 – volume: 366 start-page: 158 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB52 publication-title: Nature doi: 10.1038/366158a0 – volume: 265 start-page: 17486 year: 1990 ident: 10.1016/0167-4889(95)00041-P_BIB28 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)38190-0 – volume: 22 start-page: 1 year: 1975 ident: 10.1016/0167-4889(95)00041-P_BIB36 publication-title: Structure and Bonding doi: 10.1007/BFb0116554 – volume: 83 start-page: 941 year: 1984 ident: 10.1016/0167-4889(95)00041-P_BIB31 publication-title: J. Gen. Physiol. doi: 10.1085/jgp.83.6.941 – volume: Vol. 21 year: 1991 ident: 10.1016/0167-4889(95)00041-P_BIB42 – volume: 242 start-page: 43 year: 1987 ident: 10.1016/0167-4889(95)00041-P_BIB6 publication-title: Biochem. J. doi: 10.1042/bj2420043 – volume: A32 start-page: 751 year: 1976 ident: 10.1016/0167-4889(95)00041-P_BIB54 publication-title: Acta Crysta doi: 10.1107/S0567739476001551 – volume: 355 start-page: 298 year: 1992 ident: 10.1016/0167-4889(95)00041-P_BIB14 publication-title: Nature doi: 10.1038/355298a0 – volume: 269 start-page: 5817 year: 1994 ident: 10.1016/0167-4889(95)00041-P_BIB15 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)37535-X – volume: 259 start-page: 12322 year: 1984 ident: 10.1016/0167-4889(95)00041-P_BIB38 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)90746-5 – volume: 469 start-page: 639 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB33 publication-title: J. Physiol. doi: 10.1113/jphysiol.1993.sp019835 – volume: 465 start-page: 359 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB13 publication-title: J. Physiol. doi: 10.1113/jphysiol.1993.sp019681 – volume: 303 start-page: 351 year: 1994 ident: 10.1016/0167-4889(95)00041-P_BIB39 publication-title: Biochem. J. doi: 10.1042/bj3030351 – volume: 75 start-page: 199 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB5 publication-title: Cell doi: 10.1016/0092-8674(93)80061-I – volume: 222 start-page: 229 year: 1994 ident: 10.1016/0167-4889(95)00041-P_BIB9 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1994.tb18861.x – volume: 267 start-page: 2164 year: 1992 ident: 10.1016/0167-4889(95)00041-P_BIB10 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)45858-9 – volume: 90 start-page: 3068 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB11 – volume: 95 start-page: 679 year: 1990 ident: 10.1016/0167-4889(95)00041-P_BIB32 publication-title: J. Gen. Physiol. doi: 10.1085/jgp.95.4.679 – volume: 1108 start-page: 59 year: 1992 ident: 10.1016/0167-4889(95)00041-P_BIB35 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(92)90114-2 – volume: 78 start-page: 405 year: 1983 ident: 10.1016/0167-4889(95)00041-P_BIB17 publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.1983.tb09405.x – volume: 346 start-page: 235 year: 1994 ident: 10.1016/0167-4889(95)00041-P_BIB47 publication-title: FEBS Lett. doi: 10.1016/0014-5793(94)00481-1 – volume: 284 start-page: 243 year: 1992 ident: 10.1016/0167-4889(95)00041-P_BIB24 publication-title: Biochem. J. doi: 10.1042/bj2840243 – volume: 328 start-page: 275 year: 1987 ident: 10.1016/0167-4889(95)00041-P_BIB18 publication-title: Nature doi: 10.1038/328275a0 – volume: 18 start-page: 227 year: 1985 ident: 10.1016/0167-4889(95)00041-P_BIB43 publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583500000354 – volume: 20 start-page: 93 year: 1969 ident: 10.1016/0167-4889(95)00041-P_BIB37 publication-title: Pure Appl. Chem. doi: 10.1351/pac196920010093 – volume: 7 start-page: 1 year: 1986 ident: 10.1016/0167-4889(95)00041-P_BIB4 publication-title: Cell Calcium doi: 10.1016/0143-4160(86)90026-6 – volume: 223 start-page: 279 year: 1972 ident: 10.1016/0167-4889(95)00041-P_BIB41 publication-title: J. Physiol. doi: 10.1113/jphysiol.1972.sp009847 – volume: 268 start-page: 381 year: 1990 ident: 10.1016/0167-4889(95)00041-P_BIB1 publication-title: FEBS Lett. doi: 10.1016/0014-5793(90)81290-5 – volume: 361 start-page: 315 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB2 publication-title: Nature doi: 10.1038/361315a0 – volume: 355 start-page: 353 year: 1992 ident: 10.1016/0167-4889(95)00041-P_BIB12 publication-title: Nature doi: 10.1038/355353a0 – volume: 59 start-page: 606 year: 1979 ident: 10.1016/0167-4889(95)00041-P_BIB16 publication-title: Physiol. Rev. doi: 10.1152/physrev.1979.59.3.606 – volume: 210 start-page: 33 year: 1932 ident: 10.1016/0167-4889(95)00041-P_BIB40 publication-title: Hoppe-Seyler's Zeitschr. Physiol. Chem. doi: 10.1515/bchm2.1932.210.1-2.33 – volume: 266 start-page: 18573 year: 1991 ident: 10.1016/0167-4889(95)00041-P_BIB23 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)55101-2 – volume: 153 start-page: 1282 year: 1988 ident: 10.1016/0167-4889(95)00041-P_BIB45 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(88)81367-6 – volume: 246 start-page: C422 year: 1984 ident: 10.1016/0167-4889(95)00041-P_BIB49 publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1984.246.5.C422 – volume: 264 start-page: 15192 year: 1989 ident: 10.1016/0167-4889(95)00041-P_BIB21 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)84809-3 – volume: 264 start-page: 12266 year: 1989 ident: 10.1016/0167-4889(95)00041-P_BIB44 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)63852-9 – volume: 269 start-page: 579 year: 1990 ident: 10.1016/0167-4889(95)00041-P_BIB27 publication-title: Biochem. J. doi: 10.1042/bj2690579 – volume: 266 start-page: 18573 year: 1991 ident: 10.1016/0167-4889(95)00041-P_BIB8 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)55101-2 – volume: 15 start-page: 381 year: 1994 ident: 10.1016/0167-4889(95)00041-P_BIB51 publication-title: Cell Calcium doi: 10.1016/0143-4160(94)90013-2 – volume: 265 start-page: 17486 year: 1990 ident: 10.1016/0167-4889(95)00041-P_BIB22 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)38190-0 – volume: 398 start-page: 33 year: 1988 ident: 10.1016/0167-4889(95)00041-P_BIB30 publication-title: J. Physiol. doi: 10.1113/jphysiol.1988.sp017027 – volume: 14 start-page: 610 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB3 publication-title: Endocrine Rev. doi: 10.1210/edrv-14-5-610 – start-page: 27 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB19 article-title: Nonselective Cation Channels: Pharmacology, Physiology and Biophysics – volume: 3 start-page: 283 year: 1991 ident: 10.1016/0167-4889(95)00041-P_BIB20 publication-title: Cell. Signalling doi: 10.1016/0898-6568(91)90056-Z – volume: 1222 start-page: 383 year: 1994 ident: 10.1016/0167-4889(95)00041-P_BIB29 publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4889(94)90044-2 – volume: 366 start-page: 109 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB53 publication-title: Nature doi: 10.1038/366109a0 – volume: 133 start-page: 175 year: 1987 ident: 10.1016/0167-4889(95)00041-P_BIB50 publication-title: J. Cell Physiol. doi: 10.1002/jcp.1041330123 – volume: 260 start-page: 821 year: 1989 ident: 10.1016/0167-4889(95)00041-P_BIB46 publication-title: Biochem. J. doi: 10.1042/bj2600821 – volume: 201 start-page: 1050 year: 1994 ident: 10.1016/0167-4889(95)00041-P_BIB48 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1994.1808 – volume: 261 start-page: C1018 year: 1991 ident: 10.1016/0167-4889(95)00041-P_BIB34 publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1991.261.6.C1018 – volume: 45 start-page: 2163 year: 1993 ident: 10.1016/0167-4889(95)00041-P_BIB26 publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(93)90032-R |
| SSID | ssj0000475 ssj0025309 |
| Score | 1.62811 |
| Snippet | The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 97 |
| SubjectTerms | Animals Binding, Competitive Calcium - metabolism Calcium Channels - drug effects Calcium-Transporting ATPases - antagonists & inhibitors Cations - pharmacology Cell Membrane - metabolism Cells, Cultured Hydrogen-Ion Concentration Ion Channels - drug effects Kinetics Liver - cytology Liver - metabolism Manganese - metabolism Membrane Potentials Metals, Rare Earth - pharmacology Potassium - metabolism Rats Terpenes - pharmacology Thapsigargin Vasopressins - pharmacology |
| Title | Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanide ions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/7542927 https://www.proquest.com/docview/77418003 |
| Volume | 1268 |
| WOSCitedRecordID | wos10_1016_0167_4889_95_00041_P&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0167-4889 databaseCode: AIEXJ dateStart: 19950216 customDbUrl: isFulltext: true dateEnd: 20210131 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000475 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lKQguCAoV4VH2QCWQ5WCvH-s9lqgIKhHlUKTcLK-9Vq2mdpU4of0T_Cp-GDNerw2NePTAxUrW8TjyfN6ZnZ35hpDXXui5Lg-V7aoktMHiObYUibDBuch9IaVUUdo0m-DTaTSfi9lg8N3UwmwWvCyjqytx-V9VDWOgbCydvYW6O6EwAJ9B6XAEtcPxnxQ_6SmYO3cQvcusgLvgzr8O0jUlv6XS5Ml4_gwMU12l17XC1tKrC-wufQFr6RIbq2DyS7W0sQpik6CTOknYIXuPuVyL6mvLB22tm8DDApQFsotMWV0w0GwbF1V6ViBDgaVqSxaVDqwkSOmRjGGCaXv1WrifYLVERF3Auo15V7qe6Hy9WFuTcR-KXS7bnS6su7FOxn1AQxeIc5s5P8c4kYo90p2FukmahdEWHPWcq_N7W-vtNvwF24ZBxyg60eC9i-CQYcdU37VnvTE0CQA3bGSXuWiS4lBSjJJiEcSNlHi2Q3YZD0Q0JLtHn47nJ71H4POg45iHa0wJpxu-68beiOBt-29-dZF-s-5p_J_Th-RBu3ChRxpwj8hAlXvkrm5ler1H7k1M58DH5NtNCNIqpwAxaiBINQSpgaA530OQaghSA0G6DUEKELSoBiDVAKQNAGkPQIoAfEK-fDg-nXy0274fdso8v7ZT7iieCcmldJ0kEyl3AyVy7oExTKXnZRFTofLDKGEJz3KWu55SWCOeqURKFnj7ZFhWpXpKqAykL_MsSFWY-w5MPJx7kRNKR2XISyRGxDOPOk5bUnzszbKI_6ToEbG7qy41Kcxffv_KaDEGVeArBE-uWq9ijuRRYFhHZF8rt5PHm0Zy_Nktb_Wc3O_fqRdkWC_X6iW5k27qYrU8IDt8Hh208IRv09nnH-jPyDg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterisation+of+the+divalent+cation+channels+of+the+hepatocyte+plasma+membrane+receptor-activated+Ca2%2B+inflow+system+using+lanthanide+ions&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+cell+research&rft.au=Fernando%2C+Kekulu+C.&rft.au=Barritt%2C+Greg+J.&rft.date=1995-07-20&rft.issn=0167-4889&rft.volume=1268&rft.issue=1&rft.spage=97&rft.epage=106&rft_id=info:doi/10.1016%2F0167-4889%2895%2900041-P&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_0167_4889_95_00041_P |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4889&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4889&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4889&client=summon |