Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanide ions

The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated C...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta Vol. 1268; no. 1; pp. 97 - 106
Main Authors: Fernando, Kekulu C., Barritt, Greg J.
Format: Journal Article
Language:English
Published: Netherlands 20.07.1995
Subjects:
ISSN:0167-4889, 0006-3002
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated Ca2+ and Mn2+ inflow by saturating concentrations of Gd3+ was 70 and 30%, respectively. Gd3+ also inhibited thapsigargin-stimulated Ca2+ and Mn2+ inflow with maximal inhibition of 70 and 40%, respectively. It is concluded that vasopressin and thapsigargin each activate two types of Ca2+ inflow processes, one which is sensitive and one which is insensitive to lanthanides. The nature of the pore of the lanthanide-sensitive Ca2+ channel was investigated further using different lanthanides as inhibitors. Tm3+, Gd3+, Eu3+, Nd3+ and La3+ each inhibited vasopressin-stimulated Ca2+ and Mn2+ inflow but had no effect on Ca2+ inflow in the absence of an agonist, or on vasopressin-stimulated release of Ca2+ from intracellular stores. Maximal inhibition of vasopressin-stimulated Ca2+ inflow in the presence of a saturating concentration of each lanthanide ranged from 70-90%. An equation which describes a 1:1 interaction of the lanthanide with a putative binding site in the Ca2+ channel gave a good fit to dose-response curves for the inhibition of vasopressin-stimulated Ca2+ inflow by each lanthanide. Lanthanides in the middle of the series exhibited the lowest dissociation constant (Kd) values. The Kd for Gd3+ increased with increasing extracellular Ca2+ concentration, suggesting competitive inhibition of Ca2+ binding by Gd3+. In the absence of lanthanide, vasopressin-stimulated Mn2+ inflow was substantially reduced when the plasma membrane was depolarised by increasing the extracellular K+ concentration. Changing the membrane potential had little effect on the maximum inhibition by Gd3+ of vasopressin-stimulated Mn2+ inflow. The Kd for inhibition of vasopressin-stimulated Ca2+ inflow by Gd3+, measured at the lowest attainable membrane potential, was about 6-fold lower than the Kd measured at the highest attainable membrane potential. The idea that there is a site in the vasopressin-stimulated lanthanide-sensitive Ca2+ channel composed of carboxylic acid groups which bind Ca2+, Mn2+ or a lanthanide ion is consistent with the data obtained using the different lanthanides.
AbstractList The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated Ca2+ and Mn2+ inflow by saturating concentrations of Gd3+ was 70 and 30%, respectively. Gd3+ also inhibited thapsigargin-stimulated Ca2+ and Mn2+ inflow with maximal inhibition of 70 and 40%, respectively. It is concluded that vasopressin and thapsigargin each activate two types of Ca2+ inflow processes, one which is sensitive and one which is insensitive to lanthanides. The nature of the pore of the lanthanide-sensitive Ca2+ channel was investigated further using different lanthanides as inhibitors. Tm3+, Gd3+, Eu3+, Nd3+ and La3+ each inhibited vasopressin-stimulated Ca2+ and Mn2+ inflow but had no effect on Ca2+ inflow in the absence of an agonist, or on vasopressin-stimulated release of Ca2+ from intracellular stores. Maximal inhibition of vasopressin-stimulated Ca2+ inflow in the presence of a saturating concentration of each lanthanide ranged from 70-90%. An equation which describes a 1:1 interaction of the lanthanide with a putative binding site in the Ca2+ channel gave a good fit to dose-response curves for the inhibition of vasopressin-stimulated Ca2+ inflow by each lanthanide. Lanthanides in the middle of the series exhibited the lowest dissociation constant (Kd) values. The Kd for Gd3+ increased with increasing extracellular Ca2+ concentration, suggesting competitive inhibition of Ca2+ binding by Gd3+. In the absence of lanthanide, vasopressin-stimulated Mn2+ inflow was substantially reduced when the plasma membrane was depolarised by increasing the extracellular K+ concentration. Changing the membrane potential had little effect on the maximum inhibition by Gd3+ of vasopressin-stimulated Mn2+ inflow. The Kd for inhibition of vasopressin-stimulated Ca2+ inflow by Gd3+, measured at the lowest attainable membrane potential, was about 6-fold lower than the Kd measured at the highest attainable membrane potential. The idea that there is a site in the vasopressin-stimulated lanthanide-sensitive Ca2+ channel composed of carboxylic acid groups which bind Ca2+, Mn2+ or a lanthanide ion is consistent with the data obtained using the different lanthanides.The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated Ca2+ and Mn2+ inflow by saturating concentrations of Gd3+ was 70 and 30%, respectively. Gd3+ also inhibited thapsigargin-stimulated Ca2+ and Mn2+ inflow with maximal inhibition of 70 and 40%, respectively. It is concluded that vasopressin and thapsigargin each activate two types of Ca2+ inflow processes, one which is sensitive and one which is insensitive to lanthanides. The nature of the pore of the lanthanide-sensitive Ca2+ channel was investigated further using different lanthanides as inhibitors. Tm3+, Gd3+, Eu3+, Nd3+ and La3+ each inhibited vasopressin-stimulated Ca2+ and Mn2+ inflow but had no effect on Ca2+ inflow in the absence of an agonist, or on vasopressin-stimulated release of Ca2+ from intracellular stores. Maximal inhibition of vasopressin-stimulated Ca2+ inflow in the presence of a saturating concentration of each lanthanide ranged from 70-90%. An equation which describes a 1:1 interaction of the lanthanide with a putative binding site in the Ca2+ channel gave a good fit to dose-response curves for the inhibition of vasopressin-stimulated Ca2+ inflow by each lanthanide. Lanthanides in the middle of the series exhibited the lowest dissociation constant (Kd) values. The Kd for Gd3+ increased with increasing extracellular Ca2+ concentration, suggesting competitive inhibition of Ca2+ binding by Gd3+. In the absence of lanthanide, vasopressin-stimulated Mn2+ inflow was substantially reduced when the plasma membrane was depolarised by increasing the extracellular K+ concentration. Changing the membrane potential had little effect on the maximum inhibition by Gd3+ of vasopressin-stimulated Mn2+ inflow. The Kd for inhibition of vasopressin-stimulated Ca2+ inflow by Gd3+, measured at the lowest attainable membrane potential, was about 6-fold lower than the Kd measured at the highest attainable membrane potential. The idea that there is a site in the vasopressin-stimulated lanthanide-sensitive Ca2+ channel composed of carboxylic acid groups which bind Ca2+, Mn2+ or a lanthanide ion is consistent with the data obtained using the different lanthanides.
The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the stimulation of Mn2+ inflow by vasopressin increased with increasing pH of the extracellular medium. Maximal inhibition of vasopressin-stimulated Ca2+ and Mn2+ inflow by saturating concentrations of Gd3+ was 70 and 30%, respectively. Gd3+ also inhibited thapsigargin-stimulated Ca2+ and Mn2+ inflow with maximal inhibition of 70 and 40%, respectively. It is concluded that vasopressin and thapsigargin each activate two types of Ca2+ inflow processes, one which is sensitive and one which is insensitive to lanthanides. The nature of the pore of the lanthanide-sensitive Ca2+ channel was investigated further using different lanthanides as inhibitors. Tm3+, Gd3+, Eu3+, Nd3+ and La3+ each inhibited vasopressin-stimulated Ca2+ and Mn2+ inflow but had no effect on Ca2+ inflow in the absence of an agonist, or on vasopressin-stimulated release of Ca2+ from intracellular stores. Maximal inhibition of vasopressin-stimulated Ca2+ inflow in the presence of a saturating concentration of each lanthanide ranged from 70-90%. An equation which describes a 1:1 interaction of the lanthanide with a putative binding site in the Ca2+ channel gave a good fit to dose-response curves for the inhibition of vasopressin-stimulated Ca2+ inflow by each lanthanide. Lanthanides in the middle of the series exhibited the lowest dissociation constant (Kd) values. The Kd for Gd3+ increased with increasing extracellular Ca2+ concentration, suggesting competitive inhibition of Ca2+ binding by Gd3+. In the absence of lanthanide, vasopressin-stimulated Mn2+ inflow was substantially reduced when the plasma membrane was depolarised by increasing the extracellular K+ concentration. Changing the membrane potential had little effect on the maximum inhibition by Gd3+ of vasopressin-stimulated Mn2+ inflow. The Kd for inhibition of vasopressin-stimulated Ca2+ inflow by Gd3+, measured at the lowest attainable membrane potential, was about 6-fold lower than the Kd measured at the highest attainable membrane potential. The idea that there is a site in the vasopressin-stimulated lanthanide-sensitive Ca2+ channel composed of carboxylic acid groups which bind Ca2+, Mn2+ or a lanthanide ion is consistent with the data obtained using the different lanthanides.
Author Fernando, Kekulu C.
Barritt, Greg J.
Author_xml – sequence: 1
  givenname: Kekulu C.
  surname: Fernando
  fullname: Fernando, Kekulu C.
– sequence: 2
  givenname: Greg J.
  surname: Barritt
  fullname: Barritt, Greg J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/7542927$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9O3DAQxn2gorDwBkXyqSpCAdtJ1klvaNXSSkjsAc7WxJ6wrhI7tb2gfYk-M94_9NBDD6OR5pvvZ2u-U3LkvENCPnF2zRmf3-SSRdU07Ze2vmSMVbxYHpGTv-OP5DTGX2yryPqYHMu6Eq2QJ-TPYgUBdMJgIyTrHfU9TSukxr7AgC5RvR_rFTiHQ3zXVzhB8nqTkE4DxBHoiGMXwCENqHFKPhSZmykJDV2AuKLW9YN_pXETE450Ha17pgO4lMnWIM2vxDPyoYch4vmhz8jT92-Pix_F_cPdz8XtfaFFWaVCS4bStJ3sOs7AtFryGttelqWc664sTSNwjtW8AQHS9KLnJSJrRGsQuk7U5Yx83nOn4H-vMSY12qhxyN9Bv45Kyoo3jJV58eKwuO5GNGoKdoSwUYcDZv3rXtfBxxiwV9qm3cVSADsoztQ2ILVNQm2TUG2tdgGpZTZX_5jf8f-1vQHMxplN
CitedBy_id crossref_primary_10_1016_S0167_4889_03_00099_5
crossref_primary_10_1016_S0167_4889_99_00147_0
crossref_primary_10_1039_C8CC05271A
crossref_primary_10_1080_00103624_2012_693231
crossref_primary_10_1007_BF03179934
crossref_primary_10_1053_gast_2002_35994
crossref_primary_10_1152_ajpheart_2001_281_5_H1835
crossref_primary_10_1016_S1002_0721_07_60054_4
crossref_primary_10_1002_jcp_20390
crossref_primary_10_3892_ol_2018_7853
crossref_primary_10_1016_S0167_4889_00_00045_8
crossref_primary_10_1078_0932_4739_00022
crossref_primary_10_1096_fasebj_13_6_677
crossref_primary_10_1016_S0143_4160_96_90117_7
crossref_primary_10_1109_TPS_2002_804200
crossref_primary_10_1016_S0143_4160_03_00106_4
crossref_primary_10_1074_jbc_M707115200
crossref_primary_10_1038_sj_bjp_0702933
crossref_primary_10_1053_meta_2003_50094
crossref_primary_10_1134_S1021443707050184
crossref_primary_10_1046_j_1439_0396_2003_00432_x
crossref_primary_10_1046_j_1471_4159_2000_0751162_x
crossref_primary_10_1016_S0143_4160_97_90088_9
crossref_primary_10_1016_j_bbamcr_2008_01_016
Cites_doi 10.1042/bj2930395
10.1016/S0021-9258(18)42431-3
10.1038/366158a0
10.1016/S0021-9258(18)38190-0
10.1007/BFb0116554
10.1085/jgp.83.6.941
10.1042/bj2420043
10.1107/S0567739476001551
10.1038/355298a0
10.1016/S0021-9258(17)37535-X
10.1016/S0021-9258(18)90746-5
10.1113/jphysiol.1993.sp019835
10.1113/jphysiol.1993.sp019681
10.1042/bj3030351
10.1016/0092-8674(93)80061-I
10.1111/j.1432-1033.1994.tb18861.x
10.1016/S0021-9258(18)45858-9
10.1085/jgp.95.4.679
10.1016/0005-2736(92)90114-2
10.1111/j.1476-5381.1983.tb09405.x
10.1016/0014-5793(94)00481-1
10.1042/bj2840243
10.1038/328275a0
10.1017/S0033583500000354
10.1351/pac196920010093
10.1016/0143-4160(86)90026-6
10.1113/jphysiol.1972.sp009847
10.1016/0014-5793(90)81290-5
10.1038/361315a0
10.1038/355353a0
10.1152/physrev.1979.59.3.606
10.1515/bchm2.1932.210.1-2.33
10.1016/S0021-9258(18)55101-2
10.1016/S0006-291X(88)81367-6
10.1152/ajpcell.1984.246.5.C422
10.1016/S0021-9258(19)84809-3
10.1016/S0021-9258(18)63852-9
10.1042/bj2690579
10.1016/0143-4160(94)90013-2
10.1113/jphysiol.1988.sp017027
10.1210/edrv-14-5-610
10.1016/0898-6568(91)90056-Z
10.1016/0167-4889(94)90044-2
10.1038/366109a0
10.1002/jcp.1041330123
10.1042/bj2600821
10.1006/bbrc.1994.1808
10.1152/ajpcell.1991.261.6.C1018
10.1016/0006-2952(93)90032-R
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/0167-4889(95)00041-P
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EndPage 106
ExternalDocumentID 7542927
10_1016_0167_4889_95_00041_P
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9DU
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEHWI
AEIPS
AEKER
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
IXB
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XPP
ZE2
~G-
~HD
-~X
.55
.GJ
AACTN
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
MVM
NPM
PKN
TWZ
UHS
VH1
X7M
XJT
Y6R
ZGI
~KM
7X8
ABUFD
ID FETCH-LOGICAL-c234t-c70e7d9b7bb10ad9c715e9f73376cb33d82e6e468a2a7df2f13ee0829deabb253
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1016_0167_4889_95_00041_P&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4889
0006-3002
IngestDate Sun Nov 09 14:30:05 EST 2025
Wed Feb 19 02:33:48 EST 2025
Tue Nov 18 22:29:49 EST 2025
Sat Nov 29 01:48:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c234t-c70e7d9b7bb10ad9c715e9f73376cb33d82e6e468a2a7df2f13ee0829deabb253
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 7542927
PQID 77418003
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_77418003
pubmed_primary_7542927
crossref_citationtrail_10_1016_0167_4889_95_00041_P
crossref_primary_10_1016_0167_4889_95_00041_P
PublicationCentury 1900
PublicationDate 1995-07-20
PublicationDateYYYYMMDD 1995-07-20
PublicationDate_xml – month: 07
  year: 1995
  text: 1995-07-20
  day: 20
PublicationDecade 1990
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 1995
References Barritt (10.1016/0167-4889(95)00041-P_BIB20) 1991; 3
Berridge (10.1016/0167-4889(95)00041-P_BIB2) 1993; 361
Fernando (10.1016/0167-4889(95)00041-P_BIB39) 1994; 303
Chow (10.1016/0167-4889(95)00041-P_BIB7) 1993; 293
Altin (10.1016/0167-4889(95)00041-P_BIB45) 1988; 153
Fernando (10.1016/0167-4889(95)00041-P_BIB29) 1994; 1222
Klotz (10.1016/0167-4889(95)00041-P_BIB43) 1985; 18
Koike (10.1016/0167-4889(95)00041-P_BIB51) 1994; 15
Putney (10.1016/0167-4889(95)00041-P_BIB3) 1993; 14
Blackmore (10.1016/0167-4889(95)00041-P_BIB38) 1984; 259
Hu (10.1016/0167-4889(95)00041-P_BIB48) 1994; 201
Benham (10.1016/0167-4889(95)00041-P_BIB18) 1987; 328
Crofts (10.1016/0167-4889(95)00041-P_BIB27) 1990; 269
Claret (10.1016/0167-4889(95)00041-P_BIB41) 1972; 223
Hansen (10.1016/0167-4889(95)00041-P_BIB23) 1991; 266
Llopis (10.1016/0167-4889(95)00041-P_BIB24) 1992; 284
Hoth (10.1016/0167-4889(95)00041-P_BIB13) 1993; 465
Kass (10.1016/0167-4889(95)00041-P_BIB28) 1990; 265
Striggow (10.1016/0167-4889(95)00041-P_BIB9) 1994; 222
Neher (10.1016/0167-4889(95)00041-P_BIB14) 1992; 355
Glennon (10.1016/0167-4889(95)00041-P_BIB25) 1992; 267
Takemura (10.1016/0167-4889(95)00041-P_BIB44) 1989; 264
Krebs (10.1016/0167-4889(95)00041-P_BIB40) 1932; 210
Clementi (10.1016/0167-4889(95)00041-P_BIB10) 1992; 267
Fasolato (10.1016/0167-4889(95)00041-P_BIB11) 1993; 90
Docherty (10.1016/0167-4889(95)00041-P_BIB30) 1988; 398
Yang (10.1016/0167-4889(95)00041-P_BIB52) 1993; 366
Savage (10.1016/0167-4889(95)00041-P_BIB46) 1989; 260
Berven (10.1016/0167-4889(95)00041-P_BIB47) 1994; 346
Nachshen (10.1016/0167-4889(95)00041-P_BIB31) 1984; 83
Diebler (10.1016/0167-4889(95)00041-P_BIB37) 1969; 20
Scheid (10.1016/0167-4889(95)00041-P_BIB49) 1984; 246
Sasaki (10.1016/0167-4889(95)00041-P_BIB50) 1987; 133
Missiaen (10.1016/0167-4889(95)00041-P_BIB15) 1994; 269
Kass (10.1016/0167-4889(95)00041-P_BIB21) 1989; 264
Putney (10.1016/0167-4889(95)00041-P_BIB4) 1986; 7
Altin (10.1016/0167-4889(95)00041-P_BIB6) 1987; 242
Nieboer (10.1016/0167-4889(95)00041-P_BIB36) 1975; 22
Rink (10.1016/0167-4889(95)00041-P_BIB1) 1990; 268
Bolton (10.1016/0167-4889(95)00041-P_BIB16) 1979; 59
Lansman (10.1016/0167-4889(95)00041-P_BIB32) 1990; 95
Mlinar (10.1016/0167-4889(95)00041-P_BIB33) 1993; 469
Popp (10.1016/0167-4889(95)00041-P_BIB35) 1992; 1108
Kass (10.1016/0167-4889(95)00041-P_BIB22) 1990; 265
Berry (10.1016/0167-4889(95)00041-P_BIB42) 1991; Vol. 21
Shannon (10.1016/0167-4889(95)00041-P_BIB54) 1976; A32
Strazzari (10.1016/0167-4889(95)00041-P_BIB26) 1993; 45
Putney (10.1016/0167-4889(95)00041-P_BIB5) 1993; 75
Bear (10.1016/0167-4889(95)00041-P_BIB34) 1991; 261
Hescheler (10.1016/0167-4889(95)00041-P_BIB19) 1993
Hansen (10.1016/0167-4889(95)00041-P_BIB8) 1991; 266
Yellen (10.1016/0167-4889(95)00041-P_BIB53) 1993; 366
Hoth (10.1016/0167-4889(95)00041-P_BIB12) 1992; 355
Bolton (10.1016/0167-4889(95)00041-P_BIB17) 1983; 78
References_xml – volume: 293
  start-page: 395
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB7
  publication-title: Biochem. J.
  doi: 10.1042/bj2930395
– volume: 267
  start-page: 8230
  year: 1992
  ident: 10.1016/0167-4889(95)00041-P_BIB25
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42431-3
– volume: 366
  start-page: 158
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB52
  publication-title: Nature
  doi: 10.1038/366158a0
– volume: 265
  start-page: 17486
  year: 1990
  ident: 10.1016/0167-4889(95)00041-P_BIB28
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)38190-0
– volume: 22
  start-page: 1
  year: 1975
  ident: 10.1016/0167-4889(95)00041-P_BIB36
  publication-title: Structure and Bonding
  doi: 10.1007/BFb0116554
– volume: 83
  start-page: 941
  year: 1984
  ident: 10.1016/0167-4889(95)00041-P_BIB31
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.83.6.941
– volume: Vol. 21
  year: 1991
  ident: 10.1016/0167-4889(95)00041-P_BIB42
– volume: 242
  start-page: 43
  year: 1987
  ident: 10.1016/0167-4889(95)00041-P_BIB6
  publication-title: Biochem. J.
  doi: 10.1042/bj2420043
– volume: A32
  start-page: 751
  year: 1976
  ident: 10.1016/0167-4889(95)00041-P_BIB54
  publication-title: Acta Crysta
  doi: 10.1107/S0567739476001551
– volume: 355
  start-page: 298
  year: 1992
  ident: 10.1016/0167-4889(95)00041-P_BIB14
  publication-title: Nature
  doi: 10.1038/355298a0
– volume: 269
  start-page: 5817
  year: 1994
  ident: 10.1016/0167-4889(95)00041-P_BIB15
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)37535-X
– volume: 259
  start-page: 12322
  year: 1984
  ident: 10.1016/0167-4889(95)00041-P_BIB38
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)90746-5
– volume: 469
  start-page: 639
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB33
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1993.sp019835
– volume: 465
  start-page: 359
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB13
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1993.sp019681
– volume: 303
  start-page: 351
  year: 1994
  ident: 10.1016/0167-4889(95)00041-P_BIB39
  publication-title: Biochem. J.
  doi: 10.1042/bj3030351
– volume: 75
  start-page: 199
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB5
  publication-title: Cell
  doi: 10.1016/0092-8674(93)80061-I
– volume: 222
  start-page: 229
  year: 1994
  ident: 10.1016/0167-4889(95)00041-P_BIB9
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1994.tb18861.x
– volume: 267
  start-page: 2164
  year: 1992
  ident: 10.1016/0167-4889(95)00041-P_BIB10
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)45858-9
– volume: 90
  start-page: 3068
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB11
– volume: 95
  start-page: 679
  year: 1990
  ident: 10.1016/0167-4889(95)00041-P_BIB32
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.95.4.679
– volume: 1108
  start-page: 59
  year: 1992
  ident: 10.1016/0167-4889(95)00041-P_BIB35
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(92)90114-2
– volume: 78
  start-page: 405
  year: 1983
  ident: 10.1016/0167-4889(95)00041-P_BIB17
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.1983.tb09405.x
– volume: 346
  start-page: 235
  year: 1994
  ident: 10.1016/0167-4889(95)00041-P_BIB47
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(94)00481-1
– volume: 284
  start-page: 243
  year: 1992
  ident: 10.1016/0167-4889(95)00041-P_BIB24
  publication-title: Biochem. J.
  doi: 10.1042/bj2840243
– volume: 328
  start-page: 275
  year: 1987
  ident: 10.1016/0167-4889(95)00041-P_BIB18
  publication-title: Nature
  doi: 10.1038/328275a0
– volume: 18
  start-page: 227
  year: 1985
  ident: 10.1016/0167-4889(95)00041-P_BIB43
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583500000354
– volume: 20
  start-page: 93
  year: 1969
  ident: 10.1016/0167-4889(95)00041-P_BIB37
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac196920010093
– volume: 7
  start-page: 1
  year: 1986
  ident: 10.1016/0167-4889(95)00041-P_BIB4
  publication-title: Cell Calcium
  doi: 10.1016/0143-4160(86)90026-6
– volume: 223
  start-page: 279
  year: 1972
  ident: 10.1016/0167-4889(95)00041-P_BIB41
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1972.sp009847
– volume: 268
  start-page: 381
  year: 1990
  ident: 10.1016/0167-4889(95)00041-P_BIB1
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(90)81290-5
– volume: 361
  start-page: 315
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB2
  publication-title: Nature
  doi: 10.1038/361315a0
– volume: 355
  start-page: 353
  year: 1992
  ident: 10.1016/0167-4889(95)00041-P_BIB12
  publication-title: Nature
  doi: 10.1038/355353a0
– volume: 59
  start-page: 606
  year: 1979
  ident: 10.1016/0167-4889(95)00041-P_BIB16
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1979.59.3.606
– volume: 210
  start-page: 33
  year: 1932
  ident: 10.1016/0167-4889(95)00041-P_BIB40
  publication-title: Hoppe-Seyler's Zeitschr. Physiol. Chem.
  doi: 10.1515/bchm2.1932.210.1-2.33
– volume: 266
  start-page: 18573
  year: 1991
  ident: 10.1016/0167-4889(95)00041-P_BIB23
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)55101-2
– volume: 153
  start-page: 1282
  year: 1988
  ident: 10.1016/0167-4889(95)00041-P_BIB45
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(88)81367-6
– volume: 246
  start-page: C422
  year: 1984
  ident: 10.1016/0167-4889(95)00041-P_BIB49
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1984.246.5.C422
– volume: 264
  start-page: 15192
  year: 1989
  ident: 10.1016/0167-4889(95)00041-P_BIB21
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)84809-3
– volume: 264
  start-page: 12266
  year: 1989
  ident: 10.1016/0167-4889(95)00041-P_BIB44
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)63852-9
– volume: 269
  start-page: 579
  year: 1990
  ident: 10.1016/0167-4889(95)00041-P_BIB27
  publication-title: Biochem. J.
  doi: 10.1042/bj2690579
– volume: 266
  start-page: 18573
  year: 1991
  ident: 10.1016/0167-4889(95)00041-P_BIB8
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)55101-2
– volume: 15
  start-page: 381
  year: 1994
  ident: 10.1016/0167-4889(95)00041-P_BIB51
  publication-title: Cell Calcium
  doi: 10.1016/0143-4160(94)90013-2
– volume: 265
  start-page: 17486
  year: 1990
  ident: 10.1016/0167-4889(95)00041-P_BIB22
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)38190-0
– volume: 398
  start-page: 33
  year: 1988
  ident: 10.1016/0167-4889(95)00041-P_BIB30
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1988.sp017027
– volume: 14
  start-page: 610
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB3
  publication-title: Endocrine Rev.
  doi: 10.1210/edrv-14-5-610
– start-page: 27
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB19
  article-title: Nonselective Cation Channels: Pharmacology, Physiology and Biophysics
– volume: 3
  start-page: 283
  year: 1991
  ident: 10.1016/0167-4889(95)00041-P_BIB20
  publication-title: Cell. Signalling
  doi: 10.1016/0898-6568(91)90056-Z
– volume: 1222
  start-page: 383
  year: 1994
  ident: 10.1016/0167-4889(95)00041-P_BIB29
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4889(94)90044-2
– volume: 366
  start-page: 109
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB53
  publication-title: Nature
  doi: 10.1038/366109a0
– volume: 133
  start-page: 175
  year: 1987
  ident: 10.1016/0167-4889(95)00041-P_BIB50
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.1041330123
– volume: 260
  start-page: 821
  year: 1989
  ident: 10.1016/0167-4889(95)00041-P_BIB46
  publication-title: Biochem. J.
  doi: 10.1042/bj2600821
– volume: 201
  start-page: 1050
  year: 1994
  ident: 10.1016/0167-4889(95)00041-P_BIB48
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1994.1808
– volume: 261
  start-page: C1018
  year: 1991
  ident: 10.1016/0167-4889(95)00041-P_BIB34
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1991.261.6.C1018
– volume: 45
  start-page: 2163
  year: 1993
  ident: 10.1016/0167-4889(95)00041-P_BIB26
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/0006-2952(93)90032-R
SSID ssj0000475
ssj0025309
Score 1.6280309
Snippet The ability of Gd3+ to inhibit vasopressin-stimulated Ca2+ inflow to hepatocytes was compared with its effect on Mn2+ inflow. In the absence of Gd3+, the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 97
SubjectTerms Animals
Binding, Competitive
Calcium - metabolism
Calcium Channels - drug effects
Calcium-Transporting ATPases - antagonists & inhibitors
Cations - pharmacology
Cell Membrane - metabolism
Cells, Cultured
Hydrogen-Ion Concentration
Ion Channels - drug effects
Kinetics
Liver - cytology
Liver - metabolism
Manganese - metabolism
Membrane Potentials
Metals, Rare Earth - pharmacology
Potassium - metabolism
Rats
Terpenes - pharmacology
Thapsigargin
Vasopressins - pharmacology
Title Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanide ions
URI https://www.ncbi.nlm.nih.gov/pubmed/7542927
https://www.proquest.com/docview/77418003
Volume 1268
WOSCitedRecordID wos10_1016_0167_4889_95_00041_P&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-4889
  databaseCode: AIEXJ
  dateStart: 19950216
  customDbUrl:
  isFulltext: true
  dateEnd: 20210131
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000475
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELe6DgQvCAYT5c_wA5NAUUpjJ7X9OKohmETVhyH1LXJiR4vWJVOblu1L8Kn4YJzjOIFV_NkDL1HqNJfI94vvfPb9DqHXPIzkOFDUJ2qU-WChuJ9wRn14aZ5pcJGVTutiE2w65fO5mPV6310uzGbBioJfXYnL_6pqaANlm9TZW6i7FQoNcA5KhyOoHY7_pPhJR8HcuoPGu1Q5PMWs_NsgXZ3yW2hLnmyun4Fhqsr0utKmtPTqwlSXvoC5dGEKq5jNL-XSN1kQG2mc1Ikkh-S92cu1KL82fNDeug48LEBZIDtX2muDgW7ZOC_Ts9wwFHi68pK8tIEVaSg95BAGmKZWr2fWE7yGiKgNWDcx79LmE52vF2tvMuxCsctls9Jl8m68k2EX0LAJ4swno59jnIaKndvKQu0gTcZ8C452zLX7exvrHdT8BduGwcYoWtHgvYvokJiKqWHgzzpj6DYA3LCR7c5FtynOSIqNpFhEcS0lnu2gXcIiwfto9-jT8fyk8whCFrUc83CPS-EMxu_atjcietu8za8u0m_mPbX_c_oQPWgmLvjIAu4R6uliD921pUyv99C9iasc-Bh9uwlBXGYYIIYdBLGFIHYQdNc7CGILQewgiLchiAGCHrYAxBaAuAYg7gCIDQCfoC8fjk8nH_2m7oefEhpWfspGmimRsCQJRlKJlAWRFhmjYAzThFLFiR7rcMwlkUxlJAuo1iZHXGmZJCSi-6hflIV-irAUio6hU5WUYZhxxiVPaEZFwkUqmKIDRF1Xx2lDim9qsyziPyl6gPz2rktLCvOX_79yWoxBFeYTgp4r16uYGfIoMKwDtG-V28pjdSE59uyWj3qO7nff1AvUr5Zr_RLdSTdVvloeoB025wcNPOHXdPb5B-4qyG4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterisation+of+the+divalent+cation+channels+of+the+hepatocyte+plasma+membrane+receptor-activated+Ca2%2B+inflow+system+using+lanthanide+ions&rft.jtitle=Biochimica+et+biophysica+acta.+Molecular+cell+research&rft.au=Fernando%2C+Kekulu+C.&rft.au=Barritt%2C+Greg+J.&rft.date=1995-07-20&rft.issn=0167-4889&rft.volume=1268&rft.issue=1&rft.spage=97&rft.epage=106&rft_id=info:doi/10.1016%2F0167-4889%2895%2900041-P&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_0167_4889_95_00041_P
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4889&client=summon