How do production practices and climate change impact the water footprint of dairy farms?

Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment Vol. 998; p. 180243
Main Authors: Palhares, Julio Cesar Pascale, De Souza, Debora Pantojo, Carra, Sofia Helena Zanella, Drastig, Katrin
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 10.10.2025
Subjects:
ISSN:0048-9697, 1879-1026, 1879-1026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production. A total of 67 dairy cattle farms were selected for the study. Climatic scenarios and production practices were proposed as farm-specific interventions targeting three key areas: animal feed, effluent treatment, and nitrogen field application. For all production systems, the combinations exhibiting the highest water efficiency were characterized by the following factors: for green water, a 25 % increase in corn and soybean yields; for blue water, a reduction in milking parlor washing water consumption, an increase of 1 liter of milk per cow per day, and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the treatment of effluent from the milking parlor. Conversely, the combinations with the lowest water efficiency were identified as follows: for green water, maize yields decreased by 15 % and soybean yields increased by 12.95 %; for blue water, an increase of 1.5 °C to 2.5 °C in minimum daily temperature and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the non-treatment of effluent with the maximum value of α. The findings of this study establish production practices in water scenario analyses concerning water footprints in dairy cattle production systems. [Display omitted] •The study evaluates the water footprint of 67 Brazilian dairy farms.•The production system seems not to influence the WF.•WF can be reduced through the improvement of agricultural and productive practices.•Global warming scenarios increase the values of green and blue water footprints.
AbstractList Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production. A total of 67 dairy cattle farms were selected for the study. Climatic scenarios and production practices were proposed as farm-specific interventions targeting three key areas: animal feed, effluent treatment, and nitrogen field application. For all production systems, the combinations exhibiting the highest water efficiency were characterized by the following factors: for green water, a 25 % increase in corn and soybean yields; for blue water, a reduction in milking parlor washing water consumption, an increase of 1 liter of milk per cow per day, and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the treatment of effluent from the milking parlor. Conversely, the combinations with the lowest water efficiency were identified as follows: for green water, maize yields decreased by 15 % and soybean yields increased by 12.95 %; for blue water, an increase of 1.5 °C to 2.5 °C in minimum daily temperature and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the non-treatment of effluent with the maximum value of α. The findings of this study establish production practices in water scenario analyses concerning water footprints in dairy cattle production systems.Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production. A total of 67 dairy cattle farms were selected for the study. Climatic scenarios and production practices were proposed as farm-specific interventions targeting three key areas: animal feed, effluent treatment, and nitrogen field application. For all production systems, the combinations exhibiting the highest water efficiency were characterized by the following factors: for green water, a 25 % increase in corn and soybean yields; for blue water, a reduction in milking parlor washing water consumption, an increase of 1 liter of milk per cow per day, and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the treatment of effluent from the milking parlor. Conversely, the combinations with the lowest water efficiency were identified as follows: for green water, maize yields decreased by 15 % and soybean yields increased by 12.95 %; for blue water, an increase of 1.5 °C to 2.5 °C in minimum daily temperature and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the non-treatment of effluent with the maximum value of α. The findings of this study establish production practices in water scenario analyses concerning water footprints in dairy cattle production systems.
Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production. A total of 67 dairy cattle farms were selected for the study. Climatic scenarios and production practices were proposed as farm-specific interventions targeting three key areas: animal feed, effluent treatment, and nitrogen field application. For all production systems, the combinations exhibiting the highest water efficiency were characterized by the following factors: for green water, a 25 % increase in corn and soybean yields; for blue water, a reduction in milking parlor washing water consumption, an increase of 1 liter of milk per cow per day, and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the treatment of effluent from the milking parlor. Conversely, the combinations with the lowest water efficiency were identified as follows: for green water, maize yields decreased by 15 % and soybean yields increased by 12.95 %; for blue water, an increase of 1.5 °C to 2.5 °C in minimum daily temperature and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the non-treatment of effluent with the maximum value of α. The findings of this study establish production practices in water scenario analyses concerning water footprints in dairy cattle production systems.
Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production. A total of 67 dairy cattle farms were selected for the study. Climatic scenarios and production practices were proposed as farm-specific interventions targeting three key areas: animal feed, effluent treatment, and nitrogen field application. For all production systems, the combinations exhibiting the highest water efficiency were characterized by the following factors: for green water, a 25 % increase in corn and soybean yields; for blue water, a reduction in milking parlor washing water consumption, an increase of 1 liter of milk per cow per day, and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the treatment of effluent from the milking parlor. Conversely, the combinations with the lowest water efficiency were identified as follows: for green water, maize yields decreased by 15 % and soybean yields increased by 12.95 %; for blue water, an increase of 1.5 °C to 2.5 °C in minimum daily temperature and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the non-treatment of effluent with the maximum value of α. The findings of this study establish production practices in water scenario analyses concerning water footprints in dairy cattle production systems. [Display omitted] •The study evaluates the water footprint of 67 Brazilian dairy farms.•The production system seems not to influence the WF.•WF can be reduced through the improvement of agricultural and productive practices.•Global warming scenarios increase the values of green and blue water footprints.
ArticleNumber 180243
Author Palhares, Julio Cesar Pascale
Drastig, Katrin
De Souza, Debora Pantojo
Carra, Sofia Helena Zanella
Author_xml – sequence: 1
  givenname: Julio Cesar Pascale
  surname: Palhares
  fullname: Palhares, Julio Cesar Pascale
  email: julio.palhares@embrapa.br
  organization: Embrapa Southeast Livestock, Rod. Washington Luiz km 234, 13560-970 São Carlos, SP, Brazil
– sequence: 2
  givenname: Debora Pantojo
  surname: De Souza
  fullname: De Souza, Debora Pantojo
  organization: Embrapa Southeast Livestock, Rod. Washington Luiz km 234, 13560-970 São Carlos, SP, Brazil
– sequence: 3
  givenname: Sofia Helena Zanella
  surname: Carra
  fullname: Carra, Sofia Helena Zanella
  organization: Leibniz Institute of Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
– sequence: 4
  givenname: Katrin
  surname: Drastig
  fullname: Drastig, Katrin
  organization: Leibniz Institute of Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40829467$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PAyEQQImpsa36F5Sjl63AUnZ7Mo3xKzHxogdPhMJgabpQgbbpv5em2qtcmMy8mcy8Ier54AGha0pGlFBxuxgl7XLI4DcjRth4RFvCeH2CBrRtJhUlTPTQgBDeVhMxafpomNKClNe09Az1OWnZhItmgD6fwxabgFcxmLXOLvgSqhJoSFh5g_XSdSoD1nPlvwC7blWqOM8Bb0s6YhtCXkXnMw4WG-XiDlsVu3R3gU6tWia4_P3P0cfjw_v9c_X69vRyP32tNKt5rmaCAjfCNJaOqQbWKCoUJYYoo2vCGibGRmttlYJWCQOzWhPDZ9aoseUFrs_RzWFuOeF7DSnLziUNy6XyENZJ1ozTmoqW1wW9-kXXsw6MLHt3Ku7kn44CNAdAx5BSBHtEKJF78XIhj-LlXrw8iC-d00MnlFM3DuKeA6_BuAg6SxPcvzN-AErbkaE
Cites_doi 10.3168/jds.2017-13819
10.1016/j.crm.2017.08.001
10.1038/s41597-024-04264-2
10.1007/s40333-020-0058-x
10.1071/RJ09011
10.1016/j.jclepro.2016.07.199
10.1016/j.agsy.2024.103990
10.1016/j.jclepro.2019.04.391
10.1016/j.regsus.2021.01.004
10.1016/j.agwat.2023.108224
10.1016/j.agsy.2012.03.006
10.1016/j.jclepro.2011.11.046
10.3168/jds.2024-25004
10.1016/j.wasman.2022.05.018
10.1016/j.agsy.2018.07.005
10.1016/j.cub.2012.03.044
10.1080/14735903.2023.2270149
10.1016/j.energy.2022.126535
10.1016/j.jenvman.2022.114430
10.1016/j.jclepro.2024.141027
10.3390/ani12040469
10.1016/j.ecolind.2023.110641
10.1016/j.spc.2023.04.004
10.1029/2021WR029809
10.1016/j.compag.2018.03.023
10.3390/w16030391
10.1088/1748-9326/9/9/091003
10.1002/joc.7731
10.4136/ambi-agua.2454
10.3390/w16121681
10.1016/j.scitotenv.2018.07.241
10.11606/D.11.2018.tde-18052018-140516
10.1016/j.advwatres.2021.103853
10.1016/j.jclepro.2021.128153
10.1007/s00267-018-1101-y
10.1046/j.1365-2486.2002.00498.x
10.1016/j.spc.2022.03.023
10.3390/w15234181
10.3390/w16020330
10.1016/j.envint.2019.105084
10.15244/pjoes/201158
10.11606/D.11.2018.tde-17072018-134305
10.2174/0118743315270668231127190323
10.1104/pp.106.089557
10.1016/j.jclepro.2015.01.035
10.1016/j.scitotenv.2022.157117
10.1016/j.jclepro.2024.142508
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright © 2025 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 Elsevier B.V.
– notice: Copyright © 2025 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.scitotenv.2025.180243
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 40829467
10_1016_j_scitotenv_2025_180243
S0048969725018832
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
~02
~G-
~HD
~KM
53G
9DU
AAQXK
AAYJJ
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADXHL
AEGFY
AGHFR
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c234t-b61e4d6d7f151ce27a16a10d0adc3027265dcccfaae8a6deb3c0d4bfda5f47a13
ISSN 0048-9697
1879-1026
IngestDate Thu Oct 02 21:42:15 EDT 2025
Sat Oct 11 06:58:48 EDT 2025
Sat Nov 29 07:20:06 EST 2025
Sat Nov 08 18:17:00 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Washing water
Treatment
Pasture
Confined
Crop yield
Effluent
Language English
License Copyright © 2025 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c234t-b61e4d6d7f151ce27a16a10d0adc3027265dcccfaae8a6deb3c0d4bfda5f47a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40829467
PQID 3241316843
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3241316843
pubmed_primary_40829467
crossref_primary_10_1016_j_scitotenv_2025_180243
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2025_180243
PublicationCentury 2000
PublicationDate 2025-10-10
PublicationDateYYYYMMDD 2025-10-10
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Da Silva, Luis Alberto Silva Antolin, Zanon, Andrade, de Souza (bb0060) 2021; 129
Flysjo, Cederberg, Henriksson, Ledgard (bb0090) 2012; 28
Palhares, Morelli, Novelli (bb0230) 2021; 149
Bernacchi, Kimball, Quarles, Long, Ort (bb0025) 2007
Holly, Kleinman, Baker, Bjorneberg, Boggess, Bryant, Chintala, Feyereisen, Gamble, Leytem, Reed, Rotz, Vadas, Waldrip (bb0140) 2018; 101
Kobuliev, Liu, Kobuliev, Chen, Gulakhmadov, Bao (bb0160) 2021; 2
AHDB. Efficient Use of Water on a Dairy Farm Agriculture and Horticulture Development Board. Warwickshire, UK: AHDB 2015; p. 44.
Shine, Murphy, Upton, Scully (bb0280) 2018; 150
(bb0290) 2024
Shi, Wang, Jiao, Li, Yin (bb0275) 2022; 148
Salcedo, Varsaki, Salcedo-Rodríguez (bb0265) 2022; 118
Rebolledo-Leiva, Vásquez-Ibarra, Entrena-Barbero, Fernández (bb0245) 2022; 31
Monteiro, Santos, Pereira (bb0185) 2023
Zonderland-Thomassen, Ledgard (bb0360) 2012; 110
FAO. World Food Day. Water is life, water is food. Leave no One behind; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2023.
National Resource Council. Nutrient Requirements of Dairy Cattle. 7th ed. National Academy Press, Washington, USA. 2001. 242pp.
Crawford, Mclachlan, Hetherington, Franklin (bb0050) 2012; 22
Waltner, Ribács, Gémes, Székács (bb0320) 2023; 15
Terré, Bosch, Bach, Fábregas, Biel, Rusino, Boffil (bb0285) 2019; 229
Emater/RS (Rio Grande do Sul) (bb0070) 2021
Jin, Liao, Mu, Li, Nie (bb0155) 2023; 266
.
Chapagain, Hoekstra (bb0045) 2003
Palhares (bb0210) 2013
Rong, Wu, Otkur, Yue, Su (bb0255) 2023; 154
Murphy, de Boer, van Midelaar, Holden, Shalloo, Curran, Upton (bb0190) 2017; 140
Ziqian, Xi, Han, Junlin, Ziyue (bb0355) 2025
Rotz, Stout, Leytem, Feyereisen, Waldrip (bb0260) 2021; 315
Hoekstra, A.Y. Water for animal products: a blind spot in water policy. Environ. Res. Lett., 9. Institute of Physics Publishing, 2014.
Hoekstra, Chapagain, Aldaya, Mekonnen (bb0135) 2011
Zhao, Liu, Gao, Zhang, Li, Wu, Zhuo (bb0350) 2023; 280
International Dairy Federation (IDF) (bb0145) 2010
Ji, Xie, Zhuo, Liu, Feng, Wu (bb0150) 2022; 58
Entrena-Barbero, Tarpani, Fernández, Moreira, Gallego Schmid (bb0075) 2024; 458
Palhares, J.C.P.; Matarim, D.L.; de Sousa, R.V.; Martello, L.S. 2024. Water performance indicators and benchmarks for dairy production systems. Water, 16, 330. 10.3390/.
Navarrete, Rodriguez, Horne, Hanly, Hedley, Kemp (bb0200) 2022; 12
Palhares (bb0215) 2024
González-Martínez, Goenaga, León-Ecay, de las Heras, Aldai (bb0100) 2024; 218
Yi, Gerbens-Leenes, Guzm'an-Luna (bb0345) 2023; 38
United States Environmental Protection Agency – EPA (bb0300) 2015
Herrera, Kallas, Serebrennikov, Fiona, McCarthy (bb0115) 2023; 21
Da Silva, E.H.F.M. Simulação de cenários agrícolas futuros para a cultura da soja no Brasil com base em projeções de mudanças climáticas. 2018. Dissertação (Mestrado em Engenharia de Sistemas Agrícolas) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2018. doi:10.11606/D.11.2018.tde-18052018-140516.
Peden, Taddesse, Misra (bb0240) 2007
Araya, Kisekka, Lin, Vara Prasad, Gowda, Rice, Andales (bb0020) 2017; 17
Le Riche, VanderZaag, Burtt, Lapen, Gordon (bb0165) 2017; 9
Li, Li, Lei, Yan, Du, Luo, Lindsey, Di, Liu (bb0170) 2022; 22
Rojas-Downing, Nejadhashemi, Elahi, Cassida, Daneshvar (bb0250) 2018; 62
Palhares, Novelli, Morelli (bb0225) 2020; 15
Palhares, Pezzopane (bb0220) 2015; 93
Higham, Singh, Horne (bb0120) 2024; 16
Brasil (bb0035) 2019
Brasil. Conselho Nacional do Meio Ambiente - CONAMA. Resolução n° 357 de17 de março de 2005. Diário Oficial da União, Brasília, 18 de março de 2005. Seção 1, p.58.
Ainsworth, Davey, Bernacchi, Dermody, Heaton, Moore, Morgan, Shawna, Ra, Zhu (bb0010) 2002
Carra, Palhares, Drastig, Schneider, Ebert, Giacomello (bb0040) 2022; 844
Mekonnen, Neale, Ray, Erickson, Hoekstra (bb0180) 2019; 132
De Souza, T.T. Simulação de cenários agrícolas futuros para a cultura do milho no Brasil com base em projeções de mudanças climáticas. 2018. Dissertação (Mestrado em Engenharia de Sistemas Agrícolas) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2018. doi:10.11606/D.11.2018.tde-17072018-134305 documents/card/fr/c/ca5685en.
Gebreselassie, Peden, Haileslassie, Mpairwe (bb0095) 2009; 31
Lu, Ma, Shao (bb0175) 2024; 443
Serio, Miglietta, Lamastra, Ficocelli, Intini, De Leo, De Donno (bb0270) 2018; 15
USDA - United States Department of Agriculture (bb0305) 2022
Xavier, Scanlon, King, Alves (bb0335) 2022; 42
Hai, Long, Zhang, Deng, Li, Deng (bb0110) 2020; 12
Veltman, Rotz, Chase, Cooper, Ingraham, Izaurralde, Jones, Gaillard, Larsson, Ruark, Salas, Thoma, Jolliet (bb0315) 2018; 166
FAO (bb0080) 2019
Govoni, Chiarelli, Rulli (bb0105) 2024; 11
Valadares Filho, Machado, Chizzotti (bb0310) 2017
Wisser, Grogan, Lanzoni, Tempio, Cinardi, Prusevich, Glidden (bb0330) 2024; 16
Olivo, Godber, Reed, Nydam, Wattiaux, Ketterings (bb0205) 2024
Wei, Chadwick, Amon, Dong (bb0325) 2022; 306
Waltner (10.1016/j.scitotenv.2025.180243_bb0320) 2023; 15
10.1016/j.scitotenv.2025.180243_bb0005
Rojas-Downing (10.1016/j.scitotenv.2025.180243_bb0250) 2018; 62
Crawford (10.1016/j.scitotenv.2025.180243_bb0050) 2012; 22
Palhares (10.1016/j.scitotenv.2025.180243_bb0215) 2024
Araya (10.1016/j.scitotenv.2025.180243_bb0020) 2017; 17
Serio (10.1016/j.scitotenv.2025.180243_bb0270) 2018; 15
Rong (10.1016/j.scitotenv.2025.180243_bb0255) 2023; 154
Mekonnen (10.1016/j.scitotenv.2025.180243_bb0180) 2019; 132
Ji (10.1016/j.scitotenv.2025.180243_bb0150) 2022; 58
Kobuliev (10.1016/j.scitotenv.2025.180243_bb0160) 2021; 2
Veltman (10.1016/j.scitotenv.2025.180243_bb0315) 2018; 166
Li (10.1016/j.scitotenv.2025.180243_bb0170) 2022; 22
Palhares (10.1016/j.scitotenv.2025.180243_bb0225) 2020; 15
Rotz (10.1016/j.scitotenv.2025.180243_bb0260) 2021; 315
Emater/RS (Rio Grande do Sul) (10.1016/j.scitotenv.2025.180243_bb0070)
Peden (10.1016/j.scitotenv.2025.180243_bb0240) 2007
(10.1016/j.scitotenv.2025.180243_bb0290) 2024
10.1016/j.scitotenv.2025.180243_bb0085
Valadares Filho (10.1016/j.scitotenv.2025.180243_bb0310) 2017
Zhao (10.1016/j.scitotenv.2025.180243_bb0350) 2023; 280
International Dairy Federation (IDF) (10.1016/j.scitotenv.2025.180243_bb0145) 2010
Carra (10.1016/j.scitotenv.2025.180243_bb0040) 2022; 844
Yi (10.1016/j.scitotenv.2025.180243_bb0345) 2023; 38
Ainsworth (10.1016/j.scitotenv.2025.180243_bb0010) 2002
Navarrete (10.1016/j.scitotenv.2025.180243_bb0200) 2022; 12
Xavier (10.1016/j.scitotenv.2025.180243_bb0335) 2022; 42
Hai (10.1016/j.scitotenv.2025.180243_bb0110) 2020; 12
Gebreselassie (10.1016/j.scitotenv.2025.180243_bb0095) 2009; 31
Hoekstra (10.1016/j.scitotenv.2025.180243_bb0135) 2011
Herrera (10.1016/j.scitotenv.2025.180243_bb0115) 2023; 21
Holly (10.1016/j.scitotenv.2025.180243_bb0140) 2018; 101
Olivo (10.1016/j.scitotenv.2025.180243_bb0205) 2024
Da Silva (10.1016/j.scitotenv.2025.180243_bb0060) 2021; 129
10.1016/j.scitotenv.2025.180243_bb0030
FAO (10.1016/j.scitotenv.2025.180243_bb0080)
10.1016/j.scitotenv.2025.180243_bb0195
Terré (10.1016/j.scitotenv.2025.180243_bb0285) 2019; 229
Monteiro (10.1016/j.scitotenv.2025.180243_bb0185) 2023
Brasil (10.1016/j.scitotenv.2025.180243_bb0035)
González-Martínez (10.1016/j.scitotenv.2025.180243_bb0100) 2024; 218
10.1016/j.scitotenv.2025.180243_bb0235
Govoni (10.1016/j.scitotenv.2025.180243_bb0105) 2024; 11
Entrena-Barbero (10.1016/j.scitotenv.2025.180243_bb0075) 2024; 458
Palhares (10.1016/j.scitotenv.2025.180243_bb0210)
Salcedo (10.1016/j.scitotenv.2025.180243_bb0265) 2022; 118
Higham (10.1016/j.scitotenv.2025.180243_bb0120) 2024; 16
Rebolledo-Leiva (10.1016/j.scitotenv.2025.180243_bb0245) 2022; 31
Shine (10.1016/j.scitotenv.2025.180243_bb0280) 2018; 150
Murphy (10.1016/j.scitotenv.2025.180243_bb0190) 2017; 140
Bernacchi (10.1016/j.scitotenv.2025.180243_bb0025) 2007
United States Environmental Protection Agency – EPA (10.1016/j.scitotenv.2025.180243_bb0300)
Ziqian (10.1016/j.scitotenv.2025.180243_bb0355) 2025
10.1016/j.scitotenv.2025.180243_bb0065
Zonderland-Thomassen (10.1016/j.scitotenv.2025.180243_bb0360) 2012; 110
Palhares (10.1016/j.scitotenv.2025.180243_bb0230) 2021; 149
Wei (10.1016/j.scitotenv.2025.180243_bb0325) 2022; 306
Jin (10.1016/j.scitotenv.2025.180243_bb0155) 2023; 266
Palhares (10.1016/j.scitotenv.2025.180243_bb0220) 2015; 93
Wisser (10.1016/j.scitotenv.2025.180243_bb0330) 2024; 16
Le Riche (10.1016/j.scitotenv.2025.180243_bb0165) 2017; 9
USDA - United States Department of Agriculture (10.1016/j.scitotenv.2025.180243_bb0305)
Chapagain (10.1016/j.scitotenv.2025.180243_bb0045) 2003
Shi (10.1016/j.scitotenv.2025.180243_bb0275) 2022; 148
10.1016/j.scitotenv.2025.180243_bb0055
Flysjo (10.1016/j.scitotenv.2025.180243_bb0090) 2012; 28
10.1016/j.scitotenv.2025.180243_bb0130
Lu (10.1016/j.scitotenv.2025.180243_bb0175) 2024; 443
References_xml – volume: 154
  year: 2023
  ident: bb0255
  article-title: A novel uncertainty analysis method to improve the accuracy of agricultural grey water footprint evaluation considering the influence of production conditions
  publication-title: Ecol. Indic.
– volume: 93
  start-page: 299
  year: 2015
  end-page: 307
  ident: bb0220
  article-title: Water footprint accounting and scarcity indicators of conventional and organic dairy production systems
  publication-title: J. Clean. Prod.
– volume: 844
  year: 2022
  ident: bb0040
  article-title: Water productivity of milk produced in three different dairy production systems in southern Brazil
  publication-title: Sci. Total Environ.
– volume: 101
  start-page: 6632
  year: 2018
  end-page: 6641
  ident: bb0140
  article-title: Nutrient management challenges and opportunities across U.S. dairy farms
  publication-title: J. Dairy Sci.
– volume: 149
  year: 2021
  ident: bb0230
  article-title: Water footprint of a tropical beef cattle production system: the impact of individual-animal and feed management
  publication-title: Adv. Water Resour.
– volume: 229
  start-page: 964
  year: 2019
  end-page: 973
  ident: bb0285
  article-title: Exploring the use of tertiary reclaimed water in dairy cattle production
  publication-title: J. Clean. Prod.
– volume: 315
  year: 2021
  ident: bb0260
  article-title: Environmental assessment of United States dairy farms
  publication-title: J. Clean. Prod.
– volume: 148
  start-page: 83
  year: 2022
  end-page: 97
  ident: bb0275
  article-title: Recognition on characteristics and applicability of typical modes for manure & sewage management in pig farming: a case study in Hebei, China
  publication-title: Waste Manag.
– volume: 306
  year: 2022
  ident: bb0325
  article-title: Comparison of nitrogen losses from different manure treatment and application management systems in China
  publication-title: J. Environ. Manag.
– volume: 22
  start-page: 2354
  year: 2022
  end-page: 2364
  ident: bb0170
  article-title: The effects of slope and fertilizer rates on nitrogen losses in runoff from red soil and paddy soil during simulated rainfall
  publication-title: J. Soil Water Conserv.
– volume: 15
  year: 2020
  ident: bb0225
  article-title: Best practice production to reduce the water footprint of dairy milk
  publication-title: Ambi. Agua
– volume: 166
  start-page: 10
  year: 2018
  end-page: 25
  ident: bb0315
  article-title: A quantitative assessment of beneficial management practices to reduce carbon and reactive nitrogen footprints and phosphorus losses of dairy farms in the Great Lakes region of the United States
  publication-title: Agric. Syst.
– volume: 16
  year: 2024
  ident: bb0330
  article-title: Water use in livestock agri-food systems and its contribution to local water scarcity: a spatially distributed global analysis
  publication-title: Water
– start-page: 485
  year: 2007
  end-page: 514
  ident: bb0240
  article-title: Water and livestock for human development
  publication-title: Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture
– year: 2024
  ident: bb0205
  article-title: Greenhouse gas emissions and nutrient use efficiency assessment of six New York organic dairies
  publication-title: J. Dairy Sci.
– volume: 129
  year: 2021
  ident: bb0060
  article-title: Impact assessment of soybean yield and water productivity in Brazil due to climate change
  publication-title: Eur. J. Agron.
– year: 2024
  ident: bb0290
  article-title: Navigating New Horizons: A Global Foresight Report on Planetary Health and Human Wellbeing
– reference: Da Silva, E.H.F.M. Simulação de cenários agrícolas futuros para a cultura da soja no Brasil com base em projeções de mudanças climáticas. 2018. Dissertação (Mestrado em Engenharia de Sistemas Agrícolas) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2018. doi:10.11606/D.11.2018.tde-18052018-140516.
– volume: 21
  year: 2023
  ident: bb0115
  article-title: Towards circular farming: factors affecting EU farmers' decision to adopt emission-reducing innovations
  publication-title: Int. J. Agric. Sustain.
– year: 2025
  ident: bb0355
  article-title: A review of current research of water footprints and recommendations for future directions
  publication-title: Pol. J. Environ. Stud.
– year: 2023
  ident: bb0185
  article-title: Efficient water use in dairy cattle production: a review
  publication-title: Open Agric. J.
– reference: AHDB. Efficient Use of Water on a Dairy Farm Agriculture and Horticulture Development Board. Warwickshire, UK: AHDB 2015; p. 44.
– reference: Palhares, J.C.P.; Matarim, D.L.; de Sousa, R.V.; Martello, L.S. 2024. Water performance indicators and benchmarks for dairy production systems. Water, 16, 330. 10.3390/.
– volume: 22
  start-page: 396
  year: 2012
  end-page: 397
  ident: bb0050
  article-title: High temperature exposure increases plant cooling capacity
  publication-title: Curr. Biol.
– volume: 150
  start-page: 74
  year: 2018
  end-page: 87
  ident: bb0280
  article-title: Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms
  publication-title: Comput. Electron. Agric.
– volume: 118
  start-page: 547
  year: 2022
  end-page: 564
  ident: bb0265
  article-title: Water footprint of dairy farms according to typology of feeding
  publication-title: ITEA Inf. Tec. Econ. Agrar.
– year: 2003
  ident: bb0045
  article-title: Virtual Water Flows between Nations in Relation to Trade in Livestock and Livestock Products
– volume: 218
  year: 2024
  ident: bb0100
  article-title: The water footprint of Spanish Ternera de Navarra PGI beef: conventional versus novel feeding based on vegetable by-products from the local food industry
  publication-title: Agric. Syst.
– year: 2015
  ident: bb0300
  article-title: Ag 101: dairy production
– year: 2021
  ident: bb0070
  article-title: Relatório Socioeconômico da Cadeia Produtiva do Leite no Rio Grande do Sul
– year: 2013
  ident: bb0210
  article-title: Consumo de água na produção animal. Comunicado Técnico 102, 6
– reference: Hoekstra, A.Y. Water for animal products: a blind spot in water policy. Environ. Res. Lett., 9. Institute of Physics Publishing, 2014.
– volume: 16
  year: 2024
  ident: bb0120
  article-title: The water footprint of pastoral dairy farming: the effect of water footprint methods, data sources and spatial scale
  publication-title: Water
– reference: Brasil. Conselho Nacional do Meio Ambiente - CONAMA. Resolução n° 357 de17 de março de 2005. Diário Oficial da União, Brasília, 18 de março de 2005. Seção 1, p.58.
– year: 2019
  ident: bb0035
  article-title: Agricultural Zoning of Climate Risk - Brazil
– year: 2017
  ident: bb0310
  article-title: CQBAL 3.0. Tabelas Brasileiras de Composição de Alimentos para Bovinos
– start-page: 695
  year: 2002
  end-page: 709
  ident: bb0010
  article-title: A meta-analysis of elevated [CO
  publication-title: Glob. Chang. Biol.
– year: 2024
  ident: bb0215
  article-title: Water footprints values per type of combination and dairy
  publication-title: Redape
– volume: 110
  start-page: 30
  year: 2012
  end-page: 40
  ident: bb0360
  article-title: Water footprinting—a comparison of methods using New Zealand dairy farming as a case study
  publication-title: Agric. Syst.
– volume: 443
  year: 2024
  ident: bb0175
  article-title: Strategies to mitigate the environmental footprints of meat, egg and milk production in northern China
  publication-title: J. Clean. Prod.
– volume: 15
  start-page: 4181
  year: 2023
  ident: bb0320
  article-title: Influence of climatic factors on the water footprint of dairy cattle production in Hungary— A case study
  publication-title: Water
– reference: National Resource Council. Nutrient Requirements of Dairy Cattle. 7th ed. National Academy Press, Washington, USA. 2001. 242pp.
– volume: 280
  year: 2023
  ident: bb0350
  article-title: Spatiotemporal evolution of crop grey water footprint and associated water pollution levels in arid regions of western China
  publication-title: Agric. Water Manag.
– volume: 28
  start-page: 134
  year: 2012
  end-page: 142
  ident: bb0090
  article-title: The interaction between milk and beef production and emissions from land use change e critical considerations in life cycle assessment and carbon footprint studies of milk
  publication-title: J. Clean. Prod.
– reference: FAO. World Food Day. Water is life, water is food. Leave no One behind; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2023.
– volume: 17
  start-page: 139
  year: 2017
  end-page: 154
  ident: bb0020
  article-title: Evaluating the impact of future climate change on irrigated maize production in Kansas
  publication-title: Clim. Risk Manag.
– year: 2010
  ident: bb0145
  article-title: A common carbon footprint approach for dairy. The IDF guide to standard life cycle assessment methodology for the dairy sector
– volume: 2
  start-page: 60
  year: 2021
  ident: bb0160
  article-title: Effect of future climate change on the water footprint of major crops in southern Tajikistan
  publication-title: Region. Sustain.
– year: 2022
  ident: bb0305
  article-title: Dairy and products annual. Report Number: BR2022–0066. USDA – Foreign Agricultural Service
– volume: 42
  start-page: 8390
  year: 2022
  end-page: 8404
  ident: bb0335
  article-title: New improved Brazilian daily weather gridded data (1961–2020)
  publication-title: Int. J. Climatol.
– volume: 458
  year: 2024
  ident: bb0075
  article-title: Integrating circularity as an essential pillar of dairy farm sustainability
  publication-title: J. Clean. Prod.
– volume: 140
  start-page: 547
  year: 2017
  end-page: 555
  ident: bb0190
  article-title: Water footprint of dairy farming in Ireland
  publication-title: J. Clean. Prod.
– volume: 62
  start-page: 1073
  year: 2018
  end-page: 1088
  ident: bb0250
  article-title: Food footprint as a measure of sustainability for grazing dairy farms
  publication-title: Environ. Manag.
– volume: 58
  year: 2022
  ident: bb0150
  article-title: Water footprints, intra-national virtual water flows, and associated sustainability related to pork production and consumption: A case for China
  publication-title: Water Resour. Res.
– volume: 12
  start-page: 580
  year: 2020
  ident: bb0110
  article-title: Evaluating agricultural water-use efficiency based on water footprint of crop values: a case study in Xinjiang of China
  publication-title: J. Arid. Land
– volume: 31
  start-page: 251
  year: 2009
  end-page: 258
  ident: bb0095
  article-title: Factors affecting livestock water productivity: animal scale analysis using previous cattle feeding trials in Ethiopia
  publication-title: Rangel. J.
– year: 2019
  ident: bb0080
  article-title: Water Use in Livestock Production Systems and Supply Chains. Guidelines for Assessment. Version 1; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy
– volume: 15
  start-page: 1425
  year: 2018
  end-page: 1431
  ident: bb0270
  article-title: Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in southern Apulia region (Italy)
  publication-title: Sci. Total Environ.
– volume: 31
  start-page: 805
  year: 2022
  end-page: 817
  ident: bb0245
  article-title: Coupling material flow analysis and network DEA for the evaluation of eco-efficiency and circularity on dairy farms
  publication-title: Sustain. Product. Consum.
– year: 2011
  ident: bb0135
  article-title: The water footprint assessment manual
– volume: 266
  year: 2023
  ident: bb0155
  article-title: Integrated assessment of water footprint and energy production efficiency in different rice-rape rotation systems
  publication-title: Energy
– volume: 38
  start-page: 186
  year: 2023
  end-page: 198
  ident: bb0345
  article-title: Water, land and carbon footprints of Chinese dairy in the past and future
  publication-title: Sustain. Prod. Consum.
– reference: .
– volume: 132
  year: 2019
  ident: bb0180
  article-title: Water productivity in meat and milk production in the US from 1960 to 2016
  publication-title: Environ. Int.
– volume: 9
  year: 2017
  ident: bb0165
  article-title: Water use and conservation on a free-stall dairy farm
  publication-title: Water
– reference: De Souza, T.T. Simulação de cenários agrícolas futuros para a cultura do milho no Brasil com base em projeções de mudanças climáticas. 2018. Dissertação (Mestrado em Engenharia de Sistemas Agrícolas) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2018. doi:10.11606/D.11.2018.tde-17072018-134305 documents/card/fr/c/ca5685en.
– start-page: 134
  year: 2007
  end-page: 144
  ident: bb0025
  article-title: Decreases in stomatal conductance of soybean under open-air elevation of [CO
  publication-title: Plant Physiol.
– volume: 11
  year: 2024
  ident: bb0105
  article-title: A global dataset of the national green and blue water footprint of livestock feeds
  publication-title: Sci. Data
– volume: 12
  year: 2022
  ident: bb0200
  article-title: Nitrogen excretion by dairy cows grazing plantain (plantago lanceolata) based pastures during the lactating season
  publication-title: Animals
– ident: 10.1016/j.scitotenv.2025.180243_bb0300
– volume: 101
  start-page: 6632
  year: 2018
  ident: 10.1016/j.scitotenv.2025.180243_bb0140
  article-title: Nutrient management challenges and opportunities across U.S. dairy farms
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-13819
– volume: 17
  start-page: 139
  year: 2017
  ident: 10.1016/j.scitotenv.2025.180243_bb0020
  article-title: Evaluating the impact of future climate change on irrigated maize production in Kansas
  publication-title: Clim. Risk Manag.
  doi: 10.1016/j.crm.2017.08.001
– volume: 22
  start-page: 2354
  issue: 9
  year: 2022
  ident: 10.1016/j.scitotenv.2025.180243_bb0170
  article-title: The effects of slope and fertilizer rates on nitrogen losses in runoff from red soil and paddy soil during simulated rainfall
  publication-title: J. Soil Water Conserv.
– volume: 11
  year: 2024
  ident: 10.1016/j.scitotenv.2025.180243_bb0105
  article-title: A global dataset of the national green and blue water footprint of livestock feeds
  publication-title: Sci. Data
  doi: 10.1038/s41597-024-04264-2
– volume: 12
  start-page: 580
  year: 2020
  ident: 10.1016/j.scitotenv.2025.180243_bb0110
  article-title: Evaluating agricultural water-use efficiency based on water footprint of crop values: a case study in Xinjiang of China
  publication-title: J. Arid. Land
  doi: 10.1007/s40333-020-0058-x
– volume: 31
  start-page: 251
  year: 2009
  ident: 10.1016/j.scitotenv.2025.180243_bb0095
  article-title: Factors affecting livestock water productivity: animal scale analysis using previous cattle feeding trials in Ethiopia
  publication-title: Rangel. J.
  doi: 10.1071/RJ09011
– volume: 140
  start-page: 547
  issue: 2
  year: 2017
  ident: 10.1016/j.scitotenv.2025.180243_bb0190
  article-title: Water footprint of dairy farming in Ireland
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.07.199
– year: 2024
  ident: 10.1016/j.scitotenv.2025.180243_bb0290
– volume: 218
  year: 2024
  ident: 10.1016/j.scitotenv.2025.180243_bb0100
  article-title: The water footprint of Spanish Ternera de Navarra PGI beef: conventional versus novel feeding based on vegetable by-products from the local food industry
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2024.103990
– volume: 229
  start-page: 964
  year: 2019
  ident: 10.1016/j.scitotenv.2025.180243_bb0285
  article-title: Exploring the use of tertiary reclaimed water in dairy cattle production
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.391
– volume: 2
  start-page: 60
  issue: 1
  year: 2021
  ident: 10.1016/j.scitotenv.2025.180243_bb0160
  article-title: Effect of future climate change on the water footprint of major crops in southern Tajikistan
  publication-title: Region. Sustain.
  doi: 10.1016/j.regsus.2021.01.004
– volume: 280
  year: 2023
  ident: 10.1016/j.scitotenv.2025.180243_bb0350
  article-title: Spatiotemporal evolution of crop grey water footprint and associated water pollution levels in arid regions of western China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2023.108224
– ident: 10.1016/j.scitotenv.2025.180243_bb0080
– volume: 110
  start-page: 30
  year: 2012
  ident: 10.1016/j.scitotenv.2025.180243_bb0360
  article-title: Water footprinting—a comparison of methods using New Zealand dairy farming as a case study
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2012.03.006
– ident: 10.1016/j.scitotenv.2025.180243_bb0035
– volume: 28
  start-page: 134
  year: 2012
  ident: 10.1016/j.scitotenv.2025.180243_bb0090
  article-title: The interaction between milk and beef production and emissions from land use change e critical considerations in life cycle assessment and carbon footprint studies of milk
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2011.11.046
– year: 2024
  ident: 10.1016/j.scitotenv.2025.180243_bb0205
  article-title: Greenhouse gas emissions and nutrient use efficiency assessment of six New York organic dairies
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2024-25004
– volume: 148
  start-page: 83
  year: 2022
  ident: 10.1016/j.scitotenv.2025.180243_bb0275
  article-title: Recognition on characteristics and applicability of typical modes for manure & sewage management in pig farming: a case study in Hebei, China
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2022.05.018
– volume: 166
  start-page: 10
  year: 2018
  ident: 10.1016/j.scitotenv.2025.180243_bb0315
  article-title: A quantitative assessment of beneficial management practices to reduce carbon and reactive nitrogen footprints and phosphorus losses of dairy farms in the Great Lakes region of the United States
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2018.07.005
– volume: 118
  start-page: 547
  issue: 4
  year: 2022
  ident: 10.1016/j.scitotenv.2025.180243_bb0265
  article-title: Water footprint of dairy farms according to typology of feeding
  publication-title: ITEA Inf. Tec. Econ. Agrar.
– volume: 22
  start-page: 396
  year: 2012
  ident: 10.1016/j.scitotenv.2025.180243_bb0050
  article-title: High temperature exposure increases plant cooling capacity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.03.044
– volume: 21
  issue: 1
  year: 2023
  ident: 10.1016/j.scitotenv.2025.180243_bb0115
  article-title: Towards circular farming: factors affecting EU farmers' decision to adopt emission-reducing innovations
  publication-title: Int. J. Agric. Sustain.
  doi: 10.1080/14735903.2023.2270149
– volume: 266
  year: 2023
  ident: 10.1016/j.scitotenv.2025.180243_bb0155
  article-title: Integrated assessment of water footprint and energy production efficiency in different rice-rape rotation systems
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126535
– volume: 306
  year: 2022
  ident: 10.1016/j.scitotenv.2025.180243_bb0325
  article-title: Comparison of nitrogen losses from different manure treatment and application management systems in China
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.114430
– volume: 443
  year: 2024
  ident: 10.1016/j.scitotenv.2025.180243_bb0175
  article-title: Strategies to mitigate the environmental footprints of meat, egg and milk production in northern China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.141027
– volume: 12
  year: 2022
  ident: 10.1016/j.scitotenv.2025.180243_bb0200
  article-title: Nitrogen excretion by dairy cows grazing plantain (plantago lanceolata) based pastures during the lactating season
  publication-title: Animals
  doi: 10.3390/ani12040469
– ident: 10.1016/j.scitotenv.2025.180243_bb0085
– volume: 154
  year: 2023
  ident: 10.1016/j.scitotenv.2025.180243_bb0255
  article-title: A novel uncertainty analysis method to improve the accuracy of agricultural grey water footprint evaluation considering the influence of production conditions
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2023.110641
– volume: 38
  start-page: 186
  year: 2023
  ident: 10.1016/j.scitotenv.2025.180243_bb0345
  article-title: Water, land and carbon footprints of Chinese dairy in the past and future
  publication-title: Sustain. Prod. Consum.
  doi: 10.1016/j.spc.2023.04.004
– ident: 10.1016/j.scitotenv.2025.180243_bb0005
– volume: 58
  year: 2022
  ident: 10.1016/j.scitotenv.2025.180243_bb0150
  article-title: Water footprints, intra-national virtual water flows, and associated sustainability related to pork production and consumption: A case for China
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR029809
– volume: 150
  start-page: 74
  year: 2018
  ident: 10.1016/j.scitotenv.2025.180243_bb0280
  article-title: Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.023
– volume: 9
  issue: 977
  year: 2017
  ident: 10.1016/j.scitotenv.2025.180243_bb0165
  article-title: Water use and conservation on a free-stall dairy farm
  publication-title: Water
– ident: 10.1016/j.scitotenv.2025.180243_bb0030
– volume: 16
  year: 2024
  ident: 10.1016/j.scitotenv.2025.180243_bb0120
  article-title: The water footprint of pastoral dairy farming: the effect of water footprint methods, data sources and spatial scale
  publication-title: Water
  doi: 10.3390/w16030391
– ident: 10.1016/j.scitotenv.2025.180243_bb0130
  doi: 10.1088/1748-9326/9/9/091003
– ident: 10.1016/j.scitotenv.2025.180243_bb0195
– volume: 42
  start-page: 8390
  issue: 16
  year: 2022
  ident: 10.1016/j.scitotenv.2025.180243_bb0335
  article-title: New improved Brazilian daily weather gridded data (1961–2020)
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7731
– volume: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2025.180243_bb0225
  article-title: Best practice production to reduce the water footprint of dairy milk
  publication-title: Ambi. Agua
  doi: 10.4136/ambi-agua.2454
– volume: 16
  year: 2024
  ident: 10.1016/j.scitotenv.2025.180243_bb0330
  article-title: Water use in livestock agri-food systems and its contribution to local water scarcity: a spatially distributed global analysis
  publication-title: Water
  doi: 10.3390/w16121681
– volume: 15
  start-page: 1425
  year: 2018
  ident: 10.1016/j.scitotenv.2025.180243_bb0270
  article-title: Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in southern Apulia region (Italy)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.241
– ident: 10.1016/j.scitotenv.2025.180243_bb0055
  doi: 10.11606/D.11.2018.tde-18052018-140516
– year: 2003
  ident: 10.1016/j.scitotenv.2025.180243_bb0045
– volume: 149
  year: 2021
  ident: 10.1016/j.scitotenv.2025.180243_bb0230
  article-title: Water footprint of a tropical beef cattle production system: the impact of individual-animal and feed management
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2021.103853
– volume: 315
  year: 2021
  ident: 10.1016/j.scitotenv.2025.180243_bb0260
  article-title: Environmental assessment of United States dairy farms
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128153
– year: 2017
  ident: 10.1016/j.scitotenv.2025.180243_bb0310
– year: 2024
  ident: 10.1016/j.scitotenv.2025.180243_bb0215
  article-title: Water footprints values per type of combination and dairy
  publication-title: Redape
– volume: 62
  start-page: 1073
  issue: 6
  year: 2018
  ident: 10.1016/j.scitotenv.2025.180243_bb0250
  article-title: Food footprint as a measure of sustainability for grazing dairy farms
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-018-1101-y
– ident: 10.1016/j.scitotenv.2025.180243_bb0070
– year: 2011
  ident: 10.1016/j.scitotenv.2025.180243_bb0135
– start-page: 695
  year: 2002
  ident: 10.1016/j.scitotenv.2025.180243_bb0010
  article-title: A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1365-2486.2002.00498.x
– volume: 31
  start-page: 805
  year: 2022
  ident: 10.1016/j.scitotenv.2025.180243_bb0245
  article-title: Coupling material flow analysis and network DEA for the evaluation of eco-efficiency and circularity on dairy farms
  publication-title: Sustain. Product. Consum.
  doi: 10.1016/j.spc.2022.03.023
– ident: 10.1016/j.scitotenv.2025.180243_bb0210
– ident: 10.1016/j.scitotenv.2025.180243_bb0305
– volume: 15
  start-page: 4181
  year: 2023
  ident: 10.1016/j.scitotenv.2025.180243_bb0320
  article-title: Influence of climatic factors on the water footprint of dairy cattle production in Hungary— A case study
  publication-title: Water
  doi: 10.3390/w15234181
– ident: 10.1016/j.scitotenv.2025.180243_bb0235
  doi: 10.3390/w16020330
– year: 2010
  ident: 10.1016/j.scitotenv.2025.180243_bb0145
– volume: 132
  year: 2019
  ident: 10.1016/j.scitotenv.2025.180243_bb0180
  article-title: Water productivity in meat and milk production in the US from 1960 to 2016
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105084
– year: 2025
  ident: 10.1016/j.scitotenv.2025.180243_bb0355
  article-title: A review of current research of water footprints and recommendations for future directions
  publication-title: Pol. J. Environ. Stud.
  doi: 10.15244/pjoes/201158
– ident: 10.1016/j.scitotenv.2025.180243_bb0065
  doi: 10.11606/D.11.2018.tde-17072018-134305
– year: 2023
  ident: 10.1016/j.scitotenv.2025.180243_bb0185
  article-title: Efficient water use in dairy cattle production: a review
  publication-title: Open Agric. J.
  doi: 10.2174/0118743315270668231127190323
– start-page: 134
  year: 2007
  ident: 10.1016/j.scitotenv.2025.180243_bb0025
  article-title: Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.089557
– volume: 93
  start-page: 299
  year: 2015
  ident: 10.1016/j.scitotenv.2025.180243_bb0220
  article-title: Water footprint accounting and scarcity indicators of conventional and organic dairy production systems
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.01.035
– volume: 844
  year: 2022
  ident: 10.1016/j.scitotenv.2025.180243_bb0040
  article-title: Water productivity of milk produced in three different dairy production systems in southern Brazil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.157117
– start-page: 485
  year: 2007
  ident: 10.1016/j.scitotenv.2025.180243_bb0240
  article-title: Water and livestock for human development
– volume: 458
  year: 2024
  ident: 10.1016/j.scitotenv.2025.180243_bb0075
  article-title: Integrating circularity as an essential pillar of dairy farm sustainability
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.142508
– volume: 129
  year: 2021
  ident: 10.1016/j.scitotenv.2025.180243_bb0060
  article-title: Impact assessment of soybean yield and water productivity in Brazil due to climate change
  publication-title: Eur. J. Agron.
SSID ssj0000781
Score 2.4864643
Snippet Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 180243
SubjectTerms Animals
Cattle
Climate Change
Confined
Crop yield
Dairying - methods
Effluent
Farms
Pasture
Treatment
Washing water
Water Supply - statistics & numerical data
Title How do production practices and climate change impact the water footprint of dairy farms?
URI https://dx.doi.org/10.1016/j.scitotenv.2025.180243
https://www.ncbi.nlm.nih.gov/pubmed/40829467
https://www.proquest.com/docview/3241316843
Volume 998
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSQkhKAwGJfJSPBUpcqtufCCprUToKnw0EmFF8vxRbQqcUnSsfHL-Hkcx07CYBPjgZcosuwk8vf55NjnhtAL2HFlsE9mTqg9XEFKUlhzQjqBiFIZisQNWFYXm4in02Q-Tz_0ej-aWJjTVZznydlZuv6vUEMbgK1DZ_8B7vah0AD3ADpcAXa4Xgt4XSSOK-14xU1m2DYSyqRjZqsFaKnChvw2YZJa__xGdcZEqVSlT_tqFwFOF8X5QNLiS_mbC6DmVyMYrJ9BpXRk5S-hc519avVZxzk1AdlqcChKWoD6WgJFWmqN4Ylq8512chB65JVaqs5SUtR1kaCfXFDzz6SDT1T76rT_l3FBdeYQ6ytS2NTi9mTDrzOiWh9XI4yTOIUG36bKvqTNSvDUFLK2MljntDOpn_74PZiTiuUQtAuYEpiPoX7vsBtxMSH39D05Ojk-JrPJfAYLcf3V0dXKtFX_ZTA2zNlCO348SkGe7hy8nczfdVpAXBfIbb_3gm_hpe-_SjO6audTa0Czu-iO3brgA0O5e6gn8j66aYqZnvfR7qQDHrpZbpR9dNscDWMT8XYffQSGYq5wx1DcMhQDQ7FlKDYMxYahGBiGa4bilqFYSVwzFNcMff0AnRxNZodvHFvhw2F-EFZOFnki5BGPJSieTPgx9SLqudylnGmDuh-NOGNMUioSGnGRBczlYSY5HckQOge7aDtXuXiEsHS9LKVxFsEWJExlSjOPclAAgyDx05H095DbzC5Zm0QupPFwXJIWEKIBIQaQPfSqQYFYfdTomQT49PfBzxvcCEhsbYaDxaA2JQm0KduLEt3noQG0_aK6_DvoLo-vMfoJutWtmqdouyo24hm6wU6rRVnso614nuxbVv4EylnGZw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+production+practices+and+climate+change+impact+the+water+footprint+of+dairy+farms%3F&rft.jtitle=The+Science+of+the+total+environment&rft.au=Palhares%2C+Julio+Cesar+Pascale&rft.au=De+Souza%2C+Debora+Pantojo&rft.au=Carra%2C+Sofia+Helena+Zanella&rft.au=Drastig%2C+Katrin&rft.date=2025-10-10&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=998&rft.spage=180243&rft_id=info:doi/10.1016%2Fj.scitotenv.2025.180243&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon