How do production practices and climate change impact the water footprint of dairy farms?
Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production...
Saved in:
| Published in: | The Science of the total environment Vol. 998; p. 180243 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
10.10.2025
|
| Subjects: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production. A total of 67 dairy cattle farms were selected for the study. Climatic scenarios and production practices were proposed as farm-specific interventions targeting three key areas: animal feed, effluent treatment, and nitrogen field application. For all production systems, the combinations exhibiting the highest water efficiency were characterized by the following factors: for green water, a 25 % increase in corn and soybean yields; for blue water, a reduction in milking parlor washing water consumption, an increase of 1 liter of milk per cow per day, and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the treatment of effluent from the milking parlor. Conversely, the combinations with the lowest water efficiency were identified as follows: for green water, maize yields decreased by 15 % and soybean yields increased by 12.95 %; for blue water, an increase of 1.5 °C to 2.5 °C in minimum daily temperature and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the non-treatment of effluent with the maximum value of α. The findings of this study establish production practices in water scenario analyses concerning water footprints in dairy cattle production systems.
[Display omitted]
•The study evaluates the water footprint of 67 Brazilian dairy farms.•The production system seems not to influence the WF.•WF can be reduced through the improvement of agricultural and productive practices.•Global warming scenarios increase the values of green and blue water footprints. |
|---|---|
| AbstractList | Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production. A total of 67 dairy cattle farms were selected for the study. Climatic scenarios and production practices were proposed as farm-specific interventions targeting three key areas: animal feed, effluent treatment, and nitrogen field application. For all production systems, the combinations exhibiting the highest water efficiency were characterized by the following factors: for green water, a 25 % increase in corn and soybean yields; for blue water, a reduction in milking parlor washing water consumption, an increase of 1 liter of milk per cow per day, and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the treatment of effluent from the milking parlor. Conversely, the combinations with the lowest water efficiency were identified as follows: for green water, maize yields decreased by 15 % and soybean yields increased by 12.95 %; for blue water, an increase of 1.5 °C to 2.5 °C in minimum daily temperature and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the non-treatment of effluent with the maximum value of α. The findings of this study establish production practices in water scenario analyses concerning water footprints in dairy cattle production systems.Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production. A total of 67 dairy cattle farms were selected for the study. Climatic scenarios and production practices were proposed as farm-specific interventions targeting three key areas: animal feed, effluent treatment, and nitrogen field application. For all production systems, the combinations exhibiting the highest water efficiency were characterized by the following factors: for green water, a 25 % increase in corn and soybean yields; for blue water, a reduction in milking parlor washing water consumption, an increase of 1 liter of milk per cow per day, and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the treatment of effluent from the milking parlor. Conversely, the combinations with the lowest water efficiency were identified as follows: for green water, maize yields decreased by 15 % and soybean yields increased by 12.95 %; for blue water, an increase of 1.5 °C to 2.5 °C in minimum daily temperature and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the non-treatment of effluent with the maximum value of α. The findings of this study establish production practices in water scenario analyses concerning water footprints in dairy cattle production systems. Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production. A total of 67 dairy cattle farms were selected for the study. Climatic scenarios and production practices were proposed as farm-specific interventions targeting three key areas: animal feed, effluent treatment, and nitrogen field application. For all production systems, the combinations exhibiting the highest water efficiency were characterized by the following factors: for green water, a 25 % increase in corn and soybean yields; for blue water, a reduction in milking parlor washing water consumption, an increase of 1 liter of milk per cow per day, and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the treatment of effluent from the milking parlor. Conversely, the combinations with the lowest water efficiency were identified as follows: for green water, maize yields decreased by 15 % and soybean yields increased by 12.95 %; for blue water, an increase of 1.5 °C to 2.5 °C in minimum daily temperature and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the non-treatment of effluent with the maximum value of α. The findings of this study establish production practices in water scenario analyses concerning water footprints in dairy cattle production systems. Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to evaluate how production practices and climatic scenarios in different dairy farming systems influence the water footprint of milk production. A total of 67 dairy cattle farms were selected for the study. Climatic scenarios and production practices were proposed as farm-specific interventions targeting three key areas: animal feed, effluent treatment, and nitrogen field application. For all production systems, the combinations exhibiting the highest water efficiency were characterized by the following factors: for green water, a 25 % increase in corn and soybean yields; for blue water, a reduction in milking parlor washing water consumption, an increase of 1 liter of milk per cow per day, and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the treatment of effluent from the milking parlor. Conversely, the combinations with the lowest water efficiency were identified as follows: for green water, maize yields decreased by 15 % and soybean yields increased by 12.95 %; for blue water, an increase of 1.5 °C to 2.5 °C in minimum daily temperature and/or a reduction of 1 kilogram in dry matter intake per cow per day; and for grey water, the non-treatment of effluent with the maximum value of α. The findings of this study establish production practices in water scenario analyses concerning water footprints in dairy cattle production systems. [Display omitted] •The study evaluates the water footprint of 67 Brazilian dairy farms.•The production system seems not to influence the WF.•WF can be reduced through the improvement of agricultural and productive practices.•Global warming scenarios increase the values of green and blue water footprints. |
| ArticleNumber | 180243 |
| Author | Palhares, Julio Cesar Pascale Drastig, Katrin De Souza, Debora Pantojo Carra, Sofia Helena Zanella |
| Author_xml | – sequence: 1 givenname: Julio Cesar Pascale surname: Palhares fullname: Palhares, Julio Cesar Pascale email: julio.palhares@embrapa.br organization: Embrapa Southeast Livestock, Rod. Washington Luiz km 234, 13560-970 São Carlos, SP, Brazil – sequence: 2 givenname: Debora Pantojo surname: De Souza fullname: De Souza, Debora Pantojo organization: Embrapa Southeast Livestock, Rod. Washington Luiz km 234, 13560-970 São Carlos, SP, Brazil – sequence: 3 givenname: Sofia Helena Zanella surname: Carra fullname: Carra, Sofia Helena Zanella organization: Leibniz Institute of Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany – sequence: 4 givenname: Katrin surname: Drastig fullname: Drastig, Katrin organization: Leibniz Institute of Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40829467$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkE1PAyEQQImpsa36F5Sjl63AUnZ7Mo3xKzHxogdPhMJgabpQgbbpv5em2qtcmMy8mcy8Ier54AGha0pGlFBxuxgl7XLI4DcjRth4RFvCeH2CBrRtJhUlTPTQgBDeVhMxafpomNKClNe09Az1OWnZhItmgD6fwxabgFcxmLXOLvgSqhJoSFh5g_XSdSoD1nPlvwC7blWqOM8Bb0s6YhtCXkXnMw4WG-XiDlsVu3R3gU6tWia4_P3P0cfjw_v9c_X69vRyP32tNKt5rmaCAjfCNJaOqQbWKCoUJYYoo2vCGibGRmttlYJWCQOzWhPDZ9aoseUFrs_RzWFuOeF7DSnLziUNy6XyENZJ1ozTmoqW1wW9-kXXsw6MLHt3Ku7kn44CNAdAx5BSBHtEKJF78XIhj-LlXrw8iC-d00MnlFM3DuKeA6_BuAg6SxPcvzN-AErbkaE |
| Cites_doi | 10.3168/jds.2017-13819 10.1016/j.crm.2017.08.001 10.1038/s41597-024-04264-2 10.1007/s40333-020-0058-x 10.1071/RJ09011 10.1016/j.jclepro.2016.07.199 10.1016/j.agsy.2024.103990 10.1016/j.jclepro.2019.04.391 10.1016/j.regsus.2021.01.004 10.1016/j.agwat.2023.108224 10.1016/j.agsy.2012.03.006 10.1016/j.jclepro.2011.11.046 10.3168/jds.2024-25004 10.1016/j.wasman.2022.05.018 10.1016/j.agsy.2018.07.005 10.1016/j.cub.2012.03.044 10.1080/14735903.2023.2270149 10.1016/j.energy.2022.126535 10.1016/j.jenvman.2022.114430 10.1016/j.jclepro.2024.141027 10.3390/ani12040469 10.1016/j.ecolind.2023.110641 10.1016/j.spc.2023.04.004 10.1029/2021WR029809 10.1016/j.compag.2018.03.023 10.3390/w16030391 10.1088/1748-9326/9/9/091003 10.1002/joc.7731 10.4136/ambi-agua.2454 10.3390/w16121681 10.1016/j.scitotenv.2018.07.241 10.11606/D.11.2018.tde-18052018-140516 10.1016/j.advwatres.2021.103853 10.1016/j.jclepro.2021.128153 10.1007/s00267-018-1101-y 10.1046/j.1365-2486.2002.00498.x 10.1016/j.spc.2022.03.023 10.3390/w15234181 10.3390/w16020330 10.1016/j.envint.2019.105084 10.15244/pjoes/201158 10.11606/D.11.2018.tde-17072018-134305 10.2174/0118743315270668231127190323 10.1104/pp.106.089557 10.1016/j.jclepro.2015.01.035 10.1016/j.scitotenv.2022.157117 10.1016/j.jclepro.2024.142508 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.scitotenv.2025.180243 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | 40829467 10_1016_j_scitotenv_2025_180243 S0048969725018832 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ~02 ~G- ~HD ~KM 53G 9DU AAQXK AAYJJ AAYXX ABEFU ABWVN ABXDB ACRPL ADMUD ADNMO ADXHL AEGFY AGHFR AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c234t-b61e4d6d7f151ce27a16a10d0adc3027265dcccfaae8a6deb3c0d4bfda5f47a13 |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Thu Oct 02 21:42:15 EDT 2025 Sat Oct 11 06:58:48 EDT 2025 Sat Nov 29 07:20:06 EST 2025 Sat Nov 08 18:17:00 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Washing water Treatment Pasture Confined Crop yield Effluent |
| Language | English |
| License | Copyright © 2025 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c234t-b61e4d6d7f151ce27a16a10d0adc3027265dcccfaae8a6deb3c0d4bfda5f47a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 40829467 |
| PQID | 3241316843 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3241316843 pubmed_primary_40829467 crossref_primary_10_1016_j_scitotenv_2025_180243 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2025_180243 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-10 |
| PublicationDateYYYYMMDD | 2025-10-10 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | The Science of the total environment |
| PublicationTitleAlternate | Sci Total Environ |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Da Silva, Luis Alberto Silva Antolin, Zanon, Andrade, de Souza (bb0060) 2021; 129 Flysjo, Cederberg, Henriksson, Ledgard (bb0090) 2012; 28 Palhares, Morelli, Novelli (bb0230) 2021; 149 Bernacchi, Kimball, Quarles, Long, Ort (bb0025) 2007 Holly, Kleinman, Baker, Bjorneberg, Boggess, Bryant, Chintala, Feyereisen, Gamble, Leytem, Reed, Rotz, Vadas, Waldrip (bb0140) 2018; 101 Kobuliev, Liu, Kobuliev, Chen, Gulakhmadov, Bao (bb0160) 2021; 2 AHDB. Efficient Use of Water on a Dairy Farm Agriculture and Horticulture Development Board. Warwickshire, UK: AHDB 2015; p. 44. Shine, Murphy, Upton, Scully (bb0280) 2018; 150 (bb0290) 2024 Shi, Wang, Jiao, Li, Yin (bb0275) 2022; 148 Salcedo, Varsaki, Salcedo-Rodríguez (bb0265) 2022; 118 Rebolledo-Leiva, Vásquez-Ibarra, Entrena-Barbero, Fernández (bb0245) 2022; 31 Monteiro, Santos, Pereira (bb0185) 2023 Zonderland-Thomassen, Ledgard (bb0360) 2012; 110 FAO. World Food Day. Water is life, water is food. Leave no One behind; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2023. National Resource Council. Nutrient Requirements of Dairy Cattle. 7th ed. National Academy Press, Washington, USA. 2001. 242pp. Crawford, Mclachlan, Hetherington, Franklin (bb0050) 2012; 22 Waltner, Ribács, Gémes, Székács (bb0320) 2023; 15 Terré, Bosch, Bach, Fábregas, Biel, Rusino, Boffil (bb0285) 2019; 229 Emater/RS (Rio Grande do Sul) (bb0070) 2021 Jin, Liao, Mu, Li, Nie (bb0155) 2023; 266 . Chapagain, Hoekstra (bb0045) 2003 Palhares (bb0210) 2013 Rong, Wu, Otkur, Yue, Su (bb0255) 2023; 154 Murphy, de Boer, van Midelaar, Holden, Shalloo, Curran, Upton (bb0190) 2017; 140 Ziqian, Xi, Han, Junlin, Ziyue (bb0355) 2025 Rotz, Stout, Leytem, Feyereisen, Waldrip (bb0260) 2021; 315 Hoekstra, A.Y. Water for animal products: a blind spot in water policy. Environ. Res. Lett., 9. Institute of Physics Publishing, 2014. Hoekstra, Chapagain, Aldaya, Mekonnen (bb0135) 2011 Zhao, Liu, Gao, Zhang, Li, Wu, Zhuo (bb0350) 2023; 280 International Dairy Federation (IDF) (bb0145) 2010 Ji, Xie, Zhuo, Liu, Feng, Wu (bb0150) 2022; 58 Entrena-Barbero, Tarpani, Fernández, Moreira, Gallego Schmid (bb0075) 2024; 458 Palhares, J.C.P.; Matarim, D.L.; de Sousa, R.V.; Martello, L.S. 2024. Water performance indicators and benchmarks for dairy production systems. Water, 16, 330. 10.3390/. Navarrete, Rodriguez, Horne, Hanly, Hedley, Kemp (bb0200) 2022; 12 Palhares (bb0215) 2024 González-Martínez, Goenaga, León-Ecay, de las Heras, Aldai (bb0100) 2024; 218 Yi, Gerbens-Leenes, Guzm'an-Luna (bb0345) 2023; 38 United States Environmental Protection Agency – EPA (bb0300) 2015 Herrera, Kallas, Serebrennikov, Fiona, McCarthy (bb0115) 2023; 21 Da Silva, E.H.F.M. Simulação de cenários agrícolas futuros para a cultura da soja no Brasil com base em projeções de mudanças climáticas. 2018. Dissertação (Mestrado em Engenharia de Sistemas Agrícolas) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2018. doi:10.11606/D.11.2018.tde-18052018-140516. Peden, Taddesse, Misra (bb0240) 2007 Araya, Kisekka, Lin, Vara Prasad, Gowda, Rice, Andales (bb0020) 2017; 17 Le Riche, VanderZaag, Burtt, Lapen, Gordon (bb0165) 2017; 9 Li, Li, Lei, Yan, Du, Luo, Lindsey, Di, Liu (bb0170) 2022; 22 Rojas-Downing, Nejadhashemi, Elahi, Cassida, Daneshvar (bb0250) 2018; 62 Palhares, Novelli, Morelli (bb0225) 2020; 15 Palhares, Pezzopane (bb0220) 2015; 93 Higham, Singh, Horne (bb0120) 2024; 16 Brasil (bb0035) 2019 Brasil. Conselho Nacional do Meio Ambiente - CONAMA. Resolução n° 357 de17 de março de 2005. Diário Oficial da União, Brasília, 18 de março de 2005. Seção 1, p.58. Ainsworth, Davey, Bernacchi, Dermody, Heaton, Moore, Morgan, Shawna, Ra, Zhu (bb0010) 2002 Carra, Palhares, Drastig, Schneider, Ebert, Giacomello (bb0040) 2022; 844 Mekonnen, Neale, Ray, Erickson, Hoekstra (bb0180) 2019; 132 De Souza, T.T. Simulação de cenários agrícolas futuros para a cultura do milho no Brasil com base em projeções de mudanças climáticas. 2018. Dissertação (Mestrado em Engenharia de Sistemas Agrícolas) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2018. doi:10.11606/D.11.2018.tde-17072018-134305 documents/card/fr/c/ca5685en. Gebreselassie, Peden, Haileslassie, Mpairwe (bb0095) 2009; 31 Lu, Ma, Shao (bb0175) 2024; 443 Serio, Miglietta, Lamastra, Ficocelli, Intini, De Leo, De Donno (bb0270) 2018; 15 USDA - United States Department of Agriculture (bb0305) 2022 Xavier, Scanlon, King, Alves (bb0335) 2022; 42 Hai, Long, Zhang, Deng, Li, Deng (bb0110) 2020; 12 Veltman, Rotz, Chase, Cooper, Ingraham, Izaurralde, Jones, Gaillard, Larsson, Ruark, Salas, Thoma, Jolliet (bb0315) 2018; 166 FAO (bb0080) 2019 Govoni, Chiarelli, Rulli (bb0105) 2024; 11 Valadares Filho, Machado, Chizzotti (bb0310) 2017 Wisser, Grogan, Lanzoni, Tempio, Cinardi, Prusevich, Glidden (bb0330) 2024; 16 Olivo, Godber, Reed, Nydam, Wattiaux, Ketterings (bb0205) 2024 Wei, Chadwick, Amon, Dong (bb0325) 2022; 306 Waltner (10.1016/j.scitotenv.2025.180243_bb0320) 2023; 15 10.1016/j.scitotenv.2025.180243_bb0005 Rojas-Downing (10.1016/j.scitotenv.2025.180243_bb0250) 2018; 62 Crawford (10.1016/j.scitotenv.2025.180243_bb0050) 2012; 22 Palhares (10.1016/j.scitotenv.2025.180243_bb0215) 2024 Araya (10.1016/j.scitotenv.2025.180243_bb0020) 2017; 17 Serio (10.1016/j.scitotenv.2025.180243_bb0270) 2018; 15 Rong (10.1016/j.scitotenv.2025.180243_bb0255) 2023; 154 Mekonnen (10.1016/j.scitotenv.2025.180243_bb0180) 2019; 132 Ji (10.1016/j.scitotenv.2025.180243_bb0150) 2022; 58 Kobuliev (10.1016/j.scitotenv.2025.180243_bb0160) 2021; 2 Veltman (10.1016/j.scitotenv.2025.180243_bb0315) 2018; 166 Li (10.1016/j.scitotenv.2025.180243_bb0170) 2022; 22 Palhares (10.1016/j.scitotenv.2025.180243_bb0225) 2020; 15 Rotz (10.1016/j.scitotenv.2025.180243_bb0260) 2021; 315 Emater/RS (Rio Grande do Sul) (10.1016/j.scitotenv.2025.180243_bb0070) Peden (10.1016/j.scitotenv.2025.180243_bb0240) 2007 (10.1016/j.scitotenv.2025.180243_bb0290) 2024 10.1016/j.scitotenv.2025.180243_bb0085 Valadares Filho (10.1016/j.scitotenv.2025.180243_bb0310) 2017 Zhao (10.1016/j.scitotenv.2025.180243_bb0350) 2023; 280 International Dairy Federation (IDF) (10.1016/j.scitotenv.2025.180243_bb0145) 2010 Carra (10.1016/j.scitotenv.2025.180243_bb0040) 2022; 844 Yi (10.1016/j.scitotenv.2025.180243_bb0345) 2023; 38 Ainsworth (10.1016/j.scitotenv.2025.180243_bb0010) 2002 Navarrete (10.1016/j.scitotenv.2025.180243_bb0200) 2022; 12 Xavier (10.1016/j.scitotenv.2025.180243_bb0335) 2022; 42 Hai (10.1016/j.scitotenv.2025.180243_bb0110) 2020; 12 Gebreselassie (10.1016/j.scitotenv.2025.180243_bb0095) 2009; 31 Hoekstra (10.1016/j.scitotenv.2025.180243_bb0135) 2011 Herrera (10.1016/j.scitotenv.2025.180243_bb0115) 2023; 21 Holly (10.1016/j.scitotenv.2025.180243_bb0140) 2018; 101 Olivo (10.1016/j.scitotenv.2025.180243_bb0205) 2024 Da Silva (10.1016/j.scitotenv.2025.180243_bb0060) 2021; 129 10.1016/j.scitotenv.2025.180243_bb0030 FAO (10.1016/j.scitotenv.2025.180243_bb0080) 10.1016/j.scitotenv.2025.180243_bb0195 Terré (10.1016/j.scitotenv.2025.180243_bb0285) 2019; 229 Monteiro (10.1016/j.scitotenv.2025.180243_bb0185) 2023 Brasil (10.1016/j.scitotenv.2025.180243_bb0035) González-Martínez (10.1016/j.scitotenv.2025.180243_bb0100) 2024; 218 10.1016/j.scitotenv.2025.180243_bb0235 Govoni (10.1016/j.scitotenv.2025.180243_bb0105) 2024; 11 Entrena-Barbero (10.1016/j.scitotenv.2025.180243_bb0075) 2024; 458 Palhares (10.1016/j.scitotenv.2025.180243_bb0210) Salcedo (10.1016/j.scitotenv.2025.180243_bb0265) 2022; 118 Higham (10.1016/j.scitotenv.2025.180243_bb0120) 2024; 16 Rebolledo-Leiva (10.1016/j.scitotenv.2025.180243_bb0245) 2022; 31 Shine (10.1016/j.scitotenv.2025.180243_bb0280) 2018; 150 Murphy (10.1016/j.scitotenv.2025.180243_bb0190) 2017; 140 Bernacchi (10.1016/j.scitotenv.2025.180243_bb0025) 2007 United States Environmental Protection Agency – EPA (10.1016/j.scitotenv.2025.180243_bb0300) Ziqian (10.1016/j.scitotenv.2025.180243_bb0355) 2025 10.1016/j.scitotenv.2025.180243_bb0065 Zonderland-Thomassen (10.1016/j.scitotenv.2025.180243_bb0360) 2012; 110 Palhares (10.1016/j.scitotenv.2025.180243_bb0230) 2021; 149 Wei (10.1016/j.scitotenv.2025.180243_bb0325) 2022; 306 Jin (10.1016/j.scitotenv.2025.180243_bb0155) 2023; 266 Palhares (10.1016/j.scitotenv.2025.180243_bb0220) 2015; 93 Wisser (10.1016/j.scitotenv.2025.180243_bb0330) 2024; 16 Le Riche (10.1016/j.scitotenv.2025.180243_bb0165) 2017; 9 USDA - United States Department of Agriculture (10.1016/j.scitotenv.2025.180243_bb0305) Chapagain (10.1016/j.scitotenv.2025.180243_bb0045) 2003 Shi (10.1016/j.scitotenv.2025.180243_bb0275) 2022; 148 10.1016/j.scitotenv.2025.180243_bb0055 Flysjo (10.1016/j.scitotenv.2025.180243_bb0090) 2012; 28 10.1016/j.scitotenv.2025.180243_bb0130 Lu (10.1016/j.scitotenv.2025.180243_bb0175) 2024; 443 |
| References_xml | – volume: 154 year: 2023 ident: bb0255 article-title: A novel uncertainty analysis method to improve the accuracy of agricultural grey water footprint evaluation considering the influence of production conditions publication-title: Ecol. Indic. – volume: 93 start-page: 299 year: 2015 end-page: 307 ident: bb0220 article-title: Water footprint accounting and scarcity indicators of conventional and organic dairy production systems publication-title: J. Clean. Prod. – volume: 844 year: 2022 ident: bb0040 article-title: Water productivity of milk produced in three different dairy production systems in southern Brazil publication-title: Sci. Total Environ. – volume: 101 start-page: 6632 year: 2018 end-page: 6641 ident: bb0140 article-title: Nutrient management challenges and opportunities across U.S. dairy farms publication-title: J. Dairy Sci. – volume: 149 year: 2021 ident: bb0230 article-title: Water footprint of a tropical beef cattle production system: the impact of individual-animal and feed management publication-title: Adv. Water Resour. – volume: 229 start-page: 964 year: 2019 end-page: 973 ident: bb0285 article-title: Exploring the use of tertiary reclaimed water in dairy cattle production publication-title: J. Clean. Prod. – volume: 315 year: 2021 ident: bb0260 article-title: Environmental assessment of United States dairy farms publication-title: J. Clean. Prod. – volume: 148 start-page: 83 year: 2022 end-page: 97 ident: bb0275 article-title: Recognition on characteristics and applicability of typical modes for manure & sewage management in pig farming: a case study in Hebei, China publication-title: Waste Manag. – volume: 306 year: 2022 ident: bb0325 article-title: Comparison of nitrogen losses from different manure treatment and application management systems in China publication-title: J. Environ. Manag. – volume: 22 start-page: 2354 year: 2022 end-page: 2364 ident: bb0170 article-title: The effects of slope and fertilizer rates on nitrogen losses in runoff from red soil and paddy soil during simulated rainfall publication-title: J. Soil Water Conserv. – volume: 15 year: 2020 ident: bb0225 article-title: Best practice production to reduce the water footprint of dairy milk publication-title: Ambi. Agua – volume: 166 start-page: 10 year: 2018 end-page: 25 ident: bb0315 article-title: A quantitative assessment of beneficial management practices to reduce carbon and reactive nitrogen footprints and phosphorus losses of dairy farms in the Great Lakes region of the United States publication-title: Agric. Syst. – volume: 16 year: 2024 ident: bb0330 article-title: Water use in livestock agri-food systems and its contribution to local water scarcity: a spatially distributed global analysis publication-title: Water – start-page: 485 year: 2007 end-page: 514 ident: bb0240 article-title: Water and livestock for human development publication-title: Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture – year: 2024 ident: bb0205 article-title: Greenhouse gas emissions and nutrient use efficiency assessment of six New York organic dairies publication-title: J. Dairy Sci. – volume: 129 year: 2021 ident: bb0060 article-title: Impact assessment of soybean yield and water productivity in Brazil due to climate change publication-title: Eur. J. Agron. – year: 2024 ident: bb0290 article-title: Navigating New Horizons: A Global Foresight Report on Planetary Health and Human Wellbeing – reference: Da Silva, E.H.F.M. Simulação de cenários agrícolas futuros para a cultura da soja no Brasil com base em projeções de mudanças climáticas. 2018. Dissertação (Mestrado em Engenharia de Sistemas Agrícolas) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2018. doi:10.11606/D.11.2018.tde-18052018-140516. – volume: 21 year: 2023 ident: bb0115 article-title: Towards circular farming: factors affecting EU farmers' decision to adopt emission-reducing innovations publication-title: Int. J. Agric. Sustain. – year: 2025 ident: bb0355 article-title: A review of current research of water footprints and recommendations for future directions publication-title: Pol. J. Environ. Stud. – year: 2023 ident: bb0185 article-title: Efficient water use in dairy cattle production: a review publication-title: Open Agric. J. – reference: AHDB. Efficient Use of Water on a Dairy Farm Agriculture and Horticulture Development Board. Warwickshire, UK: AHDB 2015; p. 44. – reference: Palhares, J.C.P.; Matarim, D.L.; de Sousa, R.V.; Martello, L.S. 2024. Water performance indicators and benchmarks for dairy production systems. Water, 16, 330. 10.3390/. – volume: 22 start-page: 396 year: 2012 end-page: 397 ident: bb0050 article-title: High temperature exposure increases plant cooling capacity publication-title: Curr. Biol. – volume: 150 start-page: 74 year: 2018 end-page: 87 ident: bb0280 article-title: Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms publication-title: Comput. Electron. Agric. – volume: 118 start-page: 547 year: 2022 end-page: 564 ident: bb0265 article-title: Water footprint of dairy farms according to typology of feeding publication-title: ITEA Inf. Tec. Econ. Agrar. – year: 2003 ident: bb0045 article-title: Virtual Water Flows between Nations in Relation to Trade in Livestock and Livestock Products – volume: 218 year: 2024 ident: bb0100 article-title: The water footprint of Spanish Ternera de Navarra PGI beef: conventional versus novel feeding based on vegetable by-products from the local food industry publication-title: Agric. Syst. – year: 2015 ident: bb0300 article-title: Ag 101: dairy production – year: 2021 ident: bb0070 article-title: Relatório Socioeconômico da Cadeia Produtiva do Leite no Rio Grande do Sul – year: 2013 ident: bb0210 article-title: Consumo de água na produção animal. Comunicado Técnico 102, 6 – reference: Hoekstra, A.Y. Water for animal products: a blind spot in water policy. Environ. Res. Lett., 9. Institute of Physics Publishing, 2014. – volume: 16 year: 2024 ident: bb0120 article-title: The water footprint of pastoral dairy farming: the effect of water footprint methods, data sources and spatial scale publication-title: Water – reference: Brasil. Conselho Nacional do Meio Ambiente - CONAMA. Resolução n° 357 de17 de março de 2005. Diário Oficial da União, Brasília, 18 de março de 2005. Seção 1, p.58. – year: 2019 ident: bb0035 article-title: Agricultural Zoning of Climate Risk - Brazil – year: 2017 ident: bb0310 article-title: CQBAL 3.0. Tabelas Brasileiras de Composição de Alimentos para Bovinos – start-page: 695 year: 2002 end-page: 709 ident: bb0010 article-title: A meta-analysis of elevated [CO publication-title: Glob. Chang. Biol. – year: 2024 ident: bb0215 article-title: Water footprints values per type of combination and dairy publication-title: Redape – volume: 110 start-page: 30 year: 2012 end-page: 40 ident: bb0360 article-title: Water footprinting—a comparison of methods using New Zealand dairy farming as a case study publication-title: Agric. Syst. – volume: 443 year: 2024 ident: bb0175 article-title: Strategies to mitigate the environmental footprints of meat, egg and milk production in northern China publication-title: J. Clean. Prod. – volume: 15 start-page: 4181 year: 2023 ident: bb0320 article-title: Influence of climatic factors on the water footprint of dairy cattle production in Hungary— A case study publication-title: Water – reference: National Resource Council. Nutrient Requirements of Dairy Cattle. 7th ed. National Academy Press, Washington, USA. 2001. 242pp. – volume: 280 year: 2023 ident: bb0350 article-title: Spatiotemporal evolution of crop grey water footprint and associated water pollution levels in arid regions of western China publication-title: Agric. Water Manag. – volume: 28 start-page: 134 year: 2012 end-page: 142 ident: bb0090 article-title: The interaction between milk and beef production and emissions from land use change e critical considerations in life cycle assessment and carbon footprint studies of milk publication-title: J. Clean. Prod. – reference: FAO. World Food Day. Water is life, water is food. Leave no One behind; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2023. – volume: 17 start-page: 139 year: 2017 end-page: 154 ident: bb0020 article-title: Evaluating the impact of future climate change on irrigated maize production in Kansas publication-title: Clim. Risk Manag. – year: 2010 ident: bb0145 article-title: A common carbon footprint approach for dairy. The IDF guide to standard life cycle assessment methodology for the dairy sector – volume: 2 start-page: 60 year: 2021 ident: bb0160 article-title: Effect of future climate change on the water footprint of major crops in southern Tajikistan publication-title: Region. Sustain. – year: 2022 ident: bb0305 article-title: Dairy and products annual. Report Number: BR2022–0066. USDA – Foreign Agricultural Service – volume: 42 start-page: 8390 year: 2022 end-page: 8404 ident: bb0335 article-title: New improved Brazilian daily weather gridded data (1961–2020) publication-title: Int. J. Climatol. – volume: 458 year: 2024 ident: bb0075 article-title: Integrating circularity as an essential pillar of dairy farm sustainability publication-title: J. Clean. Prod. – volume: 140 start-page: 547 year: 2017 end-page: 555 ident: bb0190 article-title: Water footprint of dairy farming in Ireland publication-title: J. Clean. Prod. – volume: 62 start-page: 1073 year: 2018 end-page: 1088 ident: bb0250 article-title: Food footprint as a measure of sustainability for grazing dairy farms publication-title: Environ. Manag. – volume: 58 year: 2022 ident: bb0150 article-title: Water footprints, intra-national virtual water flows, and associated sustainability related to pork production and consumption: A case for China publication-title: Water Resour. Res. – volume: 12 start-page: 580 year: 2020 ident: bb0110 article-title: Evaluating agricultural water-use efficiency based on water footprint of crop values: a case study in Xinjiang of China publication-title: J. Arid. Land – volume: 31 start-page: 251 year: 2009 end-page: 258 ident: bb0095 article-title: Factors affecting livestock water productivity: animal scale analysis using previous cattle feeding trials in Ethiopia publication-title: Rangel. J. – year: 2019 ident: bb0080 article-title: Water Use in Livestock Production Systems and Supply Chains. Guidelines for Assessment. Version 1; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy – volume: 15 start-page: 1425 year: 2018 end-page: 1431 ident: bb0270 article-title: Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in southern Apulia region (Italy) publication-title: Sci. Total Environ. – volume: 31 start-page: 805 year: 2022 end-page: 817 ident: bb0245 article-title: Coupling material flow analysis and network DEA for the evaluation of eco-efficiency and circularity on dairy farms publication-title: Sustain. Product. Consum. – year: 2011 ident: bb0135 article-title: The water footprint assessment manual – volume: 266 year: 2023 ident: bb0155 article-title: Integrated assessment of water footprint and energy production efficiency in different rice-rape rotation systems publication-title: Energy – volume: 38 start-page: 186 year: 2023 end-page: 198 ident: bb0345 article-title: Water, land and carbon footprints of Chinese dairy in the past and future publication-title: Sustain. Prod. Consum. – reference: . – volume: 132 year: 2019 ident: bb0180 article-title: Water productivity in meat and milk production in the US from 1960 to 2016 publication-title: Environ. Int. – volume: 9 year: 2017 ident: bb0165 article-title: Water use and conservation on a free-stall dairy farm publication-title: Water – reference: De Souza, T.T. Simulação de cenários agrícolas futuros para a cultura do milho no Brasil com base em projeções de mudanças climáticas. 2018. Dissertação (Mestrado em Engenharia de Sistemas Agrícolas) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 2018. doi:10.11606/D.11.2018.tde-17072018-134305 documents/card/fr/c/ca5685en. – start-page: 134 year: 2007 end-page: 144 ident: bb0025 article-title: Decreases in stomatal conductance of soybean under open-air elevation of [CO publication-title: Plant Physiol. – volume: 11 year: 2024 ident: bb0105 article-title: A global dataset of the national green and blue water footprint of livestock feeds publication-title: Sci. Data – volume: 12 year: 2022 ident: bb0200 article-title: Nitrogen excretion by dairy cows grazing plantain (plantago lanceolata) based pastures during the lactating season publication-title: Animals – ident: 10.1016/j.scitotenv.2025.180243_bb0300 – volume: 101 start-page: 6632 year: 2018 ident: 10.1016/j.scitotenv.2025.180243_bb0140 article-title: Nutrient management challenges and opportunities across U.S. dairy farms publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-13819 – volume: 17 start-page: 139 year: 2017 ident: 10.1016/j.scitotenv.2025.180243_bb0020 article-title: Evaluating the impact of future climate change on irrigated maize production in Kansas publication-title: Clim. Risk Manag. doi: 10.1016/j.crm.2017.08.001 – volume: 22 start-page: 2354 issue: 9 year: 2022 ident: 10.1016/j.scitotenv.2025.180243_bb0170 article-title: The effects of slope and fertilizer rates on nitrogen losses in runoff from red soil and paddy soil during simulated rainfall publication-title: J. Soil Water Conserv. – volume: 11 year: 2024 ident: 10.1016/j.scitotenv.2025.180243_bb0105 article-title: A global dataset of the national green and blue water footprint of livestock feeds publication-title: Sci. Data doi: 10.1038/s41597-024-04264-2 – volume: 12 start-page: 580 year: 2020 ident: 10.1016/j.scitotenv.2025.180243_bb0110 article-title: Evaluating agricultural water-use efficiency based on water footprint of crop values: a case study in Xinjiang of China publication-title: J. Arid. Land doi: 10.1007/s40333-020-0058-x – volume: 31 start-page: 251 year: 2009 ident: 10.1016/j.scitotenv.2025.180243_bb0095 article-title: Factors affecting livestock water productivity: animal scale analysis using previous cattle feeding trials in Ethiopia publication-title: Rangel. J. doi: 10.1071/RJ09011 – volume: 140 start-page: 547 issue: 2 year: 2017 ident: 10.1016/j.scitotenv.2025.180243_bb0190 article-title: Water footprint of dairy farming in Ireland publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.07.199 – year: 2024 ident: 10.1016/j.scitotenv.2025.180243_bb0290 – volume: 218 year: 2024 ident: 10.1016/j.scitotenv.2025.180243_bb0100 article-title: The water footprint of Spanish Ternera de Navarra PGI beef: conventional versus novel feeding based on vegetable by-products from the local food industry publication-title: Agric. Syst. doi: 10.1016/j.agsy.2024.103990 – volume: 229 start-page: 964 year: 2019 ident: 10.1016/j.scitotenv.2025.180243_bb0285 article-title: Exploring the use of tertiary reclaimed water in dairy cattle production publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.391 – volume: 2 start-page: 60 issue: 1 year: 2021 ident: 10.1016/j.scitotenv.2025.180243_bb0160 article-title: Effect of future climate change on the water footprint of major crops in southern Tajikistan publication-title: Region. Sustain. doi: 10.1016/j.regsus.2021.01.004 – volume: 280 year: 2023 ident: 10.1016/j.scitotenv.2025.180243_bb0350 article-title: Spatiotemporal evolution of crop grey water footprint and associated water pollution levels in arid regions of western China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2023.108224 – ident: 10.1016/j.scitotenv.2025.180243_bb0080 – volume: 110 start-page: 30 year: 2012 ident: 10.1016/j.scitotenv.2025.180243_bb0360 article-title: Water footprinting—a comparison of methods using New Zealand dairy farming as a case study publication-title: Agric. Syst. doi: 10.1016/j.agsy.2012.03.006 – ident: 10.1016/j.scitotenv.2025.180243_bb0035 – volume: 28 start-page: 134 year: 2012 ident: 10.1016/j.scitotenv.2025.180243_bb0090 article-title: The interaction between milk and beef production and emissions from land use change e critical considerations in life cycle assessment and carbon footprint studies of milk publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2011.11.046 – year: 2024 ident: 10.1016/j.scitotenv.2025.180243_bb0205 article-title: Greenhouse gas emissions and nutrient use efficiency assessment of six New York organic dairies publication-title: J. Dairy Sci. doi: 10.3168/jds.2024-25004 – volume: 148 start-page: 83 year: 2022 ident: 10.1016/j.scitotenv.2025.180243_bb0275 article-title: Recognition on characteristics and applicability of typical modes for manure & sewage management in pig farming: a case study in Hebei, China publication-title: Waste Manag. doi: 10.1016/j.wasman.2022.05.018 – volume: 166 start-page: 10 year: 2018 ident: 10.1016/j.scitotenv.2025.180243_bb0315 article-title: A quantitative assessment of beneficial management practices to reduce carbon and reactive nitrogen footprints and phosphorus losses of dairy farms in the Great Lakes region of the United States publication-title: Agric. Syst. doi: 10.1016/j.agsy.2018.07.005 – volume: 118 start-page: 547 issue: 4 year: 2022 ident: 10.1016/j.scitotenv.2025.180243_bb0265 article-title: Water footprint of dairy farms according to typology of feeding publication-title: ITEA Inf. Tec. Econ. Agrar. – volume: 22 start-page: 396 year: 2012 ident: 10.1016/j.scitotenv.2025.180243_bb0050 article-title: High temperature exposure increases plant cooling capacity publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.03.044 – volume: 21 issue: 1 year: 2023 ident: 10.1016/j.scitotenv.2025.180243_bb0115 article-title: Towards circular farming: factors affecting EU farmers' decision to adopt emission-reducing innovations publication-title: Int. J. Agric. Sustain. doi: 10.1080/14735903.2023.2270149 – volume: 266 year: 2023 ident: 10.1016/j.scitotenv.2025.180243_bb0155 article-title: Integrated assessment of water footprint and energy production efficiency in different rice-rape rotation systems publication-title: Energy doi: 10.1016/j.energy.2022.126535 – volume: 306 year: 2022 ident: 10.1016/j.scitotenv.2025.180243_bb0325 article-title: Comparison of nitrogen losses from different manure treatment and application management systems in China publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.114430 – volume: 443 year: 2024 ident: 10.1016/j.scitotenv.2025.180243_bb0175 article-title: Strategies to mitigate the environmental footprints of meat, egg and milk production in northern China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.141027 – volume: 12 year: 2022 ident: 10.1016/j.scitotenv.2025.180243_bb0200 article-title: Nitrogen excretion by dairy cows grazing plantain (plantago lanceolata) based pastures during the lactating season publication-title: Animals doi: 10.3390/ani12040469 – ident: 10.1016/j.scitotenv.2025.180243_bb0085 – volume: 154 year: 2023 ident: 10.1016/j.scitotenv.2025.180243_bb0255 article-title: A novel uncertainty analysis method to improve the accuracy of agricultural grey water footprint evaluation considering the influence of production conditions publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2023.110641 – volume: 38 start-page: 186 year: 2023 ident: 10.1016/j.scitotenv.2025.180243_bb0345 article-title: Water, land and carbon footprints of Chinese dairy in the past and future publication-title: Sustain. Prod. Consum. doi: 10.1016/j.spc.2023.04.004 – ident: 10.1016/j.scitotenv.2025.180243_bb0005 – volume: 58 year: 2022 ident: 10.1016/j.scitotenv.2025.180243_bb0150 article-title: Water footprints, intra-national virtual water flows, and associated sustainability related to pork production and consumption: A case for China publication-title: Water Resour. Res. doi: 10.1029/2021WR029809 – volume: 150 start-page: 74 year: 2018 ident: 10.1016/j.scitotenv.2025.180243_bb0280 article-title: Machine-learning algorithms for predicting on-farm direct water and electricity consumption on pasture based dairy farms publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.023 – volume: 9 issue: 977 year: 2017 ident: 10.1016/j.scitotenv.2025.180243_bb0165 article-title: Water use and conservation on a free-stall dairy farm publication-title: Water – ident: 10.1016/j.scitotenv.2025.180243_bb0030 – volume: 16 year: 2024 ident: 10.1016/j.scitotenv.2025.180243_bb0120 article-title: The water footprint of pastoral dairy farming: the effect of water footprint methods, data sources and spatial scale publication-title: Water doi: 10.3390/w16030391 – ident: 10.1016/j.scitotenv.2025.180243_bb0130 doi: 10.1088/1748-9326/9/9/091003 – ident: 10.1016/j.scitotenv.2025.180243_bb0195 – volume: 42 start-page: 8390 issue: 16 year: 2022 ident: 10.1016/j.scitotenv.2025.180243_bb0335 article-title: New improved Brazilian daily weather gridded data (1961–2020) publication-title: Int. J. Climatol. doi: 10.1002/joc.7731 – volume: 15 issue: 1 year: 2020 ident: 10.1016/j.scitotenv.2025.180243_bb0225 article-title: Best practice production to reduce the water footprint of dairy milk publication-title: Ambi. Agua doi: 10.4136/ambi-agua.2454 – volume: 16 year: 2024 ident: 10.1016/j.scitotenv.2025.180243_bb0330 article-title: Water use in livestock agri-food systems and its contribution to local water scarcity: a spatially distributed global analysis publication-title: Water doi: 10.3390/w16121681 – volume: 15 start-page: 1425 year: 2018 ident: 10.1016/j.scitotenv.2025.180243_bb0270 article-title: Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in southern Apulia region (Italy) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.241 – ident: 10.1016/j.scitotenv.2025.180243_bb0055 doi: 10.11606/D.11.2018.tde-18052018-140516 – year: 2003 ident: 10.1016/j.scitotenv.2025.180243_bb0045 – volume: 149 year: 2021 ident: 10.1016/j.scitotenv.2025.180243_bb0230 article-title: Water footprint of a tropical beef cattle production system: the impact of individual-animal and feed management publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2021.103853 – volume: 315 year: 2021 ident: 10.1016/j.scitotenv.2025.180243_bb0260 article-title: Environmental assessment of United States dairy farms publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128153 – year: 2017 ident: 10.1016/j.scitotenv.2025.180243_bb0310 – year: 2024 ident: 10.1016/j.scitotenv.2025.180243_bb0215 article-title: Water footprints values per type of combination and dairy publication-title: Redape – volume: 62 start-page: 1073 issue: 6 year: 2018 ident: 10.1016/j.scitotenv.2025.180243_bb0250 article-title: Food footprint as a measure of sustainability for grazing dairy farms publication-title: Environ. Manag. doi: 10.1007/s00267-018-1101-y – ident: 10.1016/j.scitotenv.2025.180243_bb0070 – year: 2011 ident: 10.1016/j.scitotenv.2025.180243_bb0135 – start-page: 695 year: 2002 ident: 10.1016/j.scitotenv.2025.180243_bb0010 article-title: A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield publication-title: Glob. Chang. Biol. doi: 10.1046/j.1365-2486.2002.00498.x – volume: 31 start-page: 805 year: 2022 ident: 10.1016/j.scitotenv.2025.180243_bb0245 article-title: Coupling material flow analysis and network DEA for the evaluation of eco-efficiency and circularity on dairy farms publication-title: Sustain. Product. Consum. doi: 10.1016/j.spc.2022.03.023 – ident: 10.1016/j.scitotenv.2025.180243_bb0210 – ident: 10.1016/j.scitotenv.2025.180243_bb0305 – volume: 15 start-page: 4181 year: 2023 ident: 10.1016/j.scitotenv.2025.180243_bb0320 article-title: Influence of climatic factors on the water footprint of dairy cattle production in Hungary— A case study publication-title: Water doi: 10.3390/w15234181 – ident: 10.1016/j.scitotenv.2025.180243_bb0235 doi: 10.3390/w16020330 – year: 2010 ident: 10.1016/j.scitotenv.2025.180243_bb0145 – volume: 132 year: 2019 ident: 10.1016/j.scitotenv.2025.180243_bb0180 article-title: Water productivity in meat and milk production in the US from 1960 to 2016 publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105084 – year: 2025 ident: 10.1016/j.scitotenv.2025.180243_bb0355 article-title: A review of current research of water footprints and recommendations for future directions publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/201158 – ident: 10.1016/j.scitotenv.2025.180243_bb0065 doi: 10.11606/D.11.2018.tde-17072018-134305 – year: 2023 ident: 10.1016/j.scitotenv.2025.180243_bb0185 article-title: Efficient water use in dairy cattle production: a review publication-title: Open Agric. J. doi: 10.2174/0118743315270668231127190323 – start-page: 134 year: 2007 ident: 10.1016/j.scitotenv.2025.180243_bb0025 article-title: Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration publication-title: Plant Physiol. doi: 10.1104/pp.106.089557 – volume: 93 start-page: 299 year: 2015 ident: 10.1016/j.scitotenv.2025.180243_bb0220 article-title: Water footprint accounting and scarcity indicators of conventional and organic dairy production systems publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.01.035 – volume: 844 year: 2022 ident: 10.1016/j.scitotenv.2025.180243_bb0040 article-title: Water productivity of milk produced in three different dairy production systems in southern Brazil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.157117 – start-page: 485 year: 2007 ident: 10.1016/j.scitotenv.2025.180243_bb0240 article-title: Water and livestock for human development – volume: 458 year: 2024 ident: 10.1016/j.scitotenv.2025.180243_bb0075 article-title: Integrating circularity as an essential pillar of dairy farm sustainability publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.142508 – volume: 129 year: 2021 ident: 10.1016/j.scitotenv.2025.180243_bb0060 article-title: Impact assessment of soybean yield and water productivity in Brazil due to climate change publication-title: Eur. J. Agron. |
| SSID | ssj0000781 |
| Score | 2.4864643 |
| Snippet | Understanding water use in dairy production systems is crucial to promoting production practices and enhancing resilience to climate change. The study aimed to... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 180243 |
| SubjectTerms | Animals Cattle Climate Change Confined Crop yield Dairying - methods Effluent Farms Pasture Treatment Washing water Water Supply - statistics & numerical data |
| Title | How do production practices and climate change impact the water footprint of dairy farms? |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2025.180243 https://www.ncbi.nlm.nih.gov/pubmed/40829467 https://www.proquest.com/docview/3241316843 |
| Volume | 998 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSQkhKAwGJfJSPBUpcqtufCCprUToKnw0EmFF8vxRbQqcUnSsfHL-Hkcx07CYBPjgZcosuwk8vf55NjnhtAL2HFlsE9mTqg9XEFKUlhzQjqBiFIZisQNWFYXm4in02Q-Tz_0ej-aWJjTVZznydlZuv6vUEMbgK1DZ_8B7vah0AD3ADpcAXa4Xgt4XSSOK-14xU1m2DYSyqRjZqsFaKnChvw2YZJa__xGdcZEqVSlT_tqFwFOF8X5QNLiS_mbC6DmVyMYrJ9BpXRk5S-hc519avVZxzk1AdlqcChKWoD6WgJFWmqN4Ylq8512chB65JVaqs5SUtR1kaCfXFDzz6SDT1T76rT_l3FBdeYQ6ytS2NTi9mTDrzOiWh9XI4yTOIUG36bKvqTNSvDUFLK2MljntDOpn_74PZiTiuUQtAuYEpiPoX7vsBtxMSH39D05Ojk-JrPJfAYLcf3V0dXKtFX_ZTA2zNlCO348SkGe7hy8nczfdVpAXBfIbb_3gm_hpe-_SjO6audTa0Czu-iO3brgA0O5e6gn8j66aYqZnvfR7qQDHrpZbpR9dNscDWMT8XYffQSGYq5wx1DcMhQDQ7FlKDYMxYahGBiGa4bilqFYSVwzFNcMff0AnRxNZodvHFvhw2F-EFZOFnki5BGPJSieTPgx9SLqudylnGmDuh-NOGNMUioSGnGRBczlYSY5HckQOge7aDtXuXiEsHS9LKVxFsEWJExlSjOPclAAgyDx05H095DbzC5Zm0QupPFwXJIWEKIBIQaQPfSqQYFYfdTomQT49PfBzxvcCEhsbYaDxaA2JQm0KduLEt3noQG0_aK6_DvoLo-vMfoJutWtmqdouyo24hm6wU6rRVnso614nuxbVv4EylnGZw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+production+practices+and+climate+change+impact+the+water+footprint+of+dairy+farms%3F&rft.jtitle=The+Science+of+the+total+environment&rft.au=Palhares%2C+Julio+Cesar+Pascale&rft.au=De+Souza%2C+Debora+Pantojo&rft.au=Carra%2C+Sofia+Helena+Zanella&rft.au=Drastig%2C+Katrin&rft.date=2025-10-10&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=998&rft.spage=180243&rft_id=info:doi/10.1016%2Fj.scitotenv.2025.180243&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |