Design and Augmentation of a Deep Learning Based Vehicle Detection Model for Low Light Intensity Conditions
The development of autonomous vehicles and the Advanced Driver Assistance System (ADAS) has accelerated recently, effective traffic management and road safety depend heavily on vehicle identification. However, reliable vehicle detection in low-light situations at night or in bad weather remains a ch...
Uloženo v:
| Vydáno v: | SN computer science Ročník 5; číslo 5; s. 605 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.06.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 2661-8907, 2662-995X, 2661-8907 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The development of autonomous vehicles and the Advanced Driver Assistance System (ADAS) has accelerated recently, effective traffic management and road safety depend heavily on vehicle identification. However, reliable vehicle detection in low-light situations at night or in bad weather remains a chronic difficulty in real-world scenarios. This study aims to meet the urgent requirement for enhanced vehicle detection in low light circumstances by developing and enhancing a deep learning-based model. An alternative method is suggested that integrates cutting-edge Convolutional Neural Networks (CNNs) with inventive data augmentation approaches designed specifically for low-light situations. Most object detection models don’t perform efficiently under low-light conditions and lack enlightenment conditions, due to inappropriate labeling. When objects have a small number of pixels and the presence of simple elements is rare, conventional CNNs might have detrimental effects on accurate data analysis due to the excessive amount of convolutional operations. This study introduces information assortment and the labeling of low-light information to deal with different kinds of circumstances for vehicle detection. Besides, this work proposes an explicitly upgraded model dependent on the YOLO model. |
|---|---|
| AbstractList | The development of autonomous vehicles and the Advanced Driver Assistance System (ADAS) has accelerated recently, effective traffic management and road safety depend heavily on vehicle identification. However, reliable vehicle detection in low-light situations at night or in bad weather remains a chronic difficulty in real-world scenarios. This study aims to meet the urgent requirement for enhanced vehicle detection in low light circumstances by developing and enhancing a deep learning-based model. An alternative method is suggested that integrates cutting-edge Convolutional Neural Networks (CNNs) with inventive data augmentation approaches designed specifically for low-light situations. Most object detection models don’t perform efficiently under low-light conditions and lack enlightenment conditions, due to inappropriate labeling. When objects have a small number of pixels and the presence of simple elements is rare, conventional CNNs might have detrimental effects on accurate data analysis due to the excessive amount of convolutional operations. This study introduces information assortment and the labeling of low-light information to deal with different kinds of circumstances for vehicle detection. Besides, this work proposes an explicitly upgraded model dependent on the YOLO model. |
| ArticleNumber | 605 |
| Author | Vishwakarma, Pramod Kumar Jain, Nitin |
| Author_xml | – sequence: 1 givenname: Pramod Kumar orcidid: 0000-0002-8020-9554 surname: Vishwakarma fullname: Vishwakarma, Pramod Kumar email: pramod.v1201@gmail.com organization: Computer Science and Engineering, Chandigarh University, Gharuan – sequence: 2 givenname: Nitin surname: Jain fullname: Jain, Nitin organization: Computer Science and Engineering, Chandigarh University, Gharuan |
| BookMark | eNp9kE1PwyAYgInRRJ3-AU8knqtAaSnHOb-W1HhRr4TC24puMKGL2b-3W000HjwQSHgePp5jtO-DB4TOKLmghIjLxJkUMiOMD0Nynsk9dMTKkmaVJGL_1_oQnab0RghhBeG8LI7Q-zUk13msvcXTdbcE3-veBY9DizW-BljhGnT0znf4Siew-AVenVnAsNeD2aEPwcICtyHiOnzi2nWvPZ77Hnxy_QbPgrduy6UTdNDqRYLT73mCnm9vnmb3Wf14N59N68ywnMvMlNRyDrRglFVVnhMotLHUaNM2ZZNzW2gLtBGiaaSxlmtrCsgrY4UuWiFYPkHn47mrGD7WkHr1FtbRD1eqnJRMyCEaHahqpEwMKUVolXHj3_uo3UJRorZ11VhXDXXVrq6Sg8r-qKvoljpu_pfyUUoD7DuIP6_6x_oCdV-PZQ |
| CitedBy_id | crossref_primary_10_1016_j_iot_2024_101268 crossref_primary_10_1007_s11760_024_03635_x crossref_primary_10_1007_s42979_025_03736_5 crossref_primary_10_1038_s41598_025_09033_8 |
| Cites_doi | 10.1016/j.procs.2019.09.179 10.3390/jimaging8100256 10.3390/app12188928 10.48550/arXiv.1804.00429 10.1007/s00521-021-06391-y 10.1016/j.procs.2018.10.527 10.3390/rs10010124 10.3390/s22134740 10.3390/computers11100148 10.1109/TITS.2020.3014013 10.35940/ijeat.A1006.1291S519 10.18178/ijmlc.2021.11.4.1052 10.1016/j.procs.2022.01.135 10.1109/CCOMS.2019.8821689 10.1155/2021/5590894 10.3390/s19050982 10.1109/IJCNN.2018.8489671 10.1007/978-3-319-10602-1_48 10.5220/0009163405060512 10.20858/sjsutst.2021.112.7.16 10.1145/3325425.3329944 10.1155/2022/2019257 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s42979-024-02944-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Computer Science Database (NC LIVE) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: ProQuest Advanced Technologies & Aerospace Database (NC LIVE) url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_024_02944_9 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAPOH BSONS DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- KOV PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2349-c61d44e1521288330e5acd1cacfb6b34d5ade1b77bb9cdd4adc5e38cd7a5f7723 |
| IEDL.DBID | P5Z |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Wed Nov 05 14:49:49 EST 2025 Tue Nov 18 20:55:29 EST 2025 Sat Nov 29 01:32:53 EST 2025 Fri Feb 21 02:42:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Deep learning CNN Algorithms Evolution metrics Object detection YOLOv8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2349-c61d44e1521288330e5acd1cacfb6b34d5ade1b77bb9cdd4adc5e38cd7a5f7723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8020-9554 |
| PQID | 3062790071 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_3062790071 crossref_citationtrail_10_1007_s42979_024_02944_9 crossref_primary_10_1007_s42979_024_02944_9 springer_journals_10_1007_s42979_024_02944_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2024 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Yilmaz (CR1) 2018 Sowmya, Radha (CR16) 2020; 15 Ahmad (CR30) 2022; 11 Meimetis (CR6) 2023; 35 Jiang, Ergu, Liu, Cai, Ma (CR28) 2022; 199 CR12 CR11 CR10 CR32 CR31 Maungmai, Nuthong (CR13) 2019 Vijayaraghavan, Laavanya (CR4) 2019; 9 Păvăloi, Anca (CR20) 2019; 159 Lee, Ullah, Wan, Gao, Fang (CR33) 2019; 19 Koga, Miyazaki, Shibasaki (CR18) 2018; 10 CR3 Al-refai, Hisham, Mutaz (CR29) 2022; 12 CR8 Sathyanarayana, Anand (CR17) 2022; 13 CR7 CR27 CR26 CR25 CR24 Hassaballah (CR5) 2020; 22 CR23 CR22 CR21 Tsourounis (CR15) 2022; 8 Tas, Sari, Dalveren, Pazar, Kara, Derawi (CR2) 2022; 22 Karungaru, Lyu, Kenji (CR9) 2021; 11 Jagannathan (CR14) 2021; 2021 Arinaldi, Jaka, Arlan (CR19) 2018; 144 S Karungaru (2944_CR9) 2021; 11 D Tsourounis (2944_CR15) 2022; 8 AA Yilmaz (2944_CR1) 2018 N Sathyanarayana (2944_CR17) 2022; 13 P Jiang (2944_CR28) 2022; 199 2944_CR12 A Arinaldi (2944_CR19) 2018; 144 Y Koga (2944_CR18) 2018; 10 D Meimetis (2944_CR6) 2023; 35 G Al-refai (2944_CR29) 2022; 12 I Păvăloi (2944_CR20) 2019; 159 2944_CR11 M Hassaballah (2944_CR5) 2020; 22 2944_CR10 2944_CR32 2944_CR31 V Vijayaraghavan (2944_CR4) 2019; 9 P Jagannathan (2944_CR14) 2021; 2021 V Sowmya (2944_CR16) 2020; 15 S Tas (2944_CR2) 2022; 22 HJ Lee (2944_CR33) 2019; 19 2944_CR3 2944_CR26 2944_CR25 2944_CR7 2944_CR24 2944_CR8 2944_CR23 W Maungmai (2944_CR13) 2019 2944_CR27 AB Ahmad (2944_CR30) 2022; 11 2944_CR22 2944_CR21 |
| References_xml | – ident: CR22 – volume: 159 start-page: 241 year: 2019 end-page: 250 ident: CR20 article-title: Iris image classification using SIFT features publication-title: Proc Comput Sci. doi: 10.1016/j.procs.2019.09.179 – volume: 13 start-page: 1 issue: 1 year: 2022 end-page: 22 ident: CR17 article-title: Vehicle type classification using hybrid features and a deep neural network publication-title: Int J Appl Metaheuristic Comput (IJAMC). – ident: CR12 – volume: 8 start-page: 256 issue: 10 year: 2022 ident: CR15 article-title: SIFT-CNN: when convolutional neural networks meet dense SIFT descriptors for image and sequence classification publication-title: J Imag. doi: 10.3390/jimaging8100256 – ident: CR10 – volume: 12 start-page: 8928 issue: 18 year: 2022 ident: CR29 article-title: In-vehicle data for predicting road conditions and driving style using machine learning publication-title: Appl Sci. doi: 10.3390/app12188928 – volume: 15 start-page: 372 issue: 4 year: 2020 end-page: 76 ident: CR16 article-title: Efficiency-optimized approach-vehicle classification features transfer learning and data augmentation utilizing deep convolutional neural networks publication-title: Int J Appl Eng Res. – year: 2018 ident: CR1 article-title: A vehicle detection approach using deep learning methodologies publication-title: ArXiv doi: 10.48550/arXiv.1804.00429 – volume: 35 start-page: 89 issue: 1 year: 2023 end-page: 118 ident: CR6 article-title: Real-time multiple object tracking using deep learning methods publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06391-y – volume: 144 start-page: 259 year: 2018 end-page: 268 ident: CR19 article-title: Detection and classification of vehicles for traffic video analytics publication-title: Proc Compute Sci. doi: 10.1016/j.procs.2018.10.527 – volume: 10 start-page: 124 year: 2018 ident: CR18 article-title: A CNN-based method of vehicle detection from aerial images using hard example mining publication-title: Remote Sens doi: 10.3390/rs10010124 – volume: 22 start-page: 4740 year: 2022 ident: CR2 article-title: Deep learning-based vehicle classification for low quality images publication-title: MDPI doi: 10.3390/s22134740 – ident: CR8 – volume: 11 start-page: 148 issue: 10 year: 2022 ident: CR30 article-title: Vehicle auto-classification using machine learning algorithms based on seismic fingerprinting publication-title: Computers. doi: 10.3390/computers11100148 – ident: CR25 – ident: CR27 – volume: 22 start-page: 4230 issue: 7 year: 2020 end-page: 4242 ident: CR5 article-title: Vehicle detection and tracking in adverse weather using a deep learning framework publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3014013 – ident: CR23 – volume: 9 start-page: 24 year: 2019 end-page: 8 ident: CR4 article-title: Vehicle classification and detection using deep learning publication-title: Int J Eng Adv Technol. doi: 10.35940/ijeat.A1006.1291S519 – ident: CR21 – volume: 11 start-page: 304 issue: 4 year: 2021 end-page: 10 ident: CR9 article-title: Vehicle detection and type classification based on CNN-SVM publication-title: Int J Mach Learn Comput. doi: 10.18178/ijmlc.2021.11.4.1052 – volume: 199 start-page: 1066 year: 2022 end-page: 1073 ident: CR28 article-title: A review of Yolo algorithm developments publication-title: Proc Comput Sci doi: 10.1016/j.procs.2022.01.135 – ident: CR3 – year: 2019 ident: CR13 publication-title: Vehicle classification with deep learning doi: 10.1109/CCOMS.2019.8821689 – ident: CR31 – ident: CR11 – volume: 2021 start-page: 1 year: 2021 end-page: 15 ident: CR14 article-title: Moving vehicle detection and classification using gaussian mixture model and ensemble deep learning technique publication-title: Wireless Commun Mob Comput. doi: 10.1155/2021/5590894 – ident: CR32 – ident: CR7 – ident: CR26 – volume: 19 start-page: 982 year: 2019 ident: CR33 article-title: Real-time vehicle make and model recognition with the residual SqueezeNet architecture publication-title: Sensors. doi: 10.3390/s19050982 – ident: CR24 – volume: 15 start-page: 372 issue: 4 year: 2020 ident: 2944_CR16 publication-title: Int J Appl Eng Res. – ident: 2944_CR21 – volume: 19 start-page: 982 year: 2019 ident: 2944_CR33 publication-title: Sensors. doi: 10.3390/s19050982 – volume: 11 start-page: 304 issue: 4 year: 2021 ident: 2944_CR9 publication-title: Int J Mach Learn Comput. doi: 10.18178/ijmlc.2021.11.4.1052 – ident: 2944_CR25 – year: 2018 ident: 2944_CR1 publication-title: ArXiv doi: 10.48550/arXiv.1804.00429 – ident: 2944_CR10 doi: 10.1109/IJCNN.2018.8489671 – volume: 10 start-page: 124 year: 2018 ident: 2944_CR18 publication-title: Remote Sens doi: 10.3390/rs10010124 – ident: 2944_CR12 – ident: 2944_CR27 doi: 10.1007/978-3-319-10602-1_48 – ident: 2944_CR23 doi: 10.5220/0009163405060512 – ident: 2944_CR7 doi: 10.20858/sjsutst.2021.112.7.16 – volume: 159 start-page: 241 year: 2019 ident: 2944_CR20 publication-title: Proc Comput Sci. doi: 10.1016/j.procs.2019.09.179 – volume: 22 start-page: 4740 year: 2022 ident: 2944_CR2 publication-title: MDPI doi: 10.3390/s22134740 – ident: 2944_CR3 doi: 10.20858/sjsutst.2021.112.7.16 – volume: 199 start-page: 1066 year: 2022 ident: 2944_CR28 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2022.01.135 – ident: 2944_CR24 – volume: 12 start-page: 8928 issue: 18 year: 2022 ident: 2944_CR29 publication-title: Appl Sci. doi: 10.3390/app12188928 – ident: 2944_CR31 doi: 10.1145/3325425.3329944 – volume-title: Vehicle classification with deep learning year: 2019 ident: 2944_CR13 doi: 10.1109/CCOMS.2019.8821689 – ident: 2944_CR22 – volume: 2021 start-page: 1 year: 2021 ident: 2944_CR14 publication-title: Wireless Commun Mob Comput. doi: 10.1155/2021/5590894 – ident: 2944_CR26 – volume: 144 start-page: 259 year: 2018 ident: 2944_CR19 publication-title: Proc Compute Sci. doi: 10.1016/j.procs.2018.10.527 – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 2944_CR17 publication-title: Int J Appl Metaheuristic Comput (IJAMC). – volume: 9 start-page: 24 year: 2019 ident: 2944_CR4 publication-title: Int J Eng Adv Technol. doi: 10.35940/ijeat.A1006.1291S519 – ident: 2944_CR11 – volume: 11 start-page: 148 issue: 10 year: 2022 ident: 2944_CR30 publication-title: Computers. doi: 10.3390/computers11100148 – ident: 2944_CR32 – volume: 8 start-page: 256 issue: 10 year: 2022 ident: 2944_CR15 publication-title: J Imag. doi: 10.3390/jimaging8100256 – ident: 2944_CR8 doi: 10.1155/2022/2019257 – volume: 35 start-page: 89 issue: 1 year: 2023 ident: 2944_CR6 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06391-y – volume: 22 start-page: 4230 issue: 7 year: 2020 ident: 2944_CR5 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3014013 |
| SSID | ssj0002504465 |
| Score | 2.264706 |
| Snippet | The development of autonomous vehicles and the Advanced Driver Assistance System (ADAS) has accelerated recently, effective traffic management and road safety... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 605 |
| SubjectTerms | Advanced driver assistance systems Algorithms Artificial neural networks Classification Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data analysis Data augmentation Data Structures and Information Theory Datasets Deep learning Information Systems and Communication Service Labeling Luminous intensity Machine learning Neural networks Object recognition Original Research Pattern Recognition and Graphics Roads & highways Safety management Security for Communication and Computing Application Semantics Software Engineering/Programming and Operating Systems Traffic management Traffic safety Vehicle identification Vehicles Vision Vision systems |
| SummonAdditionalLinks | – databaseName: Springer Journals New Starts & Take-Overs Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT8IwGG8UPXgRnxFF8x28aRO2do8eESQeiDE-CLelazs04iAwNP73tqWDaNREDzv1seXr1_5-6_dC6FQrDVEh9zAPOcUaISRmRKZYEeMV1hCRim2gcDe6vo77fXbjgsKmpbd7aZK0J_Ui2E2fnBHDGlP0wyjFbBWtabiLTcGG27ve4mbFJOWiYeAiZL4f-hmFltTyizXUgkyn-r_P20KbjlRCc64F22hF5TuoWhZsALd_d9Fz2_prAM8lNGeDFxd3lMMoAw5tpcbg8q0O4ELDm4SeejRT6rbC-mzlYIqnDUFTXeiO3qBr_u3B-cEX79AaGRO4UeU99NC5vG9dYVdtAQufUIZF6ElKlcFzW4G4oQIupCe4yNIwJVQGXCovjaI0ZUJKyqUIFImFjHiQaY5O9lElH-XqAIHypfRY6kWxbFA9e5xp2uALTiL9Ik0Ra8grpZ8Il4rcVMQYJoskylaaiZZmYqWZsBo6W4wZzxNx_Nq7Xi5q4jblNCEmJTMzpKqGzstFXDb_PNvh37ofoQ3f6oG5q6mjSjGZqWO0Ll6Lp-nkxCrrB3545OE priority: 102 providerName: Springer Nature |
| Title | Design and Augmentation of a Deep Learning Based Vehicle Detection Model for Low Light Intensity Conditions |
| URI | https://link.springer.com/article/10.1007/s42979-024-02944-9 https://www.proquest.com/docview/3062790071 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2661-8907 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE) customDbUrl: eissn: 2661-8907 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2661-8907 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHbiwCBBlqXzgBhZN7NTxCbEKiaqq2FRxiRzbBQQkpQuIv8dj3FYgwYVDcnHsRJmJ32S2B7DjlIbZuoqoqitOHUIYKpnJqWWYFVbTwqa-ULghms203Zat4HDrh7TK0Z7oN2pTavSR7zPspysREQ-6rxRZozC6Gig0pmEWuyQgdUMruRv7WLA9F_dskg6GYipl0g51M756zm3FQlIHUu6QnFP5HZsmBuePGKmHnrPF_z70EiwEo5McfmnJMkzZYgWeTnzyBlGFIYfD-5dQhFSQskMUObG2S0Lz1Xty5LDOkFv7gPPd2MAncBUEmdSeibN7SaN8Jw380SchKX7wQY5LjIejXq_Czdnp9fE5DdQLVMeMS6rrkeHcIrh7OuKaTZQ2kVa6k9dzxk2ijI1yIfJcamO4MjqxLNVGqKTjDHa2BjNFWdh1IDY2JpJ5JFJT4271tONsiFgrJtyNnL1YgWj00jMd-pIjPcZzNu6o7AWVOUFlXlCZrMDueE73qyvHn1dvjaSThS-0n01EU4G9kXwnw7-vtvH3apswH3uVQkfNFswMekO7DXP6bfDY71Vh9ui02bqswvSFoFWvre58eXX7CU8y7es |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvPASIhQJzgBNYbGJnHR8QKl2qVhtWHAraW3Bsb0G0ydLdUvVP8RuZ8Sa7AoneeuCQk-OJEn_jbzKeB8BzAo0MA5sIO7BKEEN4YaSvRJAcFdZ3OuQxUbjQ43E-mZiPG_Cry4XhsMpuT4wbtW8c-8hfS66na5gR385-CO4axaerXQuNJSxG4eKcftnmbw6GtL4v0nTv_eHuvmi7CgiXSmWEGyReqcC8FTvt9kNmnU-cddNqUEnlM-tDUmldVcZ5r6x3WZC589pmU7JFJcm9BteVzDXr1UiLlU-Hy4Gp2L2SaC8VxmSTNk8nZuvR1q-NIFKkyyglzJ9cuDZw_zqTjVS3d_t_-0h34FZrVOPOUgvuwkao78H3YQxOQVt73Dk7OmmTrGpspmhxGMIM2-KyR_iOuNzj5_CV59PYIgao1cid4o6R7HosmnMs2JGBbdD_4gJ3Gz7vZ729D5-u5P0ewGbd1OEhYEi9T0yV6Nz3FUnPp2Qjpc5KTQ8ie7gHSbfIpWvrrnP7j-NyVTE6AqMkYJQRGKXpwcvVnNmy6sild293aCjbHWherqHQg1cdntbD_5b26HJpz-Dm_uGHoiwOxqPHsJVGOLNTahs2F6dn4QnccD8X3-anT6NuIHy5apz9BhveScA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCXFhR5R1DtzAoqmdxUegVCCqColF3CLHdgoC0goCiL_Hdp2yCJAQh5xsT6LxOPNsz7wB2DJGQ3UkAiIiwYjxEIpwqjKiqY0Kq8tYJy5RuB13OsnVFT_9kMXvot2rK8lBToNlaSrK3b7Kd4eJb-YvGnNi_It5OGOEj8I4s4H0dr9-djk8ZbEEXSwKfbbM90M_e6R3mPnlZtQ5nNbM_z91FqY92MS9gXXMwYgu5mGmKuSAfl0vwG3TxXGgKBTuPXXvfT5Sgb0cBTa17qPnYe3ivnF7Ci_1tRVp2koXy1WgLap2hwYCY7v3gm2750cfH1--4kHPXo1bE1-Ei9bh-cER8VUYiGxQxomMAsWYtn7eVSau61BIFUgh8yzKKFOhUDrI4jjLuFSKCSVDTROpYhHmBrvTJRgreoVeBtQNpQKeBXGi6sxIT3IDJxpS0Ni8yEDHGgTVTKTSU5TbShl36ZBc2WkzNdpMnTZTXoPt4Zj-gKDj195r1QSnfrE-ptRSNXMLtmqwU03oe_PP0lb-1n0TJk-brbR93DlZhamGMwl7nLMGY-XDk16HCflc3jw-bDgbfgNvI_Cp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Augmentation+of+a+Deep+Learning+Based+Vehicle+Detection+Model+for+Low+Light+Intensity+Conditions&rft.jtitle=SN+computer+science&rft.au=Vishwakarma%2C+Pramod+Kumar&rft.au=Jain%2C+Nitin&rft.date=2024-06-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1007%2Fs42979-024-02944-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_024_02944_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |