Design and Augmentation of a Deep Learning Based Vehicle Detection Model for Low Light Intensity Conditions

The development of autonomous vehicles and the Advanced Driver Assistance System (ADAS) has accelerated recently, effective traffic management and road safety depend heavily on vehicle identification. However, reliable vehicle detection in low-light situations at night or in bad weather remains a ch...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SN computer science Ročník 5; číslo 5; s. 605
Hlavní autoři: Vishwakarma, Pramod Kumar, Jain, Nitin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.06.2024
Springer Nature B.V
Témata:
ISSN:2661-8907, 2662-995X, 2661-8907
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The development of autonomous vehicles and the Advanced Driver Assistance System (ADAS) has accelerated recently, effective traffic management and road safety depend heavily on vehicle identification. However, reliable vehicle detection in low-light situations at night or in bad weather remains a chronic difficulty in real-world scenarios. This study aims to meet the urgent requirement for enhanced vehicle detection in low light circumstances by developing and enhancing a deep learning-based model. An alternative method is suggested that integrates cutting-edge Convolutional Neural Networks (CNNs) with inventive data augmentation approaches designed specifically for low-light situations. Most object detection models don’t perform efficiently under low-light conditions and lack enlightenment conditions, due to inappropriate labeling. When objects have a small number of pixels and the presence of simple elements is rare, conventional CNNs might have detrimental effects on accurate data analysis due to the excessive amount of convolutional operations. This study introduces information assortment and the labeling of low-light information to deal with different kinds of circumstances for vehicle detection. Besides, this work proposes an explicitly upgraded model dependent on the YOLO model.
AbstractList The development of autonomous vehicles and the Advanced Driver Assistance System (ADAS) has accelerated recently, effective traffic management and road safety depend heavily on vehicle identification. However, reliable vehicle detection in low-light situations at night or in bad weather remains a chronic difficulty in real-world scenarios. This study aims to meet the urgent requirement for enhanced vehicle detection in low light circumstances by developing and enhancing a deep learning-based model. An alternative method is suggested that integrates cutting-edge Convolutional Neural Networks (CNNs) with inventive data augmentation approaches designed specifically for low-light situations. Most object detection models don’t perform efficiently under low-light conditions and lack enlightenment conditions, due to inappropriate labeling. When objects have a small number of pixels and the presence of simple elements is rare, conventional CNNs might have detrimental effects on accurate data analysis due to the excessive amount of convolutional operations. This study introduces information assortment and the labeling of low-light information to deal with different kinds of circumstances for vehicle detection. Besides, this work proposes an explicitly upgraded model dependent on the YOLO model.
ArticleNumber 605
Author Vishwakarma, Pramod Kumar
Jain, Nitin
Author_xml – sequence: 1
  givenname: Pramod Kumar
  orcidid: 0000-0002-8020-9554
  surname: Vishwakarma
  fullname: Vishwakarma, Pramod Kumar
  email: pramod.v1201@gmail.com
  organization: Computer Science and Engineering, Chandigarh University, Gharuan
– sequence: 2
  givenname: Nitin
  surname: Jain
  fullname: Jain, Nitin
  organization: Computer Science and Engineering, Chandigarh University, Gharuan
BookMark eNp9kE1PwyAYgInRRJ3-AU8knqtAaSnHOb-W1HhRr4TC24puMKGL2b-3W000HjwQSHgePp5jtO-DB4TOKLmghIjLxJkUMiOMD0Nynsk9dMTKkmaVJGL_1_oQnab0RghhBeG8LI7Q-zUk13msvcXTdbcE3-veBY9DizW-BljhGnT0znf4Siew-AVenVnAsNeD2aEPwcICtyHiOnzi2nWvPZ77Hnxy_QbPgrduy6UTdNDqRYLT73mCnm9vnmb3Wf14N59N68ywnMvMlNRyDrRglFVVnhMotLHUaNM2ZZNzW2gLtBGiaaSxlmtrCsgrY4UuWiFYPkHn47mrGD7WkHr1FtbRD1eqnJRMyCEaHahqpEwMKUVolXHj3_uo3UJRorZ11VhXDXXVrq6Sg8r-qKvoljpu_pfyUUoD7DuIP6_6x_oCdV-PZQ
CitedBy_id crossref_primary_10_1016_j_iot_2024_101268
crossref_primary_10_1007_s11760_024_03635_x
crossref_primary_10_1007_s42979_025_03736_5
crossref_primary_10_1038_s41598_025_09033_8
Cites_doi 10.1016/j.procs.2019.09.179
10.3390/jimaging8100256
10.3390/app12188928
10.48550/arXiv.1804.00429
10.1007/s00521-021-06391-y
10.1016/j.procs.2018.10.527
10.3390/rs10010124
10.3390/s22134740
10.3390/computers11100148
10.1109/TITS.2020.3014013
10.35940/ijeat.A1006.1291S519
10.18178/ijmlc.2021.11.4.1052
10.1016/j.procs.2022.01.135
10.1109/CCOMS.2019.8821689
10.1155/2021/5590894
10.3390/s19050982
10.1109/IJCNN.2018.8489671
10.1007/978-3-319-10602-1_48
10.5220/0009163405060512
10.20858/sjsutst.2021.112.7.16
10.1145/3325425.3329944
10.1155/2022/2019257
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s42979-024-02944-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Computer Science Database (NC LIVE)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_024_02944_9
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAPOH
BSONS
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
KOV
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2349-c61d44e1521288330e5acd1cacfb6b34d5ade1b77bb9cdd4adc5e38cd7a5f7723
IEDL.DBID P5Z
ISSN 2661-8907
2662-995X
IngestDate Wed Nov 05 14:49:49 EST 2025
Tue Nov 18 20:55:29 EST 2025
Sat Nov 29 01:32:53 EST 2025
Fri Feb 21 02:42:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
CNN
Algorithms
Evolution metrics
Object detection
YOLOv8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2349-c61d44e1521288330e5acd1cacfb6b34d5ade1b77bb9cdd4adc5e38cd7a5f7723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8020-9554
PQID 3062790071
PQPubID 6623307
ParticipantIDs proquest_journals_3062790071
crossref_citationtrail_10_1007_s42979_024_02944_9
crossref_primary_10_1007_s42979_024_02944_9
springer_journals_10_1007_s42979_024_02944_9
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Yilmaz (CR1) 2018
Sowmya, Radha (CR16) 2020; 15
Ahmad (CR30) 2022; 11
Meimetis (CR6) 2023; 35
Jiang, Ergu, Liu, Cai, Ma (CR28) 2022; 199
CR12
CR11
CR10
CR32
CR31
Maungmai, Nuthong (CR13) 2019
Vijayaraghavan, Laavanya (CR4) 2019; 9
Păvăloi, Anca (CR20) 2019; 159
Lee, Ullah, Wan, Gao, Fang (CR33) 2019; 19
Koga, Miyazaki, Shibasaki (CR18) 2018; 10
CR3
Al-refai, Hisham, Mutaz (CR29) 2022; 12
CR8
Sathyanarayana, Anand (CR17) 2022; 13
CR7
CR27
CR26
CR25
CR24
Hassaballah (CR5) 2020; 22
CR23
CR22
CR21
Tsourounis (CR15) 2022; 8
Tas, Sari, Dalveren, Pazar, Kara, Derawi (CR2) 2022; 22
Karungaru, Lyu, Kenji (CR9) 2021; 11
Jagannathan (CR14) 2021; 2021
Arinaldi, Jaka, Arlan (CR19) 2018; 144
S Karungaru (2944_CR9) 2021; 11
D Tsourounis (2944_CR15) 2022; 8
AA Yilmaz (2944_CR1) 2018
N Sathyanarayana (2944_CR17) 2022; 13
P Jiang (2944_CR28) 2022; 199
2944_CR12
A Arinaldi (2944_CR19) 2018; 144
Y Koga (2944_CR18) 2018; 10
D Meimetis (2944_CR6) 2023; 35
G Al-refai (2944_CR29) 2022; 12
I Păvăloi (2944_CR20) 2019; 159
2944_CR11
M Hassaballah (2944_CR5) 2020; 22
2944_CR10
2944_CR32
2944_CR31
V Vijayaraghavan (2944_CR4) 2019; 9
P Jagannathan (2944_CR14) 2021; 2021
V Sowmya (2944_CR16) 2020; 15
S Tas (2944_CR2) 2022; 22
HJ Lee (2944_CR33) 2019; 19
2944_CR3
2944_CR26
2944_CR25
2944_CR7
2944_CR24
2944_CR8
2944_CR23
W Maungmai (2944_CR13) 2019
2944_CR27
AB Ahmad (2944_CR30) 2022; 11
2944_CR22
2944_CR21
References_xml – ident: CR22
– volume: 159
  start-page: 241
  year: 2019
  end-page: 250
  ident: CR20
  article-title: Iris image classification using SIFT features
  publication-title: Proc Comput Sci.
  doi: 10.1016/j.procs.2019.09.179
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  end-page: 22
  ident: CR17
  article-title: Vehicle type classification using hybrid features and a deep neural network
  publication-title: Int J Appl Metaheuristic Comput (IJAMC).
– ident: CR12
– volume: 8
  start-page: 256
  issue: 10
  year: 2022
  ident: CR15
  article-title: SIFT-CNN: when convolutional neural networks meet dense SIFT descriptors for image and sequence classification
  publication-title: J Imag.
  doi: 10.3390/jimaging8100256
– ident: CR10
– volume: 12
  start-page: 8928
  issue: 18
  year: 2022
  ident: CR29
  article-title: In-vehicle data for predicting road conditions and driving style using machine learning
  publication-title: Appl Sci.
  doi: 10.3390/app12188928
– volume: 15
  start-page: 372
  issue: 4
  year: 2020
  end-page: 76
  ident: CR16
  article-title: Efficiency-optimized approach-vehicle classification features transfer learning and data augmentation utilizing deep convolutional neural networks
  publication-title: Int J Appl Eng Res.
– year: 2018
  ident: CR1
  article-title: A vehicle detection approach using deep learning methodologies
  publication-title: ArXiv
  doi: 10.48550/arXiv.1804.00429
– volume: 35
  start-page: 89
  issue: 1
  year: 2023
  end-page: 118
  ident: CR6
  article-title: Real-time multiple object tracking using deep learning methods
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06391-y
– volume: 144
  start-page: 259
  year: 2018
  end-page: 268
  ident: CR19
  article-title: Detection and classification of vehicles for traffic video analytics
  publication-title: Proc Compute Sci.
  doi: 10.1016/j.procs.2018.10.527
– volume: 10
  start-page: 124
  year: 2018
  ident: CR18
  article-title: A CNN-based method of vehicle detection from aerial images using hard example mining
  publication-title: Remote Sens
  doi: 10.3390/rs10010124
– volume: 22
  start-page: 4740
  year: 2022
  ident: CR2
  article-title: Deep learning-based vehicle classification for low quality images
  publication-title: MDPI
  doi: 10.3390/s22134740
– ident: CR8
– volume: 11
  start-page: 148
  issue: 10
  year: 2022
  ident: CR30
  article-title: Vehicle auto-classification using machine learning algorithms based on seismic fingerprinting
  publication-title: Computers.
  doi: 10.3390/computers11100148
– ident: CR25
– ident: CR27
– volume: 22
  start-page: 4230
  issue: 7
  year: 2020
  end-page: 4242
  ident: CR5
  article-title: Vehicle detection and tracking in adverse weather using a deep learning framework
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3014013
– ident: CR23
– volume: 9
  start-page: 24
  year: 2019
  end-page: 8
  ident: CR4
  article-title: Vehicle classification and detection using deep learning
  publication-title: Int J Eng Adv Technol.
  doi: 10.35940/ijeat.A1006.1291S519
– ident: CR21
– volume: 11
  start-page: 304
  issue: 4
  year: 2021
  end-page: 10
  ident: CR9
  article-title: Vehicle detection and type classification based on CNN-SVM
  publication-title: Int J Mach Learn Comput.
  doi: 10.18178/ijmlc.2021.11.4.1052
– volume: 199
  start-page: 1066
  year: 2022
  end-page: 1073
  ident: CR28
  article-title: A review of Yolo algorithm developments
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2022.01.135
– ident: CR3
– year: 2019
  ident: CR13
  publication-title: Vehicle classification with deep learning
  doi: 10.1109/CCOMS.2019.8821689
– ident: CR31
– ident: CR11
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR14
  article-title: Moving vehicle detection and classification using gaussian mixture model and ensemble deep learning technique
  publication-title: Wireless Commun Mob Comput.
  doi: 10.1155/2021/5590894
– ident: CR32
– ident: CR7
– ident: CR26
– volume: 19
  start-page: 982
  year: 2019
  ident: CR33
  article-title: Real-time vehicle make and model recognition with the residual SqueezeNet architecture
  publication-title: Sensors.
  doi: 10.3390/s19050982
– ident: CR24
– volume: 15
  start-page: 372
  issue: 4
  year: 2020
  ident: 2944_CR16
  publication-title: Int J Appl Eng Res.
– ident: 2944_CR21
– volume: 19
  start-page: 982
  year: 2019
  ident: 2944_CR33
  publication-title: Sensors.
  doi: 10.3390/s19050982
– volume: 11
  start-page: 304
  issue: 4
  year: 2021
  ident: 2944_CR9
  publication-title: Int J Mach Learn Comput.
  doi: 10.18178/ijmlc.2021.11.4.1052
– ident: 2944_CR25
– year: 2018
  ident: 2944_CR1
  publication-title: ArXiv
  doi: 10.48550/arXiv.1804.00429
– ident: 2944_CR10
  doi: 10.1109/IJCNN.2018.8489671
– volume: 10
  start-page: 124
  year: 2018
  ident: 2944_CR18
  publication-title: Remote Sens
  doi: 10.3390/rs10010124
– ident: 2944_CR12
– ident: 2944_CR27
  doi: 10.1007/978-3-319-10602-1_48
– ident: 2944_CR23
  doi: 10.5220/0009163405060512
– ident: 2944_CR7
  doi: 10.20858/sjsutst.2021.112.7.16
– volume: 159
  start-page: 241
  year: 2019
  ident: 2944_CR20
  publication-title: Proc Comput Sci.
  doi: 10.1016/j.procs.2019.09.179
– volume: 22
  start-page: 4740
  year: 2022
  ident: 2944_CR2
  publication-title: MDPI
  doi: 10.3390/s22134740
– ident: 2944_CR3
  doi: 10.20858/sjsutst.2021.112.7.16
– volume: 199
  start-page: 1066
  year: 2022
  ident: 2944_CR28
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2022.01.135
– ident: 2944_CR24
– volume: 12
  start-page: 8928
  issue: 18
  year: 2022
  ident: 2944_CR29
  publication-title: Appl Sci.
  doi: 10.3390/app12188928
– ident: 2944_CR31
  doi: 10.1145/3325425.3329944
– volume-title: Vehicle classification with deep learning
  year: 2019
  ident: 2944_CR13
  doi: 10.1109/CCOMS.2019.8821689
– ident: 2944_CR22
– volume: 2021
  start-page: 1
  year: 2021
  ident: 2944_CR14
  publication-title: Wireless Commun Mob Comput.
  doi: 10.1155/2021/5590894
– ident: 2944_CR26
– volume: 144
  start-page: 259
  year: 2018
  ident: 2944_CR19
  publication-title: Proc Compute Sci.
  doi: 10.1016/j.procs.2018.10.527
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 2944_CR17
  publication-title: Int J Appl Metaheuristic Comput (IJAMC).
– volume: 9
  start-page: 24
  year: 2019
  ident: 2944_CR4
  publication-title: Int J Eng Adv Technol.
  doi: 10.35940/ijeat.A1006.1291S519
– ident: 2944_CR11
– volume: 11
  start-page: 148
  issue: 10
  year: 2022
  ident: 2944_CR30
  publication-title: Computers.
  doi: 10.3390/computers11100148
– ident: 2944_CR32
– volume: 8
  start-page: 256
  issue: 10
  year: 2022
  ident: 2944_CR15
  publication-title: J Imag.
  doi: 10.3390/jimaging8100256
– ident: 2944_CR8
  doi: 10.1155/2022/2019257
– volume: 35
  start-page: 89
  issue: 1
  year: 2023
  ident: 2944_CR6
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06391-y
– volume: 22
  start-page: 4230
  issue: 7
  year: 2020
  ident: 2944_CR5
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.3014013
SSID ssj0002504465
Score 2.264706
Snippet The development of autonomous vehicles and the Advanced Driver Assistance System (ADAS) has accelerated recently, effective traffic management and road safety...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 605
SubjectTerms Advanced driver assistance systems
Algorithms
Artificial neural networks
Classification
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data analysis
Data augmentation
Data Structures and Information Theory
Datasets
Deep learning
Information Systems and Communication Service
Labeling
Luminous intensity
Machine learning
Neural networks
Object recognition
Original Research
Pattern Recognition and Graphics
Roads & highways
Safety management
Security for Communication and Computing Application
Semantics
Software Engineering/Programming and Operating Systems
Traffic management
Traffic safety
Vehicle identification
Vehicles
Vision
Vision systems
SummonAdditionalLinks – databaseName: Springer Journals New Starts & Take-Overs Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT8IwGG8UPXgRnxFF8x28aRO2do8eESQeiDE-CLelazs04iAwNP73tqWDaNREDzv1seXr1_5-6_dC6FQrDVEh9zAPOcUaISRmRKZYEeMV1hCRim2gcDe6vo77fXbjgsKmpbd7aZK0J_Ui2E2fnBHDGlP0wyjFbBWtabiLTcGG27ve4mbFJOWiYeAiZL4f-hmFltTyizXUgkyn-r_P20KbjlRCc64F22hF5TuoWhZsALd_d9Fz2_prAM8lNGeDFxd3lMMoAw5tpcbg8q0O4ELDm4SeejRT6rbC-mzlYIqnDUFTXeiO3qBr_u3B-cEX79AaGRO4UeU99NC5vG9dYVdtAQufUIZF6ElKlcFzW4G4oQIupCe4yNIwJVQGXCovjaI0ZUJKyqUIFImFjHiQaY5O9lElH-XqAIHypfRY6kWxbFA9e5xp2uALTiL9Ik0Ra8grpZ8Il4rcVMQYJoskylaaiZZmYqWZsBo6W4wZzxNx_Nq7Xi5q4jblNCEmJTMzpKqGzstFXDb_PNvh37ofoQ3f6oG5q6mjSjGZqWO0Ll6Lp-nkxCrrB3545OE
  priority: 102
  providerName: Springer Nature
Title Design and Augmentation of a Deep Learning Based Vehicle Detection Model for Low Light Intensity Conditions
URI https://link.springer.com/article/10.1007/s42979-024-02944-9
https://www.proquest.com/docview/3062790071
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHbiwCBBlqXzgBhZN7NTxCbEKiaqq2FRxiRzbBQQkpQuIv8dj3FYgwYVDcnHsRJmJ32S2B7DjlIbZuoqoqitOHUIYKpnJqWWYFVbTwqa-ULghms203Zat4HDrh7TK0Z7oN2pTavSR7zPspysREQ-6rxRZozC6Gig0pmEWuyQgdUMruRv7WLA9F_dskg6GYipl0g51M756zm3FQlIHUu6QnFP5HZsmBuePGKmHnrPF_z70EiwEo5McfmnJMkzZYgWeTnzyBlGFIYfD-5dQhFSQskMUObG2S0Lz1Xty5LDOkFv7gPPd2MAncBUEmdSeibN7SaN8Jw380SchKX7wQY5LjIejXq_Czdnp9fE5DdQLVMeMS6rrkeHcIrh7OuKaTZQ2kVa6k9dzxk2ijI1yIfJcamO4MjqxLNVGqKTjDHa2BjNFWdh1IDY2JpJ5JFJT4271tONsiFgrJtyNnL1YgWj00jMd-pIjPcZzNu6o7AWVOUFlXlCZrMDueE73qyvHn1dvjaSThS-0n01EU4G9kXwnw7-vtvH3apswH3uVQkfNFswMekO7DXP6bfDY71Vh9ui02bqswvSFoFWvre58eXX7CU8y7es
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgkQvPASIhQJzgBNYbGJnHR8QKl2qVhtWHAraW3Bsb0G0ydLdUvVP8RuZ8Sa7AoneeuCQk-OJEn_jbzKeB8BzAo0MA5sIO7BKEEN4YaSvRJAcFdZ3OuQxUbjQ43E-mZiPG_Cry4XhsMpuT4wbtW8c-8hfS66na5gR385-CO4axaerXQuNJSxG4eKcftnmbw6GtL4v0nTv_eHuvmi7CgiXSmWEGyReqcC8FTvt9kNmnU-cddNqUEnlM-tDUmldVcZ5r6x3WZC589pmU7JFJcm9BteVzDXr1UiLlU-Hy4Gp2L2SaC8VxmSTNk8nZuvR1q-NIFKkyyglzJ9cuDZw_zqTjVS3d_t_-0h34FZrVOPOUgvuwkao78H3YQxOQVt73Dk7OmmTrGpspmhxGMIM2-KyR_iOuNzj5_CV59PYIgao1cid4o6R7HosmnMs2JGBbdD_4gJ3Gz7vZ729D5-u5P0ewGbd1OEhYEi9T0yV6Nz3FUnPp2Qjpc5KTQ8ie7gHSbfIpWvrrnP7j-NyVTE6AqMkYJQRGKXpwcvVnNmy6sild293aCjbHWherqHQg1cdntbD_5b26HJpz-Dm_uGHoiwOxqPHsJVGOLNTahs2F6dn4QnccD8X3-anT6NuIHy5apz9BhveScA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCXFhR5R1DtzAoqmdxUegVCCqColF3CLHdgoC0goCiL_Hdp2yCJAQh5xsT6LxOPNsz7wB2DJGQ3UkAiIiwYjxEIpwqjKiqY0Kq8tYJy5RuB13OsnVFT_9kMXvot2rK8lBToNlaSrK3b7Kd4eJb-YvGnNi_It5OGOEj8I4s4H0dr9-djk8ZbEEXSwKfbbM90M_e6R3mPnlZtQ5nNbM_z91FqY92MS9gXXMwYgu5mGmKuSAfl0vwG3TxXGgKBTuPXXvfT5Sgb0cBTa17qPnYe3ivnF7Ci_1tRVp2koXy1WgLap2hwYCY7v3gm2750cfH1--4kHPXo1bE1-Ei9bh-cER8VUYiGxQxomMAsWYtn7eVSau61BIFUgh8yzKKFOhUDrI4jjLuFSKCSVDTROpYhHmBrvTJRgreoVeBtQNpQKeBXGi6sxIT3IDJxpS0Ni8yEDHGgTVTKTSU5TbShl36ZBc2WkzNdpMnTZTXoPt4Zj-gKDj195r1QSnfrE-ptRSNXMLtmqwU03oe_PP0lb-1n0TJk-brbR93DlZhamGMwl7nLMGY-XDk16HCflc3jw-bDgbfgNvI_Cp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Augmentation+of+a+Deep+Learning+Based+Vehicle+Detection+Model+for+Low+Light+Intensity+Conditions&rft.jtitle=SN+computer+science&rft.au=Vishwakarma%2C+Pramod+Kumar&rft.au=Jain%2C+Nitin&rft.date=2024-06-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1007%2Fs42979-024-02944-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_024_02944_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon