Evaluating the authenticity of the PowerPoint presentations’ contents using word embedding techniques
In the educational system, assessments are essential for evaluating students’ performance. An evaluation using manual grading is a laborious and time-consuming task and is vulnerable to inconsistencies and inaccuracies. Even though there has been significant research to automate the evaluation of st...
Uloženo v:
| Vydáno v: | International journal of information technology (Singapore. Online) Ročník 15; číslo 4; s. 2303 - 2316 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.04.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 2511-2104, 2511-2112 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the educational system, assessments are essential for evaluating students’ performance. An evaluation using manual grading is a laborious and time-consuming task and is vulnerable to inconsistencies and inaccuracies. Even though there has been significant research to automate the evaluation of student work, researchers still need to consider PowerPoint presentation grading. In our earlier research, we graded students’ PowerPoint presentations based on the quality features, not the contents. In this study, we have graded PowerPoint presentations based on the text contents to check the students’ expertise on the topic. Our approach consists of two main steps. The first step extracts the text from the PowerPoint presentations using the python-pptx library. PowerPoint presentation text is represented in vectors using various word embedding techniques in the semantic space (SS). In the next step, similarities between students’ and reference PowerPoint presentation vectors are calculated using Cosine Similarity (CS). Depending on the similarity score, the student’s presentation is graded automatically. Experimental results depict that the results gained using the tf-idf word embedding technique are comparable. The system proposed using tf-idf word embedding gives better results than other word embedding techniques. The agreement between the human score and our system score is measured using Quadratic Weighted Kappa (QWK). Our system performs with a QWK score of 0.88 and an accuracy of 82.60%. |
|---|---|
| AbstractList | In the educational system, assessments are essential for evaluating students’ performance. An evaluation using manual grading is a laborious and time-consuming task and is vulnerable to inconsistencies and inaccuracies. Even though there has been significant research to automate the evaluation of student work, researchers still need to consider PowerPoint presentation grading. In our earlier research, we graded students’ PowerPoint presentations based on the quality features, not the contents. In this study, we have graded PowerPoint presentations based on the text contents to check the students’ expertise on the topic. Our approach consists of two main steps. The first step extracts the text from the PowerPoint presentations using the python-pptx library. PowerPoint presentation text is represented in vectors using various word embedding techniques in the semantic space (SS). In the next step, similarities between students’ and reference PowerPoint presentation vectors are calculated using Cosine Similarity (CS). Depending on the similarity score, the student’s presentation is graded automatically. Experimental results depict that the results gained using the tf-idf word embedding technique are comparable. The system proposed using tf-idf word embedding gives better results than other word embedding techniques. The agreement between the human score and our system score is measured using Quadratic Weighted Kappa (QWK). Our system performs with a QWK score of 0.88 and an accuracy of 82.60%. |
| Author | Kiwelekar, A. W. Netak, L. D. Borade, J. G. |
| Author_xml | – sequence: 1 givenname: J. G. orcidid: 0000-0002-6062-7249 surname: Borade fullname: Borade, J. G. email: jyoti.borade81@gmail.com organization: Department of Computer Engineering, Dr. Babasaheb Ambedkar Technological University – sequence: 2 givenname: L. D. surname: Netak fullname: Netak, L. D. organization: Department of Computer Engineering, Dr. Babasaheb Ambedkar Technological University – sequence: 3 givenname: A. W. surname: Kiwelekar fullname: Kiwelekar, A. W. organization: Department of Computer Engineering, Dr. Babasaheb Ambedkar Technological University |
| BookMark | eNp9kE1OwzAQhS1UJErpBVhFYh3w2EncLFFVfqRKdAFrK3ac1qi1i-1Qdcc1uB4nwU0QSCy6GXvG772xvnM0MNYohC4BXwPG7MZnMGE4xYSmGEis5QkakhwgJQBk8HvH2Rkae68FpkAKmjMYouXsvVq3VdBmmYSVSqo2VhO01GGf2KabLexOuYXVJiRbp3x8jnpr_NfHZyKtCXHgk9YfInbW1YnaCFXXXaKSK6PfWuUv0GlTrb0a_5wj9HI3e54-pPOn-8fp7TyVhGZlKvOGYZUTIBSwKLAsiYQJERlQUUIjC0WxyEohmahzBYIyJmOvMCtE1ihGR-iqz906e9gb-KttnYkrOSV5DM6AQFSRXiWd9d6phm-d3lRuzwHzA1PeM-WRKe-Y8jKaJv9MEVJHIrhKr49baW_1cY9ZKvf3qyOubw77j50 |
| CitedBy_id | crossref_primary_10_1007_s42979_024_02965_4 |
| Cites_doi | 10.1109/ICCED.2018.00034 10.1109/ICODSE.2016.7936117 10.1109/IUCS.2010.5666229 10.1109/IALP.2009.63 10.1007/978-3-030-68449-5_25 10.1109/ICT-ISPC.2016.7519229 10.1109/ICDM.2014.21 10.1016/j.eswa.2018.07.047 10.1016/j.procs.2020.02.171 10.1016/j.jsp.2017.12.005 10.1007/s41870-019-00314-w 10.1007/978-981-15-6353-9_24 10.1007/s41870-020-00593-8 10.1007/s41870-017-0080-1 10.2484/2183-6493_008.002_0008 10.18280/ria.360215 10.1016/j.procs.2018.08.013 10.1016/j.ipm.2019.05.008 10.1016/j.artint.2007.06.005 10.1007/978-981-16-5987-4_30 10.1007/s41870-018-0213-1 10.1109/ACCESS.2019.2933354 10.1007/978-3-030-98404-5_1 10.1016/j.jcss.2013.01.021 10.1007/s41870-021-00686-y |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s41870-023-01223-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2511-2112 |
| EndPage | 2316 |
| ExternalDocumentID | 10_1007_s41870_023_01223_9 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AANZL AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGRTI AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z7Z Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ABUWG ACSTC AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- PHGZM PHGZT PQGLB 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK JQ2 L7M L~C L~D M0N P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c2349-c5f70e5212310b60c92c182b413b91fc6e30b49bc7bd5e1b377cb49e076b4fe73 |
| IEDL.DBID | K7- |
| ISSN | 2511-2104 |
| IngestDate | Tue Sep 30 03:14:24 EDT 2025 Tue Nov 18 22:32:07 EST 2025 Sat Nov 29 03:11:47 EST 2025 Fri Feb 21 02:43:23 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Cosine similarity Word embedding BERT (bidirectional encoder representations from transformers) TF-IDF (term frequency-inverse document frequency) Feature vector Count vector |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2349-c5f70e5212310b60c92c182b413b91fc6e30b49bc7bd5e1b377cb49e076b4fe73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6062-7249 |
| PQID | 3255214121 |
| PQPubID | 2034493 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3255214121 crossref_primary_10_1007_s41870_023_01223_9 crossref_citationtrail_10_1007_s41870_023_01223_9 springer_journals_10_1007_s41870_023_01223_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20230400 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 4 year: 2023 text: 20230400 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Heidelberg |
| PublicationSubtitle | An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management |
| PublicationTitle | International journal of information technology (Singapore. Online) |
| PublicationTitleAbbrev | Int. j. inf. tecnol |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Borade JG, Netak LD. Automated grading of essays: a review. In: Singh M, Kang DK, Lee JH, Tiwary US, Singh D, Chung WY (eds) Intelligent Human Computer Interaction. IHCI 2020. Lecture Notes in Computer Science, vol 12615, pp 238–249. Springer, Cham. https://doi.org/10.1007/978-3-030-68449-5_25 Wilson J (2018) Universal screening with automated essay scoring: evaluating classification accuracy in grades 3 and 4. J School Psychol. 68:19–37. https://doi.org/10.1016/j.jsp.2017.12.005 SrihariJCSrihariRSrinivasanHShettySBrutt-GrifflerJAutomatic scoring of short handwritten essays in reading comprehension testsArtif Intell200817230032410.1016/j.artint.2007.06.005ISSN 0004-3702 GoularteFBNassarSMFiletoRSaggionHA text summarization method based on fuzzy rules and applicable to automated assessmentExpert Syst Appl201911526427510.1016/j.eswa.2018.07.047ISSN 0957-4174 BoradeJGKiwelekarAWNetakLDAutomated grading of PowerPoint presentation using latent semantic analysisRevue d'Intelligence Artificielle, Int Inform Eng Technol202236230531110.18280/ria.360215issn: 1958-5748 Surya K, Ekansh G, Kailasanathan, Nallakaruppan (2019) Deep learning for short answer scoring. Int J Recent Technol Eng. 7:1712–1715 ZupancKBosnicZAutomated Essay Evaluation Augmented with Semantic Coherence MeasuresIEEE International Conference on Data Mining201420141133113810.1109/ICDM.2014.21 FazalAnharHFTharamDAn innovative approach for automatically grading spelling in essays using rubric-based scoringJ Comput Syst Sci2013791040105610.1016/j.jcss.2013.01.021 KaurHMainiRAssessing lexical similarity between short sentences of source code based on granularityInt j inf tecnol20191159961410.1007/s41870-018-0213-1 Olowolayemo A, Nawi SD, Mantoro T (2018) Short answer scoring in English grammar using text similarity measurement”, ICCED:131–136. https://doi.org/10.1109/ICCED.2018.00034 Thongyoo T, Saelee S, Krootjohn S (2016) Automated Thai online assignment scoring. Fifth ICT International Student Project Conference (ICT-ISPC), pp. 33–36.doi: https://doi.org/10.1109/ICT-ISPC.2016.7519229. AhamadMAhmadNStudents’ knowledge assessment using the ensemble methodsInt j inf tecnol2021131025103210.1007/s41870-020-00593-8 Chaturvedi B, Basak R (2019) Automatic short-answer grading using corpus-based semantic similarity measurements. Proc ICACIE 2019 2:266–281 Peng X, Ke D, Chen Z, Xu B (2010) Automated Chinese essay scoring using vector space models. 4th International Universal Communication Symposium, Beijing, 149–153. BoradeJGKiwelekarAWNetakLDAutomatic grading of student's presentation skills based on PowerPoint presentation and audioUPorto J Eng202289510710.2484/2183-6493_008.002_0008ISSN 2183-6493 Sagar P, Ziyaan D, Praveen S, Rajdeep D, Amey K, Arnab B (2017) Automatic Grading and Feedback using Program Repair for Introductory Programming Courses. ITiCSE, pp. 92–97 Azmi AqilMAl-JouieMFHussainMAAEE–Automated evaluation of students’ essays in the Arabic languageInf Process Manage20195651736175210.1016/j.ipm.2019.05.008 Anak R, Putri A, Dyah L, Ihsan I, Diyanatul H, Prima P (2018) Automatic essay grading system for Japanese language examination using winnowing algorithm. International Seminar on Application for Technology of Information and Communication (iSemantic), pp 565–569 George N, Sijimol PJ, Varghese S (2019) Grading descriptive answer scripts using deep learning. IJITEE 8(5):991–996 ChandraMABediSSSurvey on SVM and their application in image classificationInt j inf tecnol20211311110.1007/s41870-017-0080-1 SüzenNGorbanANLevesleyJMirkesEMAutomatic short answer grading and feedback using text mining methodsProc Comput Sci202016972674310.1016/j.procs.2020.02.171ISSN 1877-0509 MeshramSAnand KumarMLong short-term memory network for learning sentences similarity using deep contextual embeddingsInt j inf tecnol2021131633164110.1007/s41870-021-00686-y Ajitiono T, Widyani Y (2016) Indonesian essay grading module using Natural Language Processing. International Conference on Data and Software Engineering (ICoDSE), pp. 1–5. https://doi.org/10.1109/ICODSE.2016.7936117 JandaHKPawarADuSMagoVSyntactic, semantic and sentiment analysis: the joint effect on automated essay evaluationIEEE Access2019710848610850310.1109/ACCESS.2019.2933354 SonawaneSSKulkarniPConcept-based document similarity using graph modelInt j inf tecnol20221431132210.1007/s41870-019-00314-w Youfang L, Li Y, Xiong J (2019) DeepReviewer: Collaborative Grammar and Innovation Neural Network for Automatic Paper Review. ICMI, pp. 395–403 Aluizio HF, Hercules P, Edilson F, Jonathan N (2018) An approach to evaluate adherence to the theme and the argumentative structure of essays. Proc Comput Sci 126:788–797 TarandeepWGurpreetJAmarpalSAn efficient automated answer scoring system for the Punjabi language”Egypt Inform J2018208996 Borade JG, Kiwelekar AW, Netak LD (2022) FeatureExtraction for automatic grading of students’ presentations. In: ICT systems and sustainability. Tuba M, Akashe S, Joshi A (eds) Springer Nature Singapore, Singapore vol 321, pp 293–301. https://doi.org/10.1007/978-981-16-5987-4_30. Online ISBN: 978-981-16-5987-4 Chang T, Lee C (2009) Automatic Chinese essay scoring using connections between concepts in paragraphs. 2009 International Conference on Asian Language Processing, pp. 265–268. https://doi.org/10.1109/IALP.2009.63 Borade JG, Kiwelekar AW, Netak LD (2022) Machine learning techniques for grading students’ presentations”. Intelligent Human Computer Interaction (2021), Lecture Notes in Computer Science, Springer, USA 13184:3–15. https://doi.org/10.1007/978-3-030-98404-5_1 M Azmi Aqil (1223_CR14) 2019; 56 1223_CR23 1223_CR25 MA Chandra (1223_CR2) 2021; 13 1223_CR24 JC Srihari (1223_CR22) 2008; 172 FB Goularte (1223_CR19) 2019; 115 H Kaur (1223_CR29) 2019; 11 1223_CR8 1223_CR9 1223_CR6 S Meshram (1223_CR30) 2021; 13 1223_CR7 1223_CR4 1223_CR5 N Süzen (1223_CR21) 2020; 169 1223_CR3 1223_CR1 HF FazalAnhar (1223_CR11) 2013; 79 SS Sonawane (1223_CR28) 2022; 14 1223_CR13 M Ahamad (1223_CR31) 2021; 13 W Tarandeep (1223_CR15) 2018; 20 1223_CR10 K Zupanc (1223_CR20) 2014; 2014 HK Janda (1223_CR12) 2019; 7 JG Borade (1223_CR26) 2022; 8 1223_CR16 1223_CR18 1223_CR17 JG Borade (1223_CR27) 2022; 36 |
| References_xml | – reference: BoradeJGKiwelekarAWNetakLDAutomatic grading of student's presentation skills based on PowerPoint presentation and audioUPorto J Eng202289510710.2484/2183-6493_008.002_0008ISSN 2183-6493 – reference: TarandeepWGurpreetJAmarpalSAn efficient automated answer scoring system for the Punjabi language”Egypt Inform J2018208996 – reference: MeshramSAnand KumarMLong short-term memory network for learning sentences similarity using deep contextual embeddingsInt j inf tecnol2021131633164110.1007/s41870-021-00686-y – reference: George N, Sijimol PJ, Varghese S (2019) Grading descriptive answer scripts using deep learning. IJITEE 8(5):991–996 – reference: KaurHMainiRAssessing lexical similarity between short sentences of source code based on granularityInt j inf tecnol20191159961410.1007/s41870-018-0213-1 – reference: Chaturvedi B, Basak R (2019) Automatic short-answer grading using corpus-based semantic similarity measurements. Proc ICACIE 2019 2:266–281 – reference: Anak R, Putri A, Dyah L, Ihsan I, Diyanatul H, Prima P (2018) Automatic essay grading system for Japanese language examination using winnowing algorithm. International Seminar on Application for Technology of Information and Communication (iSemantic), pp 565–569 – reference: SrihariJCSrihariRSrinivasanHShettySBrutt-GrifflerJAutomatic scoring of short handwritten essays in reading comprehension testsArtif Intell200817230032410.1016/j.artint.2007.06.005ISSN 0004-3702 – reference: Azmi AqilMAl-JouieMFHussainMAAEE–Automated evaluation of students’ essays in the Arabic languageInf Process Manage20195651736175210.1016/j.ipm.2019.05.008 – reference: Aluizio HF, Hercules P, Edilson F, Jonathan N (2018) An approach to evaluate adherence to the theme and the argumentative structure of essays. Proc Comput Sci 126:788–797 – reference: Thongyoo T, Saelee S, Krootjohn S (2016) Automated Thai online assignment scoring. Fifth ICT International Student Project Conference (ICT-ISPC), pp. 33–36.doi: https://doi.org/10.1109/ICT-ISPC.2016.7519229. – reference: Borade JG, Kiwelekar AW, Netak LD (2022) FeatureExtraction for automatic grading of students’ presentations. In: ICT systems and sustainability. Tuba M, Akashe S, Joshi A (eds) Springer Nature Singapore, Singapore vol 321, pp 293–301. https://doi.org/10.1007/978-981-16-5987-4_30. Online ISBN: 978-981-16-5987-4 – reference: BoradeJGKiwelekarAWNetakLDAutomated grading of PowerPoint presentation using latent semantic analysisRevue d'Intelligence Artificielle, Int Inform Eng Technol202236230531110.18280/ria.360215issn: 1958-5748 – reference: Borade JG, Kiwelekar AW, Netak LD (2022) Machine learning techniques for grading students’ presentations”. Intelligent Human Computer Interaction (2021), Lecture Notes in Computer Science, Springer, USA 13184:3–15. https://doi.org/10.1007/978-3-030-98404-5_1 – reference: Borade JG, Netak LD. Automated grading of essays: a review. In: Singh M, Kang DK, Lee JH, Tiwary US, Singh D, Chung WY (eds) Intelligent Human Computer Interaction. IHCI 2020. Lecture Notes in Computer Science, vol 12615, pp 238–249. Springer, Cham. https://doi.org/10.1007/978-3-030-68449-5_25 – reference: ChandraMABediSSSurvey on SVM and their application in image classificationInt j inf tecnol20211311110.1007/s41870-017-0080-1 – reference: Wilson J (2018) Universal screening with automated essay scoring: evaluating classification accuracy in grades 3 and 4. J School Psychol. 68:19–37. https://doi.org/10.1016/j.jsp.2017.12.005 – reference: Ajitiono T, Widyani Y (2016) Indonesian essay grading module using Natural Language Processing. International Conference on Data and Software Engineering (ICoDSE), pp. 1–5. https://doi.org/10.1109/ICODSE.2016.7936117 – reference: SüzenNGorbanANLevesleyJMirkesEMAutomatic short answer grading and feedback using text mining methodsProc Comput Sci202016972674310.1016/j.procs.2020.02.171ISSN 1877-0509 – reference: AhamadMAhmadNStudents’ knowledge assessment using the ensemble methodsInt j inf tecnol2021131025103210.1007/s41870-020-00593-8 – reference: Chang T, Lee C (2009) Automatic Chinese essay scoring using connections between concepts in paragraphs. 2009 International Conference on Asian Language Processing, pp. 265–268. https://doi.org/10.1109/IALP.2009.63 – reference: Youfang L, Li Y, Xiong J (2019) DeepReviewer: Collaborative Grammar and Innovation Neural Network for Automatic Paper Review. ICMI, pp. 395–403 – reference: Olowolayemo A, Nawi SD, Mantoro T (2018) Short answer scoring in English grammar using text similarity measurement”, ICCED:131–136. https://doi.org/10.1109/ICCED.2018.00034 – reference: Sagar P, Ziyaan D, Praveen S, Rajdeep D, Amey K, Arnab B (2017) Automatic Grading and Feedback using Program Repair for Introductory Programming Courses. ITiCSE, pp. 92–97 – reference: Surya K, Ekansh G, Kailasanathan, Nallakaruppan (2019) Deep learning for short answer scoring. Int J Recent Technol Eng. 7:1712–1715 – reference: FazalAnharHFTharamDAn innovative approach for automatically grading spelling in essays using rubric-based scoringJ Comput Syst Sci2013791040105610.1016/j.jcss.2013.01.021 – reference: ZupancKBosnicZAutomated Essay Evaluation Augmented with Semantic Coherence MeasuresIEEE International Conference on Data Mining201420141133113810.1109/ICDM.2014.21 – reference: GoularteFBNassarSMFiletoRSaggionHA text summarization method based on fuzzy rules and applicable to automated assessmentExpert Syst Appl201911526427510.1016/j.eswa.2018.07.047ISSN 0957-4174 – reference: JandaHKPawarADuSMagoVSyntactic, semantic and sentiment analysis: the joint effect on automated essay evaluationIEEE Access2019710848610850310.1109/ACCESS.2019.2933354 – reference: Peng X, Ke D, Chen Z, Xu B (2010) Automated Chinese essay scoring using vector space models. 4th International Universal Communication Symposium, Beijing, 149–153. – reference: SonawaneSSKulkarniPConcept-based document similarity using graph modelInt j inf tecnol20221431132210.1007/s41870-019-00314-w – ident: 1223_CR7 doi: 10.1109/ICCED.2018.00034 – ident: 1223_CR3 – ident: 1223_CR5 doi: 10.1109/ICODSE.2016.7936117 – ident: 1223_CR9 – volume: 20 start-page: 89 year: 2018 ident: 1223_CR15 publication-title: Egypt Inform J – ident: 1223_CR17 doi: 10.1109/IUCS.2010.5666229 – ident: 1223_CR23 doi: 10.1109/IALP.2009.63 – ident: 1223_CR1 doi: 10.1007/978-3-030-68449-5_25 – ident: 1223_CR18 doi: 10.1109/ICT-ISPC.2016.7519229 – volume: 2014 start-page: 1133 year: 2014 ident: 1223_CR20 publication-title: IEEE International Conference on Data Mining doi: 10.1109/ICDM.2014.21 – volume: 115 start-page: 264 year: 2019 ident: 1223_CR19 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.07.047 – volume: 169 start-page: 726 year: 2020 ident: 1223_CR21 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2020.02.171 – ident: 1223_CR13 doi: 10.1016/j.jsp.2017.12.005 – volume: 14 start-page: 311 year: 2022 ident: 1223_CR28 publication-title: Int j inf tecnol doi: 10.1007/s41870-019-00314-w – ident: 1223_CR8 doi: 10.1007/978-981-15-6353-9_24 – volume: 13 start-page: 1025 year: 2021 ident: 1223_CR31 publication-title: Int j inf tecnol doi: 10.1007/s41870-020-00593-8 – volume: 13 start-page: 1 year: 2021 ident: 1223_CR2 publication-title: Int j inf tecnol doi: 10.1007/s41870-017-0080-1 – volume: 8 start-page: 95 year: 2022 ident: 1223_CR26 publication-title: UPorto J Eng doi: 10.2484/2183-6493_008.002_0008 – ident: 1223_CR6 – volume: 36 start-page: 305 issue: 2 year: 2022 ident: 1223_CR27 publication-title: Revue d'Intelligence Artificielle, Int Inform Eng Technol doi: 10.18280/ria.360215 – ident: 1223_CR10 doi: 10.1016/j.procs.2018.08.013 – volume: 56 start-page: 1736 issue: 5 year: 2019 ident: 1223_CR14 publication-title: Inf Process Manage doi: 10.1016/j.ipm.2019.05.008 – volume: 172 start-page: 300 year: 2008 ident: 1223_CR22 publication-title: Artif Intell doi: 10.1016/j.artint.2007.06.005 – ident: 1223_CR4 – ident: 1223_CR24 doi: 10.1007/978-981-16-5987-4_30 – volume: 11 start-page: 599 year: 2019 ident: 1223_CR29 publication-title: Int j inf tecnol doi: 10.1007/s41870-018-0213-1 – ident: 1223_CR16 – volume: 7 start-page: 108486 year: 2019 ident: 1223_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933354 – ident: 1223_CR25 doi: 10.1007/978-3-030-98404-5_1 – volume: 79 start-page: 1040 year: 2013 ident: 1223_CR11 publication-title: J Comput Syst Sci doi: 10.1016/j.jcss.2013.01.021 – volume: 13 start-page: 1633 year: 2021 ident: 1223_CR30 publication-title: Int j inf tecnol doi: 10.1007/s41870-021-00686-y |
| SSID | ssib031263571 ssj0002710285 |
| Score | 2.2142496 |
| Snippet | In the educational system, assessments are essential for evaluating students’ performance. An evaluation using manual grading is a laborious and time-consuming... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2303 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Automation Classification Computer engineering Computer Imaging Computer Science Datasets Deep learning Embedding Essays Image Processing and Computer Vision Language Machine Learning Natural language processing Neural networks Original Research Pattern Recognition and Graphics Performance evaluation Semantic analysis Semantics Similarity Skills Software Engineering Students Support vector machines Vision Words (language) |
| SummonAdditionalLinks | – databaseName: SpringerLINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NwgM8bFBAdOsmP_AGlmLHiePHaVq1p6rSNtS3yHacqgjSqSmbeONv7O_tl8znOi1MDGk8JnGs6O6cu9N99x3AR1kom_JKUV3UiorMWqqEqinn2vsLJUyRr4dNyPG4mE7VJDaFtR3avStJhj_1ptlNsAKHpHDE_3inRtUzeJ4h2wzm6OdfOitKGfKrxCDnayitoRNFLCOG09TnOCJ2z_x92z891DbsfFApDQ5otPd_n_4admPASY7XFvIGdlzTh71umAOJZ7sPr35jJnwLs9PIAt7MiA8RiUYgfIMI7NVPsqjDvQkOWJss5s2KXG2bmJr27tctQQQ8QjQI4upn5ManuMR9N66qwo4dcWz7Di5HpxcnZzTOZKCWp0JRm9UycaHhlyUmT6zi1qcoxvtCo1htc5cmRihjpakyx0wqpfXXLpG5EbWT6XvoNYvGfQCCPbqZMjrJtU_SJdNcK51r6UReFyapBsA6PZQ2Epbj3Ixv5YZqOci19HItg1xLNYBPm3eu1nQd_1w97NRbxqPblqlPsjgTjLMBfO7UuX38-G77T1t-AC95sAhEAQ2ht1r-cIfwwl6v5u3yKJj0Pdyn7kE priority: 102 providerName: Springer Nature |
| Title | Evaluating the authenticity of the PowerPoint presentations’ contents using word embedding techniques |
| URI | https://link.springer.com/article/10.1007/s41870-023-01223-9 https://www.proquest.com/docview/3255214121 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2511-2112 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2511-2112 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2511-2112 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2511-2112 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: RSV dateStart: 20170301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6Vtgc4lLaAumWpfODWWo0dJ45PFaCtOK2iQquKS2Q7zqoIsttmAfXW1-D1eJJ6vM4uINELF0v5s5TMxDPj-WY-gNeyUDbltaK6aBQVmbVUCdVQzrW3F0qYIl-QTcjxuLi8VGXccOsirLJfE8NCXU8t7pEfp9735Uwwzk5m1xRZozC7Gik0HsEG434RxqSspL0-pQw7rUR353NIsqE5RVQjOtbURzsi1tGEajrBCmRh4Qgw8laTqj9t1coB_StnGkzR6dP_fYlt2IpOKHmz0JodWHPtLjz5rTXhM5iMYhvwdkK8j0g0IuFbhGDPb8m0CedKZFgrp1ftnMxWVUxt9-vuJ0EIPGI0CALrJ-SHj3GJ-2pcXYcZ-86x3XM4Px19fPeeRlIGankqFLVZIxMXKn5ZYvLEKm59jGK8MTSKNTZ3aWKEMlaaOnPMpFJaf-wSmRvROJm-gPV22ro9IFikmymjk1z7KF0yzbXSuZZO5E1hknoArP_8lY0dy5E440u17LUcRFZ5kVVBZJUawOHymdmiX8eDdw97OVXx3-2qlZAGcNRLenX537PtPzzbS3jMg3Ih7GcI6_Obb-4VbNrv86vu5gA23o7G5dlB0GA_ltknP559uLgHMmv1Nw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5tl0qFQ1v6oy5dqA_01FrEjvPjQ1UBXQQCVquKStxS23FWiyC7JQsVt75GX6IP1Sepx5uwtFK5ceCYv5ESf54Zx998A7CepNKEPJdUpYWkIjKGSiELyrly8UIKncazZhNJv58eH8tBC341tTBIq2x8onfU-djgP_KN0OW-nAnG2cfJN4pdo3B3tWmhMYPFvr367pZs1Ye9T25833K-0zva3qV1VwFqeCgkNVGRBNaXrLJAx4GR3LgkWztvriUrTGzDQAupTaLzyDIdJolxx9Yt-LUobBI6uw9gQYQijtqwsNXrDz43CA4ZarvUCdaJ39bDAI48SkzlqVtfibpyx9fvCZZi3xeOlCYXp6n8OzrOU95_dml98Nt5ct8-21N4XKfZZHM2L5ahZctnsHRDfPE5DHu10Hk5JC4LJgq5_iWSzKdXZFz4cwPsITcYj8opmczrtMrq94-fBEn-yEIhWDowJPhuxJ5pm-feYqONW72AL3fypi-hXY5L-woIliFHUqsgVoGLSExxJVWsEiviItVB3gHWDHdmak12bA1yml2rSXuIZA4imYdIJjvw7vqZyUyR5Na7uw0usto7VdkcFB143yBrfvn_1lZut_YGHu0eHR5kB3v9_dewyD2wkeTUhfb0_MKuwkNzOR1V52v1vCHw9a4x9wf5BE7e |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLULlwG8rFgr4ACewGjveOD4gRNtdURWtIgRSb8F2nFWrkl2abVFvvAavwuPwJHi8TheQ6K0HjvkbKfHnmXH8fTMAz2SubMorRXVeKyoG1lIlVE051z5eKGHybNFsQo7H-cGBKlbgR6eFQVpl5xODo66mFv-Rb6U-9-VMMM626kiLKHZHr2dfKHaQwp3Wrp3GAiL77vyrX761r_Z2_Vg_53w0_LDzlsYOA9TyVChqB7VMXJCvssRkiVXc-oTbeM9uFKtt5tLECGWsNNXAMZNKaf2x84t_I2onU2_3GqzK1C96erC6PRwX7zs0pwzrvMRk6yhs8WEwR04lpvXUr7VEVPEELZ9gOfaA4Uhv8jGbqj8j5TL9_WvHNgTC0e3_-RPegVsx_SZvFvPlLqy45h7c_K0o432YDGMB9GZCfHZMNGoAGiSfz8_JtA7nCuwtV0wPmzmZLfVbTfvz23eC5H9kpxCUFEwIvhtxn42rqmCxq5nbrsPHK3nTDeg108Y9AILy5IEyOsl04iMV01wrnWnpRFbnJqn6wLqhL22s1Y4tQ47LiyrTAS6lh0sZ4FKqPry4eGa2qFRy6d2bHUbK6LXacgmQPrzsULa8_G9rDy-39hRueKCV7_bG-49gjQeMI_dpE3rzk1P3GK7bs_lhe_IkTiECn64acr8AC3pXoQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+authenticity+of+the+PowerPoint+presentations%E2%80%99+contents+using+word+embedding+techniques&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Borade%2C+J.+G&rft.au=Netak%2C+L.+D&rft.au=Kiwelekar%2C+A.+W&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=15&rft.issue=4&rft.spage=2303&rft.epage=2316&rft_id=info:doi/10.1007%2Fs41870-023-01223-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon |