Evaluating the authenticity of the PowerPoint presentations’ contents using word embedding techniques

In the educational system, assessments are essential for evaluating students’ performance. An evaluation using manual grading is a laborious and time-consuming task and is vulnerable to inconsistencies and inaccuracies. Even though there has been significant research to automate the evaluation of st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of information technology (Singapore. Online) Ročník 15; číslo 4; s. 2303 - 2316
Hlavní autoři: Borade, J. G., Netak, L. D., Kiwelekar, A. W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.04.2023
Springer Nature B.V
Témata:
ISSN:2511-2104, 2511-2112
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the educational system, assessments are essential for evaluating students’ performance. An evaluation using manual grading is a laborious and time-consuming task and is vulnerable to inconsistencies and inaccuracies. Even though there has been significant research to automate the evaluation of student work, researchers still need to consider PowerPoint presentation grading. In our earlier research, we graded students’ PowerPoint presentations based on the quality features, not the contents. In this study, we have graded PowerPoint presentations based on the text contents to check the students’ expertise on the topic. Our approach consists of two main steps. The first step extracts the text from the PowerPoint presentations using the python-pptx library. PowerPoint presentation text is represented in vectors using various word embedding techniques in the semantic space (SS). In the next step, similarities between students’ and reference PowerPoint presentation vectors are calculated using Cosine Similarity (CS). Depending on the similarity score, the student’s presentation is graded automatically. Experimental results depict that the results gained using the tf-idf word embedding technique are comparable. The system proposed using tf-idf word embedding gives better results than other word embedding techniques. The agreement between the human score and our system score is measured using Quadratic Weighted Kappa (QWK). Our system performs with a QWK score of 0.88 and an accuracy of 82.60%.
AbstractList In the educational system, assessments are essential for evaluating students’ performance. An evaluation using manual grading is a laborious and time-consuming task and is vulnerable to inconsistencies and inaccuracies. Even though there has been significant research to automate the evaluation of student work, researchers still need to consider PowerPoint presentation grading. In our earlier research, we graded students’ PowerPoint presentations based on the quality features, not the contents. In this study, we have graded PowerPoint presentations based on the text contents to check the students’ expertise on the topic. Our approach consists of two main steps. The first step extracts the text from the PowerPoint presentations using the python-pptx library. PowerPoint presentation text is represented in vectors using various word embedding techniques in the semantic space (SS). In the next step, similarities between students’ and reference PowerPoint presentation vectors are calculated using Cosine Similarity (CS). Depending on the similarity score, the student’s presentation is graded automatically. Experimental results depict that the results gained using the tf-idf word embedding technique are comparable. The system proposed using tf-idf word embedding gives better results than other word embedding techniques. The agreement between the human score and our system score is measured using Quadratic Weighted Kappa (QWK). Our system performs with a QWK score of 0.88 and an accuracy of 82.60%.
Author Kiwelekar, A. W.
Netak, L. D.
Borade, J. G.
Author_xml – sequence: 1
  givenname: J. G.
  orcidid: 0000-0002-6062-7249
  surname: Borade
  fullname: Borade, J. G.
  email: jyoti.borade81@gmail.com
  organization: Department of Computer Engineering, Dr. Babasaheb Ambedkar Technological University
– sequence: 2
  givenname: L. D.
  surname: Netak
  fullname: Netak, L. D.
  organization: Department of Computer Engineering, Dr. Babasaheb Ambedkar Technological University
– sequence: 3
  givenname: A. W.
  surname: Kiwelekar
  fullname: Kiwelekar, A. W.
  organization: Department of Computer Engineering, Dr. Babasaheb Ambedkar Technological University
BookMark eNp9kE1OwzAQhS1UJErpBVhFYh3w2EncLFFVfqRKdAFrK3ac1qi1i-1Qdcc1uB4nwU0QSCy6GXvG772xvnM0MNYohC4BXwPG7MZnMGE4xYSmGEis5QkakhwgJQBk8HvH2Rkae68FpkAKmjMYouXsvVq3VdBmmYSVSqo2VhO01GGf2KabLexOuYXVJiRbp3x8jnpr_NfHZyKtCXHgk9YfInbW1YnaCFXXXaKSK6PfWuUv0GlTrb0a_5wj9HI3e54-pPOn-8fp7TyVhGZlKvOGYZUTIBSwKLAsiYQJERlQUUIjC0WxyEohmahzBYIyJmOvMCtE1ihGR-iqz906e9gb-KttnYkrOSV5DM6AQFSRXiWd9d6phm-d3lRuzwHzA1PeM-WRKe-Y8jKaJv9MEVJHIrhKr49baW_1cY9ZKvf3qyOubw77j50
CitedBy_id crossref_primary_10_1007_s42979_024_02965_4
Cites_doi 10.1109/ICCED.2018.00034
10.1109/ICODSE.2016.7936117
10.1109/IUCS.2010.5666229
10.1109/IALP.2009.63
10.1007/978-3-030-68449-5_25
10.1109/ICT-ISPC.2016.7519229
10.1109/ICDM.2014.21
10.1016/j.eswa.2018.07.047
10.1016/j.procs.2020.02.171
10.1016/j.jsp.2017.12.005
10.1007/s41870-019-00314-w
10.1007/978-981-15-6353-9_24
10.1007/s41870-020-00593-8
10.1007/s41870-017-0080-1
10.2484/2183-6493_008.002_0008
10.18280/ria.360215
10.1016/j.procs.2018.08.013
10.1016/j.ipm.2019.05.008
10.1016/j.artint.2007.06.005
10.1007/978-981-16-5987-4_30
10.1007/s41870-018-0213-1
10.1109/ACCESS.2019.2933354
10.1007/978-3-030-98404-5_1
10.1016/j.jcss.2013.01.021
10.1007/s41870-021-00686-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s41870-023-01223-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2511-2112
EndPage 2316
ExternalDocumentID 10_1007_s41870_023_01223_9
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z7Z
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
JQ2
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2349-c5f70e5212310b60c92c182b413b91fc6e30b49bc7bd5e1b377cb49e076b4fe73
IEDL.DBID K7-
ISSN 2511-2104
IngestDate Tue Sep 30 03:14:24 EDT 2025
Tue Nov 18 22:32:07 EST 2025
Sat Nov 29 03:11:47 EST 2025
Fri Feb 21 02:43:23 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Cosine similarity
Word embedding
BERT (bidirectional encoder representations from transformers)
TF-IDF (term frequency-inverse document frequency)
Feature vector
Count vector
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2349-c5f70e5212310b60c92c182b413b91fc6e30b49bc7bd5e1b377cb49e076b4fe73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6062-7249
PQID 3255214121
PQPubID 2034493
PageCount 14
ParticipantIDs proquest_journals_3255214121
crossref_primary_10_1007_s41870_023_01223_9
crossref_citationtrail_10_1007_s41870_023_01223_9
springer_journals_10_1007_s41870_023_01223_9
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationSubtitle An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management
PublicationTitle International journal of information technology (Singapore. Online)
PublicationTitleAbbrev Int. j. inf. tecnol
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Borade JG, Netak LD. Automated grading of essays: a review. In: Singh M, Kang DK, Lee JH, Tiwary US, Singh D, Chung WY (eds) Intelligent Human Computer Interaction. IHCI 2020. Lecture Notes in Computer Science, vol 12615, pp 238–249. Springer, Cham. https://doi.org/10.1007/978-3-030-68449-5_25
Wilson J (2018) Universal screening with automated essay scoring: evaluating classification accuracy in grades 3 and 4. J School Psychol. 68:19–37. https://doi.org/10.1016/j.jsp.2017.12.005
SrihariJCSrihariRSrinivasanHShettySBrutt-GrifflerJAutomatic scoring of short handwritten essays in reading comprehension testsArtif Intell200817230032410.1016/j.artint.2007.06.005ISSN 0004-3702
GoularteFBNassarSMFiletoRSaggionHA text summarization method based on fuzzy rules and applicable to automated assessmentExpert Syst Appl201911526427510.1016/j.eswa.2018.07.047ISSN 0957-4174
BoradeJGKiwelekarAWNetakLDAutomated grading of PowerPoint presentation using latent semantic analysisRevue d'Intelligence Artificielle, Int Inform Eng Technol202236230531110.18280/ria.360215issn: 1958-5748
Surya K, Ekansh G, Kailasanathan, Nallakaruppan (2019) Deep learning for short answer scoring. Int J Recent Technol Eng. 7:1712–1715
ZupancKBosnicZAutomated Essay Evaluation Augmented with Semantic Coherence MeasuresIEEE International Conference on Data Mining201420141133113810.1109/ICDM.2014.21
FazalAnharHFTharamDAn innovative approach for automatically grading spelling in essays using rubric-based scoringJ Comput Syst Sci2013791040105610.1016/j.jcss.2013.01.021
KaurHMainiRAssessing lexical similarity between short sentences of source code based on granularityInt j inf tecnol20191159961410.1007/s41870-018-0213-1
Olowolayemo A, Nawi SD, Mantoro T (2018) Short answer scoring in English grammar using text similarity measurement”, ICCED:131–136. https://doi.org/10.1109/ICCED.2018.00034
Thongyoo T, Saelee S, Krootjohn S (2016) Automated Thai online assignment scoring. Fifth ICT International Student Project Conference (ICT-ISPC), pp. 33–36.doi: https://doi.org/10.1109/ICT-ISPC.2016.7519229.
AhamadMAhmadNStudents’ knowledge assessment using the ensemble methodsInt j inf tecnol2021131025103210.1007/s41870-020-00593-8
Chaturvedi B, Basak R (2019) Automatic short-answer grading using corpus-based semantic similarity measurements. Proc ICACIE 2019 2:266–281
Peng X, Ke D, Chen Z, Xu B (2010) Automated Chinese essay scoring using vector space models. 4th International Universal Communication Symposium, Beijing, 149–153.
BoradeJGKiwelekarAWNetakLDAutomatic grading of student's presentation skills based on PowerPoint presentation and audioUPorto J Eng202289510710.2484/2183-6493_008.002_0008ISSN 2183-6493
Sagar P, Ziyaan D, Praveen S, Rajdeep D, Amey K, Arnab B (2017) Automatic Grading and Feedback using Program Repair for Introductory Programming Courses. ITiCSE, pp. 92–97
Azmi AqilMAl-JouieMFHussainMAAEE–Automated evaluation of students’ essays in the Arabic languageInf Process Manage20195651736175210.1016/j.ipm.2019.05.008
Anak R, Putri A, Dyah L, Ihsan I, Diyanatul H, Prima P (2018) Automatic essay grading system for Japanese language examination using winnowing algorithm. International Seminar on Application for Technology of Information and Communication (iSemantic), pp 565–569
George N, Sijimol PJ, Varghese S (2019) Grading descriptive answer scripts using deep learning. IJITEE 8(5):991–996
ChandraMABediSSSurvey on SVM and their application in image classificationInt j inf tecnol20211311110.1007/s41870-017-0080-1
SüzenNGorbanANLevesleyJMirkesEMAutomatic short answer grading and feedback using text mining methodsProc Comput Sci202016972674310.1016/j.procs.2020.02.171ISSN 1877-0509
MeshramSAnand KumarMLong short-term memory network for learning sentences similarity using deep contextual embeddingsInt j inf tecnol2021131633164110.1007/s41870-021-00686-y
Ajitiono T, Widyani Y (2016) Indonesian essay grading module using Natural Language Processing. International Conference on Data and Software Engineering (ICoDSE), pp. 1–5. https://doi.org/10.1109/ICODSE.2016.7936117
JandaHKPawarADuSMagoVSyntactic, semantic and sentiment analysis: the joint effect on automated essay evaluationIEEE Access2019710848610850310.1109/ACCESS.2019.2933354
SonawaneSSKulkarniPConcept-based document similarity using graph modelInt j inf tecnol20221431132210.1007/s41870-019-00314-w
Youfang L, Li Y, Xiong J (2019) DeepReviewer: Collaborative Grammar and Innovation Neural Network for Automatic Paper Review. ICMI, pp. 395–403
Aluizio HF, Hercules P, Edilson F, Jonathan N (2018) An approach to evaluate adherence to the theme and the argumentative structure of essays. Proc Comput Sci 126:788–797
TarandeepWGurpreetJAmarpalSAn efficient automated answer scoring system for the Punjabi language”Egypt Inform J2018208996
Borade JG, Kiwelekar AW, Netak LD (2022) FeatureExtraction for automatic grading of students’ presentations. In: ICT systems and sustainability. Tuba M, Akashe S, Joshi A (eds) Springer Nature Singapore, Singapore vol 321, pp 293–301. https://doi.org/10.1007/978-981-16-5987-4_30. Online ISBN: 978-981-16-5987-4
Chang T, Lee C (2009) Automatic Chinese essay scoring using connections between concepts in paragraphs. 2009 International Conference on Asian Language Processing, pp. 265–268. https://doi.org/10.1109/IALP.2009.63
Borade JG, Kiwelekar AW, Netak LD (2022) Machine learning techniques for grading students’ presentations”. Intelligent Human Computer Interaction (2021), Lecture Notes in Computer Science, Springer, USA 13184:3–15. https://doi.org/10.1007/978-3-030-98404-5_1
M Azmi Aqil (1223_CR14) 2019; 56
1223_CR23
1223_CR25
MA Chandra (1223_CR2) 2021; 13
1223_CR24
JC Srihari (1223_CR22) 2008; 172
FB Goularte (1223_CR19) 2019; 115
H Kaur (1223_CR29) 2019; 11
1223_CR8
1223_CR9
1223_CR6
S Meshram (1223_CR30) 2021; 13
1223_CR7
1223_CR4
1223_CR5
N Süzen (1223_CR21) 2020; 169
1223_CR3
1223_CR1
HF FazalAnhar (1223_CR11) 2013; 79
SS Sonawane (1223_CR28) 2022; 14
1223_CR13
M Ahamad (1223_CR31) 2021; 13
W Tarandeep (1223_CR15) 2018; 20
1223_CR10
K Zupanc (1223_CR20) 2014; 2014
HK Janda (1223_CR12) 2019; 7
JG Borade (1223_CR26) 2022; 8
1223_CR16
1223_CR18
1223_CR17
JG Borade (1223_CR27) 2022; 36
References_xml – reference: BoradeJGKiwelekarAWNetakLDAutomatic grading of student's presentation skills based on PowerPoint presentation and audioUPorto J Eng202289510710.2484/2183-6493_008.002_0008ISSN 2183-6493
– reference: TarandeepWGurpreetJAmarpalSAn efficient automated answer scoring system for the Punjabi language”Egypt Inform J2018208996
– reference: MeshramSAnand KumarMLong short-term memory network for learning sentences similarity using deep contextual embeddingsInt j inf tecnol2021131633164110.1007/s41870-021-00686-y
– reference: George N, Sijimol PJ, Varghese S (2019) Grading descriptive answer scripts using deep learning. IJITEE 8(5):991–996
– reference: KaurHMainiRAssessing lexical similarity between short sentences of source code based on granularityInt j inf tecnol20191159961410.1007/s41870-018-0213-1
– reference: Chaturvedi B, Basak R (2019) Automatic short-answer grading using corpus-based semantic similarity measurements. Proc ICACIE 2019 2:266–281
– reference: Anak R, Putri A, Dyah L, Ihsan I, Diyanatul H, Prima P (2018) Automatic essay grading system for Japanese language examination using winnowing algorithm. International Seminar on Application for Technology of Information and Communication (iSemantic), pp 565–569
– reference: SrihariJCSrihariRSrinivasanHShettySBrutt-GrifflerJAutomatic scoring of short handwritten essays in reading comprehension testsArtif Intell200817230032410.1016/j.artint.2007.06.005ISSN 0004-3702
– reference: Azmi AqilMAl-JouieMFHussainMAAEE–Automated evaluation of students’ essays in the Arabic languageInf Process Manage20195651736175210.1016/j.ipm.2019.05.008
– reference: Aluizio HF, Hercules P, Edilson F, Jonathan N (2018) An approach to evaluate adherence to the theme and the argumentative structure of essays. Proc Comput Sci 126:788–797
– reference: Thongyoo T, Saelee S, Krootjohn S (2016) Automated Thai online assignment scoring. Fifth ICT International Student Project Conference (ICT-ISPC), pp. 33–36.doi: https://doi.org/10.1109/ICT-ISPC.2016.7519229.
– reference: Borade JG, Kiwelekar AW, Netak LD (2022) FeatureExtraction for automatic grading of students’ presentations. In: ICT systems and sustainability. Tuba M, Akashe S, Joshi A (eds) Springer Nature Singapore, Singapore vol 321, pp 293–301. https://doi.org/10.1007/978-981-16-5987-4_30. Online ISBN: 978-981-16-5987-4
– reference: BoradeJGKiwelekarAWNetakLDAutomated grading of PowerPoint presentation using latent semantic analysisRevue d'Intelligence Artificielle, Int Inform Eng Technol202236230531110.18280/ria.360215issn: 1958-5748
– reference: Borade JG, Kiwelekar AW, Netak LD (2022) Machine learning techniques for grading students’ presentations”. Intelligent Human Computer Interaction (2021), Lecture Notes in Computer Science, Springer, USA 13184:3–15. https://doi.org/10.1007/978-3-030-98404-5_1
– reference: Borade JG, Netak LD. Automated grading of essays: a review. In: Singh M, Kang DK, Lee JH, Tiwary US, Singh D, Chung WY (eds) Intelligent Human Computer Interaction. IHCI 2020. Lecture Notes in Computer Science, vol 12615, pp 238–249. Springer, Cham. https://doi.org/10.1007/978-3-030-68449-5_25
– reference: ChandraMABediSSSurvey on SVM and their application in image classificationInt j inf tecnol20211311110.1007/s41870-017-0080-1
– reference: Wilson J (2018) Universal screening with automated essay scoring: evaluating classification accuracy in grades 3 and 4. J School Psychol. 68:19–37. https://doi.org/10.1016/j.jsp.2017.12.005
– reference: Ajitiono T, Widyani Y (2016) Indonesian essay grading module using Natural Language Processing. International Conference on Data and Software Engineering (ICoDSE), pp. 1–5. https://doi.org/10.1109/ICODSE.2016.7936117
– reference: SüzenNGorbanANLevesleyJMirkesEMAutomatic short answer grading and feedback using text mining methodsProc Comput Sci202016972674310.1016/j.procs.2020.02.171ISSN 1877-0509
– reference: AhamadMAhmadNStudents’ knowledge assessment using the ensemble methodsInt j inf tecnol2021131025103210.1007/s41870-020-00593-8
– reference: Chang T, Lee C (2009) Automatic Chinese essay scoring using connections between concepts in paragraphs. 2009 International Conference on Asian Language Processing, pp. 265–268. https://doi.org/10.1109/IALP.2009.63
– reference: Youfang L, Li Y, Xiong J (2019) DeepReviewer: Collaborative Grammar and Innovation Neural Network for Automatic Paper Review. ICMI, pp. 395–403
– reference: Olowolayemo A, Nawi SD, Mantoro T (2018) Short answer scoring in English grammar using text similarity measurement”, ICCED:131–136. https://doi.org/10.1109/ICCED.2018.00034
– reference: Sagar P, Ziyaan D, Praveen S, Rajdeep D, Amey K, Arnab B (2017) Automatic Grading and Feedback using Program Repair for Introductory Programming Courses. ITiCSE, pp. 92–97
– reference: Surya K, Ekansh G, Kailasanathan, Nallakaruppan (2019) Deep learning for short answer scoring. Int J Recent Technol Eng. 7:1712–1715
– reference: FazalAnharHFTharamDAn innovative approach for automatically grading spelling in essays using rubric-based scoringJ Comput Syst Sci2013791040105610.1016/j.jcss.2013.01.021
– reference: ZupancKBosnicZAutomated Essay Evaluation Augmented with Semantic Coherence MeasuresIEEE International Conference on Data Mining201420141133113810.1109/ICDM.2014.21
– reference: GoularteFBNassarSMFiletoRSaggionHA text summarization method based on fuzzy rules and applicable to automated assessmentExpert Syst Appl201911526427510.1016/j.eswa.2018.07.047ISSN 0957-4174
– reference: JandaHKPawarADuSMagoVSyntactic, semantic and sentiment analysis: the joint effect on automated essay evaluationIEEE Access2019710848610850310.1109/ACCESS.2019.2933354
– reference: Peng X, Ke D, Chen Z, Xu B (2010) Automated Chinese essay scoring using vector space models. 4th International Universal Communication Symposium, Beijing, 149–153.
– reference: SonawaneSSKulkarniPConcept-based document similarity using graph modelInt j inf tecnol20221431132210.1007/s41870-019-00314-w
– ident: 1223_CR7
  doi: 10.1109/ICCED.2018.00034
– ident: 1223_CR3
– ident: 1223_CR5
  doi: 10.1109/ICODSE.2016.7936117
– ident: 1223_CR9
– volume: 20
  start-page: 89
  year: 2018
  ident: 1223_CR15
  publication-title: Egypt Inform J
– ident: 1223_CR17
  doi: 10.1109/IUCS.2010.5666229
– ident: 1223_CR23
  doi: 10.1109/IALP.2009.63
– ident: 1223_CR1
  doi: 10.1007/978-3-030-68449-5_25
– ident: 1223_CR18
  doi: 10.1109/ICT-ISPC.2016.7519229
– volume: 2014
  start-page: 1133
  year: 2014
  ident: 1223_CR20
  publication-title: IEEE International Conference on Data Mining
  doi: 10.1109/ICDM.2014.21
– volume: 115
  start-page: 264
  year: 2019
  ident: 1223_CR19
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.07.047
– volume: 169
  start-page: 726
  year: 2020
  ident: 1223_CR21
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2020.02.171
– ident: 1223_CR13
  doi: 10.1016/j.jsp.2017.12.005
– volume: 14
  start-page: 311
  year: 2022
  ident: 1223_CR28
  publication-title: Int j inf tecnol
  doi: 10.1007/s41870-019-00314-w
– ident: 1223_CR8
  doi: 10.1007/978-981-15-6353-9_24
– volume: 13
  start-page: 1025
  year: 2021
  ident: 1223_CR31
  publication-title: Int j inf tecnol
  doi: 10.1007/s41870-020-00593-8
– volume: 13
  start-page: 1
  year: 2021
  ident: 1223_CR2
  publication-title: Int j inf tecnol
  doi: 10.1007/s41870-017-0080-1
– volume: 8
  start-page: 95
  year: 2022
  ident: 1223_CR26
  publication-title: UPorto J Eng
  doi: 10.2484/2183-6493_008.002_0008
– ident: 1223_CR6
– volume: 36
  start-page: 305
  issue: 2
  year: 2022
  ident: 1223_CR27
  publication-title: Revue d'Intelligence Artificielle, Int Inform Eng Technol
  doi: 10.18280/ria.360215
– ident: 1223_CR10
  doi: 10.1016/j.procs.2018.08.013
– volume: 56
  start-page: 1736
  issue: 5
  year: 2019
  ident: 1223_CR14
  publication-title: Inf Process Manage
  doi: 10.1016/j.ipm.2019.05.008
– volume: 172
  start-page: 300
  year: 2008
  ident: 1223_CR22
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2007.06.005
– ident: 1223_CR4
– ident: 1223_CR24
  doi: 10.1007/978-981-16-5987-4_30
– volume: 11
  start-page: 599
  year: 2019
  ident: 1223_CR29
  publication-title: Int j inf tecnol
  doi: 10.1007/s41870-018-0213-1
– ident: 1223_CR16
– volume: 7
  start-page: 108486
  year: 2019
  ident: 1223_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933354
– ident: 1223_CR25
  doi: 10.1007/978-3-030-98404-5_1
– volume: 79
  start-page: 1040
  year: 2013
  ident: 1223_CR11
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2013.01.021
– volume: 13
  start-page: 1633
  year: 2021
  ident: 1223_CR30
  publication-title: Int j inf tecnol
  doi: 10.1007/s41870-021-00686-y
SSID ssib031263571
ssj0002710285
Score 2.2142496
Snippet In the educational system, assessments are essential for evaluating students’ performance. An evaluation using manual grading is a laborious and time-consuming...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2303
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Automation
Classification
Computer engineering
Computer Imaging
Computer Science
Datasets
Deep learning
Embedding
Essays
Image Processing and Computer Vision
Language
Machine Learning
Natural language processing
Neural networks
Original Research
Pattern Recognition and Graphics
Performance evaluation
Semantic analysis
Semantics
Similarity
Skills
Software Engineering
Students
Support vector machines
Vision
Words (language)
SummonAdditionalLinks – databaseName: SpringerLINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NwgM8bFBAdOsmP_AGlmLHiePHaVq1p6rSNtS3yHacqgjSqSmbeONv7O_tl8znOi1MDGk8JnGs6O6cu9N99x3AR1kom_JKUV3UiorMWqqEqinn2vsLJUyRr4dNyPG4mE7VJDaFtR3avStJhj_1ptlNsAKHpHDE_3inRtUzeJ4h2wzm6OdfOitKGfKrxCDnayitoRNFLCOG09TnOCJ2z_x92z891DbsfFApDQ5otPd_n_4admPASY7XFvIGdlzTh71umAOJZ7sPr35jJnwLs9PIAt7MiA8RiUYgfIMI7NVPsqjDvQkOWJss5s2KXG2bmJr27tctQQQ8QjQI4upn5ManuMR9N66qwo4dcWz7Di5HpxcnZzTOZKCWp0JRm9UycaHhlyUmT6zi1qcoxvtCo1htc5cmRihjpakyx0wqpfXXLpG5EbWT6XvoNYvGfQCCPbqZMjrJtU_SJdNcK51r6UReFyapBsA6PZQ2Epbj3Ixv5YZqOci19HItg1xLNYBPm3eu1nQd_1w97NRbxqPblqlPsjgTjLMBfO7UuX38-G77T1t-AC95sAhEAQ2ht1r-cIfwwl6v5u3yKJj0Pdyn7kE
  priority: 102
  providerName: Springer Nature
Title Evaluating the authenticity of the PowerPoint presentations’ contents using word embedding techniques
URI https://link.springer.com/article/10.1007/s41870-023-01223-9
https://www.proquest.com/docview/3255214121
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: RSV
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6Vtgc4lLaAumWpfODWWo0dJ45PFaCtOK2iQquKS2Q7zqoIsttmAfXW1-D1eJJ6vM4uINELF0v5s5TMxDPj-WY-gNeyUDbltaK6aBQVmbVUCdVQzrW3F0qYIl-QTcjxuLi8VGXccOsirLJfE8NCXU8t7pEfp9735Uwwzk5m1xRZozC7Gik0HsEG434RxqSspL0-pQw7rUR353NIsqE5RVQjOtbURzsi1tGEajrBCmRh4Qgw8laTqj9t1coB_StnGkzR6dP_fYlt2IpOKHmz0JodWHPtLjz5rTXhM5iMYhvwdkK8j0g0IuFbhGDPb8m0CedKZFgrp1ftnMxWVUxt9-vuJ0EIPGI0CALrJ-SHj3GJ-2pcXYcZ-86x3XM4Px19fPeeRlIGankqFLVZIxMXKn5ZYvLEKm59jGK8MTSKNTZ3aWKEMlaaOnPMpFJaf-wSmRvROJm-gPV22ro9IFikmymjk1z7KF0yzbXSuZZO5E1hknoArP_8lY0dy5E440u17LUcRFZ5kVVBZJUawOHymdmiX8eDdw97OVXx3-2qlZAGcNRLenX537PtPzzbS3jMg3Ih7GcI6_Obb-4VbNrv86vu5gA23o7G5dlB0GA_ltknP559uLgHMmv1Nw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5tl0qFQ1v6oy5dqA_01FrEjvPjQ1UBXQQCVquKStxS23FWiyC7JQsVt75GX6IP1Sepx5uwtFK5ceCYv5ESf54Zx998A7CepNKEPJdUpYWkIjKGSiELyrly8UIKncazZhNJv58eH8tBC341tTBIq2x8onfU-djgP_KN0OW-nAnG2cfJN4pdo3B3tWmhMYPFvr367pZs1Ye9T25833K-0zva3qV1VwFqeCgkNVGRBNaXrLJAx4GR3LgkWztvriUrTGzDQAupTaLzyDIdJolxx9Yt-LUobBI6uw9gQYQijtqwsNXrDz43CA4ZarvUCdaJ39bDAI48SkzlqVtfibpyx9fvCZZi3xeOlCYXp6n8OzrOU95_dml98Nt5ct8-21N4XKfZZHM2L5ahZctnsHRDfPE5DHu10Hk5JC4LJgq5_iWSzKdXZFz4cwPsITcYj8opmczrtMrq94-fBEn-yEIhWDowJPhuxJ5pm-feYqONW72AL3fypi-hXY5L-woIliFHUqsgVoGLSExxJVWsEiviItVB3gHWDHdmak12bA1yml2rSXuIZA4imYdIJjvw7vqZyUyR5Na7uw0usto7VdkcFB143yBrfvn_1lZut_YGHu0eHR5kB3v9_dewyD2wkeTUhfb0_MKuwkNzOR1V52v1vCHw9a4x9wf5BE7e
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLULlwG8rFgr4ACewGjveOD4gRNtdURWtIgRSb8F2nFWrkl2abVFvvAavwuPwJHi8TheQ6K0HjvkbKfHnmXH8fTMAz2SubMorRXVeKyoG1lIlVE051z5eKGHybNFsQo7H-cGBKlbgR6eFQVpl5xODo66mFv-Rb6U-9-VMMM626kiLKHZHr2dfKHaQwp3Wrp3GAiL77vyrX761r_Z2_Vg_53w0_LDzlsYOA9TyVChqB7VMXJCvssRkiVXc-oTbeM9uFKtt5tLECGWsNNXAMZNKaf2x84t_I2onU2_3GqzK1C96erC6PRwX7zs0pwzrvMRk6yhs8WEwR04lpvXUr7VEVPEELZ9gOfaA4Uhv8jGbqj8j5TL9_WvHNgTC0e3_-RPegVsx_SZvFvPlLqy45h7c_K0o432YDGMB9GZCfHZMNGoAGiSfz8_JtA7nCuwtV0wPmzmZLfVbTfvz23eC5H9kpxCUFEwIvhtxn42rqmCxq5nbrsPHK3nTDeg108Y9AILy5IEyOsl04iMV01wrnWnpRFbnJqn6wLqhL22s1Y4tQ47LiyrTAS6lh0sZ4FKqPry4eGa2qFRy6d2bHUbK6LXacgmQPrzsULa8_G9rDy-39hRueKCV7_bG-49gjQeMI_dpE3rzk1P3GK7bs_lhe_IkTiECn64acr8AC3pXoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+authenticity+of+the+PowerPoint+presentations%E2%80%99+contents+using+word+embedding+techniques&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Borade%2C+J.+G&rft.au=Netak%2C+L.+D&rft.au=Kiwelekar%2C+A.+W&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=15&rft.issue=4&rft.spage=2303&rft.epage=2316&rft_id=info:doi/10.1007%2Fs41870-023-01223-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon