Aspect-oriented extraction and sentiment analysis using optimized hybrid deep learning approaches

Aspect-oriented extraction involves the identification and extraction of specific aspects, features, or entities within a piece of text. Traditional methods often struggled with the complexity and variability of language, leading to the exploration of advanced deep learning approaches. In the realm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications Jg. 83; H. 41; S. 88613 - 88644
Hauptverfasser: Kotagiri, Srividya, Sowjanya, A. Mary, Anilkumar, B., Devi, N Lakshmi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2024
Springer Nature B.V
Schlagworte:
ISSN:1573-7721, 1380-7501, 1573-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Aspect-oriented extraction involves the identification and extraction of specific aspects, features, or entities within a piece of text. Traditional methods often struggled with the complexity and variability of language, leading to the exploration of advanced deep learning approaches. In the realm of sentiment analysis, the conventional approaches often fall short when it comes to providing a nuanced understanding of sentiments expressed in textual data. Traditional sentiment analysis models often overlook the specific aspects or entities within the text that contribute to the overall sentiment. This limitation poses a significant challenge for businesses and organizations aiming to gain detailed insights into customer opinions, product reviews, and other forms of user-generated content.In this research, we propose an innovative approach for aspect-oriented extraction and sentiment analysis leveraging optimized hybrid deep learning techniques. Our methodology integrates the powerful capabilities of deep learning models with the efficiency of Reptile Search Optimization. Furthermore, we introduce an advanced sentiment analysis framework employing the state-of-the-art Extreme Gradient Boosting Algorithm. The fusion of these techniques aims to enhance the precision and interpretability of aspect-oriented sentiment analysis. The proposed approach first utilizes deep learning architectures to extract and comprehend diverse aspects within textual data. Through the incorporation of Reptile Search Optimization, we optimize the learning process, ensuring adaptability and improved model generalization across various datasets. Subsequently, the sentiment analysis phase employs the robust Extreme Gradient Boosting Algorithm, known for its effectiveness in handling complex relationships and patterns within data. Our experiments, conducted on diverse datasets, demonstrate the superior performance of the proposed methodology in comparison to traditional approaches. The optimized hybrid deep learning approach, coupled with the Reptile Search Optimization and Extreme Gradient Boosting Algorithm, showcases promising results in accurately capturing nuanced sentiments associated with different aspects. This research contributes to the advancement of aspect-oriented sentiment analysis techniques, offering a comprehensive and efficient solution for understanding sentiment nuances in textual data across various domains. The ResNet 50 and EfficientNet B7 architecture of the modified pre-trained model is proposed for the aspect extraction function. The Reptile Search Optimization based Extreme Gradient Boosting Algorithm (RSO-EGBA) is proposed to analyze and predict customer sentiments. The execution of this study is carried out using python software. It has been observed that the overall accuracy of our proposed method is 99.8%, while that of the other state-of-the-art. The overall accuracy of our proposed method shows an increment of 9–16% from that of the state-of-the-art methods.
AbstractList Aspect-oriented extraction involves the identification and extraction of specific aspects, features, or entities within a piece of text. Traditional methods often struggled with the complexity and variability of language, leading to the exploration of advanced deep learning approaches. In the realm of sentiment analysis, the conventional approaches often fall short when it comes to providing a nuanced understanding of sentiments expressed in textual data. Traditional sentiment analysis models often overlook the specific aspects or entities within the text that contribute to the overall sentiment. This limitation poses a significant challenge for businesses and organizations aiming to gain detailed insights into customer opinions, product reviews, and other forms of user-generated content.In this research, we propose an innovative approach for aspect-oriented extraction and sentiment analysis leveraging optimized hybrid deep learning techniques. Our methodology integrates the powerful capabilities of deep learning models with the efficiency of Reptile Search Optimization. Furthermore, we introduce an advanced sentiment analysis framework employing the state-of-the-art Extreme Gradient Boosting Algorithm. The fusion of these techniques aims to enhance the precision and interpretability of aspect-oriented sentiment analysis. The proposed approach first utilizes deep learning architectures to extract and comprehend diverse aspects within textual data. Through the incorporation of Reptile Search Optimization, we optimize the learning process, ensuring adaptability and improved model generalization across various datasets. Subsequently, the sentiment analysis phase employs the robust Extreme Gradient Boosting Algorithm, known for its effectiveness in handling complex relationships and patterns within data. Our experiments, conducted on diverse datasets, demonstrate the superior performance of the proposed methodology in comparison to traditional approaches. The optimized hybrid deep learning approach, coupled with the Reptile Search Optimization and Extreme Gradient Boosting Algorithm, showcases promising results in accurately capturing nuanced sentiments associated with different aspects. This research contributes to the advancement of aspect-oriented sentiment analysis techniques, offering a comprehensive and efficient solution for understanding sentiment nuances in textual data across various domains. The ResNet 50 and EfficientNet B7 architecture of the modified pre-trained model is proposed for the aspect extraction function. The Reptile Search Optimization based Extreme Gradient Boosting Algorithm (RSO-EGBA) is proposed to analyze and predict customer sentiments. The execution of this study is carried out using python software. It has been observed that the overall accuracy of our proposed method is 99.8%, while that of the other state-of-the-art. The overall accuracy of our proposed method shows an increment of 9–16% from that of the state-of-the-art methods.
Author Kotagiri, Srividya
Anilkumar, B.
Devi, N Lakshmi
Sowjanya, A. Mary
Author_xml – sequence: 1
  givenname: Srividya
  surname: Kotagiri
  fullname: Kotagiri, Srividya
  email: srividyakotagiri693@gmail.com
  organization: Computer Science and Engineering, GMR Institute of Technology
– sequence: 2
  givenname: A. Mary
  surname: Sowjanya
  fullname: Sowjanya, A. Mary
  organization: Department of CS&SE, Andhra University College of Engineering (A)
– sequence: 3
  givenname: B.
  surname: Anilkumar
  fullname: Anilkumar, B.
  organization: Electronics and Communication Engineering, GMR Institute of Technology
– sequence: 4
  givenname: N Lakshmi
  surname: Devi
  fullname: Devi, N Lakshmi
  organization: Computer Science and Engineering, GMR Institute of Technology
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxNrgV-JkWVW8pEpsYG059qR1lTrBTiXK1-MSJBCLbjz2zD3jmTtDE995QOiakltKiLyLlBLBMGEC07IqBK7O0JTmkmMpGZ38uV-gWYxbQmiRMzFFehF7MAPuggM_gM3gYwjaDK7zmfY2iynrdulIL90eoovZPjq_zro-5d1nIjaHOjibWYA-a0EHfyzrvg-dNhuIl-i80W2Eq584R28P96_LJ7x6eXxeLlbYMC4qrEvb1LIRVHCjTWErwwWzQImk0jCry8ZKkTNGLa2N4AQsM0VeQ2I02MryOboZ-6aP3_cQB7Xt9iENHRWnoixKQViZVOWoMqGLMUCjjBv0cd20tmsVJepoqBoNVclQ9W2oqhLK_qF9cDsdDqchPkIxif0awu9UJ6gvBFWNLw
CitedBy_id crossref_primary_10_48084_etasr_11176
Cites_doi 10.1080/13683500.2018.1549025
10.1080/08923647.2019.1663082
10.2196/16023
10.24297/ijct.v21i.9105
10.1016/j.eswa.2020.114231
10.1007/s00521-019-04686-9
10.1007/s00521-020-05287-7
10.1007/s00521-018-3865-7
10.1007/s41324-020-00320-2
10.1016/j.knosys.2022.108473
10.1080/12460125.2020.1864106
10.1016/j.tourman.2018.10.020
10.4018/978-1-7998-7371-6.ch003
10.1109/TCYB.2020.3029423
10.1016/j.csl.2021.101224
10.1080/10872981.2019.1666538
10.1109/ICCIT51783.2020.9392733
10.1109/FAIML57028.2022.00040
10.1016/j.knosys.2022.108668
10.1016/j.compedu.2021.104354
10.1007/978-3-030-34614-0_7
10.1016/j.regsciurbeco.2018.11.003
10.1016/j.aci.2019.02.002
10.56042/jsir.v79i2.68447
10.1016/j.knosys.2020.106509
10.1109/ICACCS48705.2020.9074208
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Dec 2024
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-024-18964-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 88644
ExternalDocumentID 10_1007_s11042_024_18964_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2349-a8dfb7f4143cac6d9c342de10717c2da8fd745221d1bc430ed2c65beb7faed9d3
IEDL.DBID RSV
ISSN 1573-7721
1380-7501
IngestDate Tue Dec 02 05:31:22 EST 2025
Sat Nov 29 06:20:47 EST 2025
Tue Nov 18 22:24:17 EST 2025
Fri Feb 21 02:36:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Reptile Search Optimization based Extreme Gradient Boosting Algorithm (RSO-EGBA)
Opinion mining
Sentimental analysis
Aspect extraction
Data mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2349-a8dfb7f4143cac6d9c342de10717c2da8fd745221d1bc430ed2c65beb7faed9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3148684028
PQPubID 54626
PageCount 32
ParticipantIDs proquest_journals_3148684028
crossref_citationtrail_10_1007_s11042_024_18964_9
crossref_primary_10_1007_s11042_024_18964_9
springer_journals_10_1007_s11042_024_18964_9
PublicationCentury 2000
PublicationDate 20241200
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Zunic (18964_CR11) 2020; 8
P Ray (18964_CR23) 2022; 18
N Us Sahar (18964_CR18) 2019; 6
V Singh (18964_CR3) 2019; 33
ES Alamoudi (18964_CR28) 2021; 30
M Venugopalan (18964_CR26) 2022; 246
18964_CR13
Y Liu (18964_CR20) 2020; 52
Y Wang (18964_CR14) 2021; 212
L Li (18964_CR9) 2022; 176
L Li (18964_CR2) 2020; 32
18964_CR17
18964_CR7
18964_CR8
18964_CR19
A Lawani (18964_CR6) 2019; 75
B Huang (18964_CR27) 2022; 243
X Guo (18964_CR15) 2020; 32
L Pei (18964_CR4) 2019; 24
B Ozyurt (18964_CR21) 2021; 168
E Park (18964_CR5) 2020; 23
N Nandal (18964_CR16) 2020; 28
18964_CR10
18964_CR12
X Cheng (18964_CR1) 2019; 71
S Al-Dabet (18964_CR22) 2021; 69
18964_CR25
AH Ombabi (18964_CR24) 2020; 10
References_xml – volume: 23
  start-page: 605
  issue: 5
  year: 2020
  ident: 18964_CR5
  publication-title: Curr Issues Tour
  doi: 10.1080/13683500.2018.1549025
– volume: 33
  start-page: 289
  issue: 4
  year: 2019
  ident: 18964_CR3
  publication-title: Am J Distance Educ
  doi: 10.1080/08923647.2019.1663082
– volume: 10
  start-page: 1
  issue: 53
  year: 2020
  ident: 18964_CR24
  publication-title: Soc Netw Anal Min
– volume: 8
  issue: 1
  year: 2020
  ident: 18964_CR11
  publication-title: JMIR Med Inform
  doi: 10.2196/16023
– ident: 18964_CR17
  doi: 10.24297/ijct.v21i.9105
– volume: 168
  start-page: 114231
  year: 2021
  ident: 18964_CR21
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2020.114231
– volume: 6
  start-page: e5
  issue: 22
  year: 2019
  ident: 18964_CR18
  publication-title: EAI Endorsed Trans Scalable Inf Syst
– volume: 32
  start-page: 5409
  year: 2020
  ident: 18964_CR15
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04686-9
– ident: 18964_CR25
  doi: 10.1007/s00521-020-05287-7
– volume: 32
  start-page: 4387
  year: 2020
  ident: 18964_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3865-7
– volume: 28
  start-page: 601
  year: 2020
  ident: 18964_CR16
  publication-title: Spat Inf Res
  doi: 10.1007/s41324-020-00320-2
– volume: 243
  start-page: 108473
  year: 2022
  ident: 18964_CR27
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.108473
– volume: 30
  start-page: 259
  issue: 2–3
  year: 2021
  ident: 18964_CR28
  publication-title: J Decis Syst
  doi: 10.1080/12460125.2020.1864106
– volume: 71
  start-page: 366
  year: 2019
  ident: 18964_CR1
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2018.10.020
– ident: 18964_CR13
  doi: 10.4018/978-1-7998-7371-6.ch003
– volume: 52
  start-page: 4520
  issue: 6
  year: 2020
  ident: 18964_CR20
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2020.3029423
– volume: 69
  start-page: 101224
  year: 2021
  ident: 18964_CR22
  publication-title: Comput Speech Lang
  doi: 10.1016/j.csl.2021.101224
– volume: 24
  start-page: 1666538
  issue: 1
  year: 2019
  ident: 18964_CR4
  publication-title: Med Educ Online
  doi: 10.1080/10872981.2019.1666538
– ident: 18964_CR7
  doi: 10.1109/ICCIT51783.2020.9392733
– ident: 18964_CR19
  doi: 10.1109/FAIML57028.2022.00040
– volume: 246
  year: 2022
  ident: 18964_CR26
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.108668
– volume: 176
  start-page: 104354
  year: 2022
  ident: 18964_CR9
  publication-title: Comput Educ
  doi: 10.1016/j.compedu.2021.104354
– ident: 18964_CR8
  doi: 10.1007/978-3-030-34614-0_7
– volume: 75
  start-page: 22
  year: 2019
  ident: 18964_CR6
  publication-title: Reg Sci Urb Econ
  doi: 10.1016/j.regsciurbeco.2018.11.003
– volume: 18
  start-page: 163
  issue: 1/2
  year: 2022
  ident: 18964_CR23
  publication-title: Appl Comput Inform
  doi: 10.1016/j.aci.2019.02.002
– ident: 18964_CR12
  doi: 10.56042/jsir.v79i2.68447
– volume: 212
  start-page: 106509
  year: 2021
  ident: 18964_CR14
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.106509
– ident: 18964_CR10
  doi: 10.1109/ICACCS48705.2020.9074208
SSID ssj0016524
Score 2.3928523
Snippet Aspect-oriented extraction involves the identification and extraction of specific aspects, features, or entities within a piece of text. Traditional methods...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 88613
SubjectTerms Accuracy
Algorithms
Complexity
Computer Communication Networks
Computer Science
Customers
Data analysis
Data Structures and Information Theory
Datasets
Deep learning
Machine learning
Multimedia Information Systems
Optimization
Product reviews
Reptiles
Searching
Sentiment analysis
Special Purpose and Application-Based Systems
User generated content
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8QwEB38OujBj1VxdZUcvGlwk6ZJcxIRRRDEg4K3kk7SVdDddXcV9NebtKmrgl48ljah8CYzk2TmPYD9xG98isLvTmSZcipQJtRgySkamSpmUAldVGIT6uoqu7vT1_HAbRzLKhufWDlqO8BwRn6U-Lw9EJPw7Hj4TINqVLhdjRIaszDPOGfBzi8V_bxFkGkUtc261EdGFptm6tY5FhpTfISiLNNSUP09ME2zzR8XpFXcOV_57x-vwnLMOMlJbSJrMOP6LVhp1BxIXNwtWPpCTbgO5qTqwQwTBtZOS7wTH9VNEMT0LQk9S5UwgH-qaU1IKKHvkYH3QU8P737E_VvoBiPWuSGJ4hQ90nCYu_EG3J6f3Zxe0CjHQJEnQlOT2bJQpfAZFhqUVmMiuHUs7AiRW5OVVgV-dmZZgSLpOstRpoXzY4yz2iabMNcf9N0WEG0NGueULBkKJbGQGTelU5nw2UNayjawBoscI1d5kMx4zKcsywG_3OOXV_jlug0Hn2OGNVPHn193GtDyuGrH-RSxNhw2sE9f_z7b9t-z7cAirywtVMF0YG4yenG7sICvk4fxaK-y2Q9lJ_NG
  priority: 102
  providerName: ProQuest
Title Aspect-oriented extraction and sentiment analysis using optimized hybrid deep learning approaches
URI https://link.springer.com/article/10.1007/s11042-024-18964-9
https://www.proquest.com/docview/3148684028
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58HfTgoyrWR8nBmwa62WyyOaoogliLz-plySbZKmgrrQr6651sd1sVFfQSCJsJSzKTmSH5vgHYDDHxSVPMTkQWMcqNCKk2GaNGi0gG2kiu0rzYhGw04lZLNQtQWL987V5eSeYn9QjsFngoCfoUGsRKcKrGYRLdXezN8fTscnh3ICLGC3jM93KfXdAorvxyFZp7mIO5__3bPMwWESXZGajAAoy5TgXmymoNpDDeCsx8oB5cBL2TYyxp1_McY9RJ8JDuDUAORHcs8ZiknPgfewPaEuKfyLdJF8-Yh7s3lLh99WgvYp17JEXxiTYpOcpdfwkuDvbP9w5pUW6BGhZyRXVss1RmHCMoo42wyoScWRf4jM8wq-PMSs-_HtggNTysO8uMiFKHMtpZZcNlmOh0O24FiLLaaOekyALDpTCpiJnOnIw5RgdRJqoQlDuQmIKL3JfEuE9GLMp-RRNc0SRf0URVYWso8zhg4vh19Hq5sUlhlf0kxNzPk9uwuArb5UaOPv882-rfhq_BNMt1wb96WYeJp96z24Ap8_J01-_VYFxeXddgcne_0TzF3pGk2B7X93zLTrBtRje1XKffAfNd7go
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH5BIFEPIqhxEbUHPGnjttPpTA_EEIRAwI0HTLiNndcOkODuuosS_KP8G3lvfrBiIjcOHiczbTLTr--9Tvt9H8B6QgufsqTVia1SLQ3aRHqstERv00x5zIwra7OJbDDIj47c5zn43XFh-FhlFxPrQB1GyP_I3ydUt7Mwic4_jL9Ldo3i3dXOQqOBxX68vKAl23Rj7yON7xutd7YPt3Zl6yogUSfGSZ-HqswqQ4UCerTBYWJ0iIoXNqiDz6uQscy4CqpEk_Rj0GjTMlIbH4MLCfV7DxaMoenARwX7W9e7FjZtTXTzvqRMrFqSTkPVU0yEoYwoVe6ske5mIpxVt39tyNZ5bmfpf_tCj-FRW1GLzWYKLMNcHK7AUudWIdrgtQIP_5BefAJ-s-aY8guwKmkQlKQmDclD-GEQzMmqjQ_oqpFtEUwROBYjirHfTn9Ri5NLZruJEONYtOYbx6LTaI_Tp_DlTl77GcwPR8P4HIQLHn2Mma0UmsxiaXPtq5jlhqqjtLI9UN3YF9hqsbMlyFkxU5FmvBSEl6LGS-F68Pa6zbhRIrn16bUOJEUblabFDCE9eNfBbHb7372t3t7ba7i_e_jpoDjYG-y_gAe6Rjmf-FmD-fPJj_gSFvHn-el08qqeLwK-3jX8rgBDq1MZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VglA5UCitWCjgA5zAau04dnxAqKKsqIpWewCp4hKcsV0qwe6yW0Dl0_g6xonTBSR664FjlNiSk-fxTOz3HsDjggqfpqHqRMdScoW64A6j5Oh0aYRDo2zTmk2Y0ag6OrLjFfjZc2HSsco-JraB2k8x_SPfKShvT8IkstqJ-VjEeH_4YvaFJweptNPa22l0EDkMZ9-pfFs8P9inb_1EyuGrty9f8-wwwFEWynJX-diYqChpQIfaWyyU9EGkIgeld1X0JkmOCy8aVMVu8BJ12QRq44K3vqB-r8BVQzVmKvzG5fvzHQxdZkPdapfTqiwyYaej7YlEiqHVkYvKasXtn4viMtP9a3O2XfOG6__z27oFN3Omzfa6qXEbVsJkA9Z7FwuWg9oG3PhNkvEOuL2We5oGkNRKPaMxzTvyB3MTzxJXqzVEoKtOzoUl6sAxm1Ls_Xzyg1p8PEssOOZDmLFsynHMeu32sNiEd5cy7C1YnUwn4S4w6x26EIyOApXR2OhKuhhMpShrKqMegOhxUGPWaE9WIZ_qpbp0wk5N2Klb7NR2AE_P28w6hZILn97uAVPnaLWol2gZwLMecsvb_-7t3sW9PYLrhLr6zcHo8D6syRbw6SDQNqyezr-GB3ANv52eLOYP26nD4MNlo-8X8ZZcKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aspect-oriented+extraction+and+sentiment+analysis+using+optimized+hybrid+deep+learning+approaches&rft.jtitle=Multimedia+tools+and+applications&rft.au=Kotagiri%2C+Srividya&rft.au=Sowjanya%2C+A.+Mary&rft.au=Anilkumar%2C+B.&rft.au=Devi%2C+N+Lakshmi&rft.date=2024-12-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=41&rft.spage=88613&rft.epage=88644&rft_id=info:doi/10.1007%2Fs11042-024-18964-9&rft.externalDocID=10_1007_s11042_024_18964_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon