A novel algorithm for imputing the missing values in incomplete datasets

In today’s world, our heavy reliance on digital devices for data collection has become the norm. However, when these devices fail, there is a significant risk of losing valuable information, making data mining an arduous task for data analysts. The presence of a substantial amount of missing data wi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Iran Journal of Computer Science (Online) Ročník 7; číslo 1; s. 13 - 23
Hlavní autoři: Bhagat, Hutashan Vishal, Singh, Manminder
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.03.2024
Springer Nature B.V
Témata:
ISSN:2520-8438, 2520-8446
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In today’s world, our heavy reliance on digital devices for data collection has become the norm. However, when these devices fail, there is a significant risk of losing valuable information, making data mining an arduous task for data analysts. The presence of a substantial amount of missing data within a dataset leads to inappropriate results and incomplete data analysis. Consequently, there is a pressing need to develop an algorithm capable of efficiently and accurately predicting missing values. This research paper introduces a new algorithm, known as the IMV-RE (imputing the missing values in real-time environment) algorithm, which is based on a novel splitting approach. The IMV-RE algorithm addresses the challenge of imputing various missing values within a dataset. To enhance prediction accuracy, the algorithm sets an upper limit for each class that contains missing values, providing valuable assistance in accurately predicting these values. To evaluate the efficacy of the IMV-RE algorithm, we conducted experiments using ten benchmark datasets comprising both numerical and mixed data. The results of our comparative analysis demonstrate that the proposed IMV-RE algorithm outperforms existing techniques in terms of sensitivity to accuracy, root mean square error (RMSE), and coefficient of determination ( R 2 ).
AbstractList In today’s world, our heavy reliance on digital devices for data collection has become the norm. However, when these devices fail, there is a significant risk of losing valuable information, making data mining an arduous task for data analysts. The presence of a substantial amount of missing data within a dataset leads to inappropriate results and incomplete data analysis. Consequently, there is a pressing need to develop an algorithm capable of efficiently and accurately predicting missing values. This research paper introduces a new algorithm, known as the IMV-RE (imputing the missing values in real-time environment) algorithm, which is based on a novel splitting approach. The IMV-RE algorithm addresses the challenge of imputing various missing values within a dataset. To enhance prediction accuracy, the algorithm sets an upper limit for each class that contains missing values, providing valuable assistance in accurately predicting these values. To evaluate the efficacy of the IMV-RE algorithm, we conducted experiments using ten benchmark datasets comprising both numerical and mixed data. The results of our comparative analysis demonstrate that the proposed IMV-RE algorithm outperforms existing techniques in terms of sensitivity to accuracy, root mean square error (RMSE), and coefficient of determination (R2).
In today’s world, our heavy reliance on digital devices for data collection has become the norm. However, when these devices fail, there is a significant risk of losing valuable information, making data mining an arduous task for data analysts. The presence of a substantial amount of missing data within a dataset leads to inappropriate results and incomplete data analysis. Consequently, there is a pressing need to develop an algorithm capable of efficiently and accurately predicting missing values. This research paper introduces a new algorithm, known as the IMV-RE (imputing the missing values in real-time environment) algorithm, which is based on a novel splitting approach. The IMV-RE algorithm addresses the challenge of imputing various missing values within a dataset. To enhance prediction accuracy, the algorithm sets an upper limit for each class that contains missing values, providing valuable assistance in accurately predicting these values. To evaluate the efficacy of the IMV-RE algorithm, we conducted experiments using ten benchmark datasets comprising both numerical and mixed data. The results of our comparative analysis demonstrate that the proposed IMV-RE algorithm outperforms existing techniques in terms of sensitivity to accuracy, root mean square error (RMSE), and coefficient of determination ( R 2 ).
Author Singh, Manminder
Bhagat, Hutashan Vishal
Author_xml – sequence: 1
  givenname: Hutashan Vishal
  surname: Bhagat
  fullname: Bhagat, Hutashan Vishal
  email: hutashan20@gmail.com
  organization: BV Raju Institute of Technology
– sequence: 2
  givenname: Manminder
  surname: Singh
  fullname: Singh, Manminder
  organization: Sant Longowal Institute of Engineering and Technology
BookMark eNp9kE9LAzEQxYNUsNZ-AU8Bz6uz-bPJHktRKxS86Dmku9k2ZTdZk7Tgt3frioKHwsC8w_vNPN41mjjvDEK3OdznAOIhMgKMZUBoBpBzlpUXaEo4gUwyVkx-NZVXaB7jHgCIoEyQYopWC-z80bRYt1sfbNp1uPEB264_JOu2OO0M7myMJ33U7cFEbN0wle_61iSDa510NCneoMtGt9HMf_YMvT89vi1X2fr1-WW5WGcVoazMCpAbU_ONkDkvSyk1oaSWVAgjGkNkA1qD5kWR641gEijTRVFWNW1oDbLODZ2hu_FuH_zHECepvT8EN7xUlHBOqOAAg4uMrir4GINpVB9sp8OnykGdSlNjaWooTX2XpsoBkv-gyiadrHcpaNueR-mIxuGP25rwl-oM9QVWvIHG
CitedBy_id crossref_primary_10_62486_latia2025304
crossref_primary_10_1186_s12877_023_04546_1
crossref_primary_10_1007_s00357_025_09506_5
crossref_primary_10_1007_s42044_025_00262_8
Cites_doi 10.1016/j.eswa.2015.11.004
10.1016/j.knosys.2019.06.013
10.1007/s10489-015-0666-x
10.1007/s11277-021-09237-x
10.1016/j.ins.2009.10.008
10.1016/j.eswa.2020.114425
10.1002/widm.1301
10.1016/j.asoc.2021.107167
10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2
10.1016/j.chemolab.2022.104518
10.1016/j.micpro.2020.103636
10.1109/ICHIS.2004.91
10.1016/j.neucom.2014.12.073
10.1093/aje/kwt312
10.1007/978-3-319-10247-4
10.1016/j.ins.2013.01.021
10.4018/IJDSST.292446
10.21449/ijate.430720
10.1016/j.eswa.2012.09.017
10.1007/s42044-020-00065-z
10.4097/kjae.2013.64.5.402
10.1016/j.jsp.2009.10.001
10.1016/j.procs.2017.05.008
10.1016/j.asoc.2020.106249
10.1016/j.jksuci.2018.01.002
10.1016/j.eswa.2019.112926
10.1016/j.knosys.2020.105803
10.1016/j.cjca.2020.11.010
10.1007/978-981-19-5224-1_18
10.1016/j.trc.2014.11.003
10.1007/978-3-030-85626-7_110
10.1049/trit.2019.0032
10.1002/sam.11348
10.1016/j.asoc.2014.09.052
10.18637/jss.v045.i03
10.3390/sym12101594
10.1016/j.patrec.2015.08.023
10.1016/j.knosys.2017.06.033
10.1007/978-1-0716-1967-4_6
10.1016/j.knosys.2018.03.026
10.1109/SNPD.2007.93
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s42044-023-00154-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2520-8446
EndPage 23
ExternalDocumentID 10_1007_s42044_023_00154_9
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2349-608bed5b78159988a232d8377e7fe28f0aa0a5661ab748034a669cd3f3d08d1e3
IEDL.DBID K7-
ISSN 2520-8438
IngestDate Mon Nov 10 03:00:25 EST 2025
Tue Nov 18 22:39:03 EST 2025
Sat Nov 29 03:08:26 EST 2025
Fri Feb 21 02:40:26 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Incomplete datasets
Data missingness
Missing values
Missingness mechanisms
Imputation
Imputing values
Data imputation model
Root mean square error
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2349-608bed5b78159988a232d8377e7fe28f0aa0a5661ab748034a669cd3f3d08d1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255237500
PQPubID 7435094
PageCount 11
ParticipantIDs proquest_journals_3255237500
crossref_primary_10_1007_s42044_023_00154_9
crossref_citationtrail_10_1007_s42044_023_00154_9
springer_journals_10_1007_s42044_023_00154_9
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle An International Journal
PublicationTitle Iran Journal of Computer Science (Online)
PublicationTitleAbbrev Iran J Comput Sci
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Choudhary, Kumar, Sharma, Sharma (CR38) 2022; 123
Probst, Wright, Boulesteix (CR9) 2019; 9
Wei, Wang, Burger (CR29) 2023
Wu, Song, Shen (CR33) 2007; 3
Austin, White, Lee, van Buuren (CR10) 2021; 37
Kelkar (CR4) 2022; 14
Lobato, Sales, Araujo, Tadaiesky, Dias, Ramos, Santana (CR13) 2015; 68
Mostafa, Eladimy, Hamad, Amano (CR21) 2020; 12
Mostafa (CR18) 2019; 4
Schneider (CR14) 2001; 14
Kalkan, Yusuf, Kelecioğlu (CR2) 2018; 5
Gautam, Ravi (CR11) 2015; 156
Ngueilbaye, Wang, Mahamat, Junaidu (CR26) 2021; 103
Tsai, Li, Lin (CR7) 2018; 151
Sim, Kwon, Lee (CR40) 2016; 46
Tang, Zhang, Wang, Wang, Liu (CR35) 2015; 51
Baraldi, Enders (CR6) 2010; 48
Silva-Ramírez, Pino-Mejías, López-Coello (CR20) 2015; 29
Adhikari, Jiang, Zhan (CR23) 2021
Lan, Xu, Ma, Li (CR24) 2020; 141
Sezer, Başeğmez, Kahraman, Cebi, Cevik Onar, Oztaysi, Tolga, Sari (CR30) 2022
Gond, Dubey, Rasool, Khare, Fong, Dey, Joshi (CR31) 2023
Kwon, Sim (CR39) 2013; 40
Vazifehdan, Moattar, Jalali (CR37) 2019; 31
García, Luengo, Herrera (CR3) 2015
Petrozziello, Jordanov (CR17) 2017; 108
Bhagat, Singh (CR5) 2022; 223
Priya, Sivaraj, Priyaa (CR12) 2017; 133
Nelwamondo, Golding, Marwala (CR34) 2013; 237
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Duchesnay (CR43) 2011; 12
Kamkhad, Jampachaisri, Siriyasatien, Kesorn (CR25) 2020; 196
Shah, Bartlett, Carpenter, Nicholas, Hemingway (CR41) 2014; 179
Peng, Zou, Liu, Lu (CR27) 2021; 168
Wu, Wun, Chou (CR32) 2004
Aydilek, Arslan (CR36) 2013; 233
Gad, Hosahalli, Manjunatha, Ghoneim (CR28) 2021; 4
Kang (CR1) 2013; 64
Sammulal, Usha Rani, Yepuri (CR8) 2017; 12
Sefidian, Daneshpour (CR22) 2020; 91
Tang, Ishwaran (CR16) 2017; 10
Razavi-Far, Cheng, Saif, Ahmadi (CR15) 2020; 187
Pan, Yang, Cao, Lu, Zhang (CR19) 2015; 43
Van Buuren, Groothuis-Oudshoorn (CR42) 2011; 45
D Adhikari (154_CR23) 2021
F Pedregosa (154_CR43) 2011; 12
PC Austin (154_CR10) 2021; 37
S García (154_CR3) 2015
R Pan (154_CR19) 2015; 43
R Razavi-Far (154_CR15) 2020; 187
D Peng (154_CR27) 2021; 168
A Ngueilbaye (154_CR26) 2021; 103
T Schneider (154_CR14) 2001; 14
A Choudhary (154_CR38) 2022; 123
R Wei (154_CR29) 2023
H Kang (154_CR1) 2013; 64
P Sammulal (154_CR8) 2017; 12
C Gautam (154_CR11) 2015; 156
ÖK Kalkan (154_CR2) 2018; 5
AN Baraldi (154_CR6) 2010; 48
EL Silva-Ramírez (154_CR20) 2015; 29
F Tang (154_CR16) 2017; 10
BA Kelkar (154_CR4) 2022; 14
J Tang (154_CR35) 2015; 51
AD Shah (154_CR41) 2014; 179
HV Bhagat (154_CR5) 2022; 223
CF Tsai (154_CR7) 2018; 151
A Petrozziello (154_CR17) 2017; 108
SM Mostafa (154_CR18) 2019; 4
AM Sefidian (154_CR22) 2020; 91
S Van Buuren (154_CR42) 2011; 45
F Lobato (154_CR13) 2015; 68
O Kwon (154_CR39) 2013; 40
SM Mostafa (154_CR21) 2020; 12
E Sezer (154_CR30) 2022
FV Nelwamondo (154_CR34) 2013; 237
I Gad (154_CR28) 2021; 4
P Probst (154_CR9) 2019; 9
RD Priya (154_CR12) 2017; 133
VK Gond (154_CR31) 2023
J Wu (154_CR33) 2007; 3
Q Lan (154_CR24) 2020; 141
CH Wu (154_CR32) 2004
IB Aydilek (154_CR36) 2013; 233
M Vazifehdan (154_CR37) 2019; 31
N Kamkhad (154_CR25) 2020; 196
J Sim (154_CR40) 2016; 46
References_xml – volume: 46
  start-page: 485
  year: 2016
  end-page: 493
  ident: CR40
  article-title: Adaptive pairing of classifier and imputation methods based on the characteristics of missing values in data sets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.11.004
– volume: 187
  start-page: 104805
  year: 2020
  ident: CR15
  article-title: Similarity-learning information-fusion schemes for missing data imputation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.06.013
– volume: 43
  start-page: 614
  issue: 3
  year: 2015
  end-page: 632
  ident: CR19
  article-title: Missing data imputation by K nearest neighbours based on grey relational structure and mutual information
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-015-0666-x
– volume: 123
  start-page: 2245
  issue: 3
  year: 2022
  end-page: 2259
  ident: CR38
  article-title: A framework for data prediction and forecasting in WSN with auto ARIMA
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-09237-x
– volume: 237
  start-page: 49
  year: 2013
  end-page: 58
  ident: CR34
  article-title: A dynamic programming approach to missing data estimation using neural networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.10.008
– volume: 168
  start-page: 1125
  year: 2021
  ident: CR27
  article-title: RESI: a region-splitting imputation method for different types of missing data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114425
– volume: 9
  start-page: 1301
  issue: 3
  year: 2019
  ident: CR9
  article-title: Hyperparameters and tuning strategies for random forest
  publication-title: Wiley Interdiscip. Rev.
  doi: 10.1002/widm.1301
– volume: 103
  start-page: 107167
  year: 2021
  ident: CR26
  article-title: Modulo 9 model-based learning for missing data imputation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107167
– volume: 14
  start-page: 853
  issue: 5
  year: 2001
  end-page: 871
  ident: CR14
  article-title: Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2
– volume: 223
  start-page: 104518
  year: 2022
  ident: CR5
  article-title: NMVI: a data-splitting based imputation technique for distinct types of missing data
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104518
– year: 2021
  ident: CR23
  article-title: Imputation using information fusion technique for sensor generated incomplete data with high missing gap
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2020.103636
– year: 2004
  ident: CR32
  article-title: Using association rules for completing missing data
  publication-title: Fourth Int. Conf. Hybrid Intell. Syst.
  doi: 10.1109/ICHIS.2004.91
– volume: 156
  start-page: 134
  year: 2015
  end-page: 142
  ident: CR11
  article-title: Data imputation via evolutionary computation, clustering and a neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.073
– volume: 179
  start-page: 764
  issue: 6
  year: 2014
  end-page: 774
  ident: CR41
  article-title: Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwt312
– start-page: 59
  year: 2015
  end-page: 139
  ident: CR3
  publication-title: Data Preprocessing in Data Mining
  doi: 10.1007/978-3-319-10247-4
– volume: 233
  start-page: 25
  year: 2013
  end-page: 35
  ident: CR36
  article-title: A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.01.021
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  end-page: 20
  ident: CR4
  article-title: Missing data imputation: a survey
  publication-title: Int. J. Decis. Support Syst. Technol. (IJDSST)
  doi: 10.4018/IJDSST.292446
– volume: 5
  start-page: 403
  issue: 3
  year: 2018
  end-page: 416
  ident: CR2
  article-title: Evaluating performance of missing data imputation methods in IRT analyses
  publication-title: Int. J. Assess. Tools Educ.
  doi: 10.21449/ijate.430720
– volume: 40
  start-page: 1847
  issue: 5
  year: 2013
  end-page: 1857
  ident: CR39
  article-title: Effects of data set features on the performances of classification algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.09.017
– volume: 12
  start-page: 61
  issue: 1
  year: 2017
  end-page: 74
  ident: CR8
  article-title: A class based clustering approach for imputation and mining of medical records (CBC-IM)
  publication-title: IADIS Int. J. Comput. Sci. Inf. Syst.
– volume: 4
  start-page: 67
  year: 2021
  end-page: 84
  ident: CR28
  article-title: A robust deep learning model for missing value imputation in big NCDC dataset
  publication-title: Iran J. Comput. Sci.
  doi: 10.1007/s42044-020-00065-z
– volume: 64
  start-page: 402
  issue: 5
  year: 2013
  ident: CR1
  article-title: The prevention and handling of the missing data
  publication-title: Korean J. Anesthesiol.
  doi: 10.4097/kjae.2013.64.5.402
– volume: 48
  start-page: 5
  issue: 1
  year: 2010
  end-page: 37
  ident: CR6
  article-title: An introduction to modern missing data analyses
  publication-title: J. Sch. Psychol.
  doi: 10.1016/j.jsp.2009.10.001
– volume: 108
  start-page: 2282
  year: 2017
  end-page: 2286
  ident: CR17
  article-title: Column-wise guided data imputation
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2017.05.008
– volume: 91
  start-page: 106249
  year: 2020
  ident: CR22
  article-title: Estimating missing data using novel correlation maximization based methods
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106249
– volume: 31
  start-page: 175
  issue: 2
  year: 2019
  end-page: 184
  ident: CR37
  article-title: A hybrid Bayesian network and tensor factorization approach for missing value imputation to improve breast cancer recurrence prediction
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2018.01.002
– volume: 141
  start-page: 112926
  year: 2020
  ident: CR24
  article-title: Multivariable data imputation for the analysis of incomplete credit data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112926
– volume: 196
  start-page: 105803
  year: 2020
  ident: CR25
  article-title: Toward semantic data imputation for a dengue dataset
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105803
– volume: 37
  start-page: 1322
  issue: 9
  year: 2021
  end-page: 1331
  ident: CR10
  article-title: Missing data in clinical research: a tutorial on multiple imputation
  publication-title: Can. J. Cardiol.
  doi: 10.1016/j.cjca.2020.11.010
– year: 2023
  ident: CR31
  article-title: Missing value imputation using weighted KNN and genetic algorithm
  publication-title: ICT Analysis and Applications. Lecture Notes in Networks and Systems, Vol 517
  doi: 10.1007/978-981-19-5224-1_18
– volume: 51
  start-page: 29
  year: 2015
  end-page: 40
  ident: CR35
  article-title: A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2014.11.003
– year: 2022
  ident: CR30
  article-title: An approach based on feature selection for missing value imputation
  publication-title: Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation INFUS 2021. Lecture Notes in Networks and Systems, Vol 307
  doi: 10.1007/978-3-030-85626-7_110
– volume: 4
  start-page: 182
  issue: 3
  year: 2019
  end-page: 200
  ident: CR18
  article-title: Imputing missing values using cumulative linear regression
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2019.0032
– volume: 10
  start-page: 363
  issue: 6
  year: 2017
  end-page: 377
  ident: CR16
  article-title: Random forest missing data algorithms
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.11348
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR43
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 65
  year: 2015
  end-page: 74
  ident: CR20
  article-title: Single imputation with multilayer perceptron and multiple imputation combining multilayer perceptron and k-nearest neighbours for monotone patterns
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.09.052
– volume: 45
  start-page: 1
  year: 2011
  end-page: 67
  ident: CR42
  article-title: mice: Multivariate imputation by chained equations in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v045.i03
– volume: 12
  start-page: 1594
  issue: 10
  year: 2020
  ident: CR21
  article-title: CBRL and CBRC: Novel algorithms for improving missing value imputation accuracy based on Bayesian ridge regression
  publication-title: Symmetry
  doi: 10.3390/sym12101594
– volume: 68
  start-page: 126
  year: 2015
  end-page: 131
  ident: CR13
  article-title: Multi-objective genetic algorithm for missing data imputation
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2015.08.023
– volume: 133
  start-page: 107
  year: 2017
  end-page: 121
  ident: CR12
  article-title: Heuristically repopulated Bayesian ant colony optimization for treating missing values in large databases
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.06.033
– year: 2023
  ident: CR29
  article-title: Left-censored missing value imputation approach for MS-based proteomics data with GSimp
  publication-title: Statistical Analysis of Proteomic Data. Methods in Molecular Biology, Vol 2426
  doi: 10.1007/978-1-0716-1967-4_6
– volume: 151
  start-page: 124
  year: 2018
  end-page: 135
  ident: CR7
  article-title: A class center based approach for missing value imputation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.03.026
– volume: 3
  start-page: 244
  year: 2007
  end-page: 249
  ident: CR33
  article-title: An novel association rule mining based missing nominal data imputation method
  publication-title: Eighth ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distrib. Comput.
  doi: 10.1109/SNPD.2007.93
– volume: 37
  start-page: 1322
  issue: 9
  year: 2021
  ident: 154_CR10
  publication-title: Can. J. Cardiol.
  doi: 10.1016/j.cjca.2020.11.010
– volume: 46
  start-page: 485
  year: 2016
  ident: 154_CR40
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.11.004
– year: 2021
  ident: 154_CR23
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2020.103636
– volume: 237
  start-page: 49
  year: 2013
  ident: 154_CR34
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.10.008
– volume: 156
  start-page: 134
  year: 2015
  ident: 154_CR11
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.073
– volume: 187
  start-page: 104805
  year: 2020
  ident: 154_CR15
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.06.013
– volume: 43
  start-page: 614
  issue: 3
  year: 2015
  ident: 154_CR19
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-015-0666-x
– volume: 29
  start-page: 65
  year: 2015
  ident: 154_CR20
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.09.052
– volume: 31
  start-page: 175
  issue: 2
  year: 2019
  ident: 154_CR37
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2018.01.002
– volume: 223
  start-page: 104518
  year: 2022
  ident: 154_CR5
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104518
– volume: 133
  start-page: 107
  year: 2017
  ident: 154_CR12
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.06.033
– volume: 68
  start-page: 126
  year: 2015
  ident: 154_CR13
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2015.08.023
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  ident: 154_CR4
  publication-title: Int. J. Decis. Support Syst. Technol. (IJDSST)
  doi: 10.4018/IJDSST.292446
– volume: 4
  start-page: 67
  year: 2021
  ident: 154_CR28
  publication-title: Iran J. Comput. Sci.
  doi: 10.1007/s42044-020-00065-z
– volume: 12
  start-page: 1594
  issue: 10
  year: 2020
  ident: 154_CR21
  publication-title: Symmetry
  doi: 10.3390/sym12101594
– volume: 12
  start-page: 2825
  year: 2011
  ident: 154_CR43
  publication-title: J. Mach. Learn. Res.
– volume: 123
  start-page: 2245
  issue: 3
  year: 2022
  ident: 154_CR38
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-09237-x
– volume: 233
  start-page: 25
  year: 2013
  ident: 154_CR36
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.01.021
– volume: 168
  start-page: 1125
  year: 2021
  ident: 154_CR27
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114425
– volume: 5
  start-page: 403
  issue: 3
  year: 2018
  ident: 154_CR2
  publication-title: Int. J. Assess. Tools Educ.
  doi: 10.21449/ijate.430720
– volume: 64
  start-page: 402
  issue: 5
  year: 2013
  ident: 154_CR1
  publication-title: Korean J. Anesthesiol.
  doi: 10.4097/kjae.2013.64.5.402
– volume: 40
  start-page: 1847
  issue: 5
  year: 2013
  ident: 154_CR39
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.09.017
– volume-title: Statistical Analysis of Proteomic Data. Methods in Molecular Biology, Vol 2426
  year: 2023
  ident: 154_CR29
  doi: 10.1007/978-1-0716-1967-4_6
– volume-title: ICT Analysis and Applications. Lecture Notes in Networks and Systems, Vol 517
  year: 2023
  ident: 154_CR31
  doi: 10.1007/978-981-19-5224-1_18
– volume: 91
  start-page: 106249
  year: 2020
  ident: 154_CR22
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106249
– volume: 10
  start-page: 363
  issue: 6
  year: 2017
  ident: 154_CR16
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.11348
– volume: 179
  start-page: 764
  issue: 6
  year: 2014
  ident: 154_CR41
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwt312
– volume: 108
  start-page: 2282
  year: 2017
  ident: 154_CR17
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2017.05.008
– volume-title: Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation INFUS 2021. Lecture Notes in Networks and Systems, Vol 307
  year: 2022
  ident: 154_CR30
  doi: 10.1007/978-3-030-85626-7_110
– volume: 45
  start-page: 1
  year: 2011
  ident: 154_CR42
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v045.i03
– volume: 48
  start-page: 5
  issue: 1
  year: 2010
  ident: 154_CR6
  publication-title: J. Sch. Psychol.
  doi: 10.1016/j.jsp.2009.10.001
– volume: 12
  start-page: 61
  issue: 1
  year: 2017
  ident: 154_CR8
  publication-title: IADIS Int. J. Comput. Sci. Inf. Syst.
– volume: 141
  start-page: 112926
  year: 2020
  ident: 154_CR24
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112926
– volume: 196
  start-page: 105803
  year: 2020
  ident: 154_CR25
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105803
– volume: 151
  start-page: 124
  year: 2018
  ident: 154_CR7
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.03.026
– year: 2004
  ident: 154_CR32
  publication-title: Fourth Int. Conf. Hybrid Intell. Syst.
  doi: 10.1109/ICHIS.2004.91
– volume: 14
  start-page: 853
  issue: 5
  year: 2001
  ident: 154_CR14
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2
– start-page: 59
  volume-title: Data Preprocessing in Data Mining
  year: 2015
  ident: 154_CR3
  doi: 10.1007/978-3-319-10247-4
– volume: 51
  start-page: 29
  year: 2015
  ident: 154_CR35
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2014.11.003
– volume: 4
  start-page: 182
  issue: 3
  year: 2019
  ident: 154_CR18
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2019.0032
– volume: 3
  start-page: 244
  year: 2007
  ident: 154_CR33
  publication-title: Eighth ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distrib. Comput.
  doi: 10.1109/SNPD.2007.93
– volume: 103
  start-page: 107167
  year: 2021
  ident: 154_CR26
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107167
– volume: 9
  start-page: 1301
  issue: 3
  year: 2019
  ident: 154_CR9
  publication-title: Wiley Interdiscip. Rev.
  doi: 10.1002/widm.1301
SSID ssj0002734726
ssib031263613
Score 2.2824693
Snippet In today’s world, our heavy reliance on digital devices for data collection has become the norm. However, when these devices fail, there is a significant risk...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Algorithms
Artificial Intelligence
Computer Science
Computer Systems Organization and Communication Networks
Data analysis
Data collection
Data mining
Data Structures and Information Theory
Datasets
Mathematics of Computing
Missing data
Real time
Root-mean-square errors
Software Engineering/Programming and Operating Systems
Theory of Computation
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgMLBQPkWhIA9sYMmxndgeK0TVqUJ8qVvkOA4UlRQ1ob-fc5q0AgESzLk40fmc9y4-v0PoHFBPWiu9Hp4TRKRUEqMsI4nJmDEWKKrNqmYTcjhUo5G-qQ-FFU21e7MlWX2pl4fdBKNCEMAYUgE_0etoA-BO-eV4e_fYRBEPWMQbkHqpBVxk1XeNhZArKcFVfXrm-2E_I9SKdn7ZKa0AqN_-36vvoO2acOLeIkJ20ZrL91C7aeaA67W9jwY9nE_nboLN5Gk6G5fPrxj4LB57O3gWBqKIISb8rwXsFcJdgcc59toOXl-4dNjXmhauLA7QQ__6_mpA6jYLxDIuNImoSlwaJlIBtdFKGSBZKeSt0snMMZVRY6gB1heYRApFuTBRpG3KM55SlQaOH6JWPs3dEcJhmGqrExXIxAgdBUnGqXHGRcar_oSmg4LGtbGtNch9K4xJvFRPrlwVg6viylWx7qCL5T1vCwWOX627zYzF9WosYg55E-PAjWgHXTYztLr882jHfzM_QVsMOM-iRK2LWuXs3Z2iTTsvx8XsrIrSDwAV3SA
  priority: 102
  providerName: Springer Nature
Title A novel algorithm for imputing the missing values in incomplete datasets
URI https://link.springer.com/article/10.1007/s42044-023-00154-9
https://www.proquest.com/docview/3255237500
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2520-8446
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002734726
  issn: 2520-8438
  databaseCode: K7-
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2520-8446
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0002734726
  issn: 2520-8438
  databaseCode: BENPR
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 2520-8446
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734726
  issn: 2520-8438
  databaseCode: RSV
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21bA-9AP1ALKUrH3prrTq2E9unilYgpEorRD_ELXIcpyxasrAJ-_sZex1WrQSXXnKJM0oyY8_z2H4P4ANmPeWcCnx4XlJZM0WtdpxWtuHWOoSoroliE2o61RcX5iwV3Lq0rXIYE-NAXS9cqJF_Foh9ucD8xr7c3NKgGhVWV5OExnMYZZxnIc6_KzrEk8h4IYZ0dZWoXFRUYOM5zpq0FDqdo4mn6SRnUlJMYjQiC2r-zlUbAPrPmmlMRSc7__sRu7CdQCg5WkfNK3jm29ewMwg8kNTf38DpEWkXKz8ndv4HzfSX1wQxLpmFdvhmBMEjwTgJ5QYSWMN9R2YtCXwPgXO49yTsP-18372FXyfHP7-d0iS9QB0X0tCC6crXeaU0wh2jtUXgVeNcVnnVeK4bZi2ziAQzWympmZC2KIyrRSNqpuvMiz3Yahet3weS57VxptKZqqw0RVY1gllvfWEDE1Bux5ANP7l0iZc8yGPMywdG5eiYEh1TRseUZgwfH565WbNyPNn6cPBGmXpoV25cMYZPgz83tx-3dvC0tXfwkiPuWW9TO4Stfnnn38MLt-pn3XICo6_H07PzSYxTvJ7_-H0P9Pzpgg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RqFQupV-IpZT60J5aq47txPahqmgBLYKuUEUlbqnjOLBoyQJJqfqn-hs7zsasWqncOPQcx0o8b2aev94AvMKsp5xTQQ_PSypLpqjVjtPCVtxahxTVVV2xCTUa6eNjc7gAv-JdmHCsMsbELlCXUxfWyN8J5L5cYH5jHy4uaagaFXZXYwmNGSz2_c8fOGVr3u9to31fc767c_RpSPuqAtRxIQ3NmC58mRZKYyY3WlvkFCVO05RXlee6YtYyiyQnsYWSmglps8y4UlSiZLpMvMB-78GSFFKhXy193BkdfokIFgnPREyQZ714jOpqvvEU52laCt3f3Onu70nOpKSYNmnHZaj5MzvOKe9fu7Rd8ttd-d-G7RE87Gk22Zr5xWNY8PUTWIklLEgf0Z7CcIvU02s_IXZygp_dnp4TZPFkHNrhSBCkxwQ9ISyokKCL7hsyrklQtAiqyq0n4YRt49vmGXy9k_9ZhcV6Wvs1IGlaGmcKnajCSpMlRSWY9dZnNmgdpXYASTRq7nrl9VAAZJLfaEZ3QMgRCHkHhNwM4M3NOxcz3ZFbW29E6-d9DGryuekH8DbiZ_74372t397bS3gwPPp8kB_sjfafwzJHljc7lLcBi-3Vd_8C7rvrdtxcbfbeQeDbXSPrNw3UQ2c
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IV58i-szB28aTJO0SY6iLoqyCD7wVtI01ZW1u2yrv9-k264PVBDPTRM6mTDfNDPfB7Dnop4wRng-PMsxT4nAWhqKE51RrY2DqCarxCZEpyPv79XVhy7-qtq9uZIc9TR4lqa8PByk2eG48Y1Twjl28QZXIACrSZjmXjTI5-vXd41HsYBGrAlYTzWZi6g02Gjo8ibJmaw7ab6f9nO0eoegX25Nq2DUXvj_ZyzCfA1E0dHIc5ZgwubLsNCIPKD6zK_A2RHK-6-2h3TvoT_slo_PyOFc1PXj3LrIAUjkfMX_ckCeOdwWqJsjz_ngeYdLi3wNamHLYhVu26c3x2e4ll_AhjKucERkYtMwEdJBHiWlduArdfmssCKzVGZEa6IdGgx0IrgkjOsoUiZlGUuJTAPL1mAq7-d2HVAYpsqoRAYi0VxFQZIxoq22kfZsQKFuQdCYOTY1N7mXyOjFY1blylSxM1VcmSpWLdgfvzMYMXP8Onqr2b24PqVFzFw-RZnDTKQFB81uvT_-ebaNvw3fhdmrk3Z8ed652IQ56mDRqIptC6bK4YvdhhnzWnaL4U7lvG8Xtejo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+algorithm+for+imputing+the+missing+values+in+incomplete+datasets&rft.jtitle=Iran+Journal+of+Computer+Science+%28Online%29&rft.au=Bhagat%2C+Hutashan+Vishal&rft.au=Singh%2C+Manminder&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2520-8438&rft.eissn=2520-8446&rft.volume=7&rft.issue=1&rft.spage=13&rft.epage=23&rft_id=info:doi/10.1007%2Fs42044-023-00154-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8438&client=summon