Dichotomy for Holant∗ Problems on the Boolean Domain

Holant problems are a general framework to study counting problems. Both counting constraint satisfaction problems (#CSP) and graph homomorphisms are special cases. We prove a complexity dichotomy theorem for Holant ∗ ( F ) , where F is a set of constraint functions on Boolean variables and taking c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theory of computing systems Ročník 64; číslo 8; s. 1362 - 1391
Hlavní autoři: Cai, Jin-Yi, Lu, Pinyan, Xia, Mingji
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2020
Springer Nature B.V
Témata:
ISSN:1432-4350, 1433-0490
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Holant problems are a general framework to study counting problems. Both counting constraint satisfaction problems (#CSP) and graph homomorphisms are special cases. We prove a complexity dichotomy theorem for Holant ∗ ( F ) , where F is a set of constraint functions on Boolean variables and taking complex values. The constraint functions need not be symmetric functions. We identify four classes of problems which are polynomial time computable; all other problems are proved to be #P-hard. The main proof technique and indeed the formulation of the theorem use holographic algorithms and reductions. By considering these counting problems with the broader scope that allows complex-valued constraint functions, we discover surprising new tractable classes, which are associated with isotropic vectors, i.e., a (non-zero) vector whose dot product with itself is zero.
AbstractList Holant problems are a general framework to study counting problems. Both counting constraint satisfaction problems (#CSP) and graph homomorphisms are special cases. We prove a complexity dichotomy theorem for Holant ∗ ( F ) , where F is a set of constraint functions on Boolean variables and taking complex values. The constraint functions need not be symmetric functions. We identify four classes of problems which are polynomial time computable; all other problems are proved to be #P-hard. The main proof technique and indeed the formulation of the theorem use holographic algorithms and reductions. By considering these counting problems with the broader scope that allows complex-valued constraint functions, we discover surprising new tractable classes, which are associated with isotropic vectors, i.e., a (non-zero) vector whose dot product with itself is zero.
Holant problems are a general framework to study counting problems. Both counting constraint satisfaction problems (#CSP) and graph homomorphisms are special cases. We prove a complexity dichotomy theorem for Holant∗(F), where F is a set of constraint functions on Boolean variables and taking complex values. The constraint functions need not be symmetric functions. We identify four classes of problems which are polynomial time computable; all other problems are proved to be #P-hard. The main proof technique and indeed the formulation of the theorem use holographic algorithms and reductions. By considering these counting problems with the broader scope that allows complex-valued constraint functions, we discover surprising new tractable classes, which are associated with isotropic vectors, i.e., a (non-zero) vector whose dot product with itself is zero.
Author Lu, Pinyan
Cai, Jin-Yi
Xia, Mingji
Author_xml – sequence: 1
  givenname: Jin-Yi
  surname: Cai
  fullname: Cai, Jin-Yi
  email: jyc@cs.wisc.edu
  organization: Computer Sciences Department, University of Wisconsin-Madison
– sequence: 2
  givenname: Pinyan
  surname: Lu
  fullname: Lu, Pinyan
  organization: School of Information Management and Engineering, Shanghai University of Finance and Economics
– sequence: 3
  givenname: Mingji
  surname: Xia
  fullname: Xia, Mingji
  organization: Stake Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, University of Chinese Academy of Sciences
BookMark eNp9kE1OwzAQRi1UJNrCBVhFYm0Y_ySxl9ACRUKCBawtx7FpqtQudrroDbgB9-MkhAYJiUVXM4vvfTN6EzTywVuEzglcEoDyKgFQyjFQwCClYFgcoTHhjGHgEkb7nWLOcjhBk5RWAMAEwBgV88YsQxfWu8yFmC1Cq3339fGZPcdQtXadsuCzbmmzmxBaq302D2vd-FN07HSb7NnvnKLXu9uX2QI_Pt0_zK4fsaGMC6wLVhhROpZrVsnacZ4zIoEa6aSoSCW5K1xdOFkSbfJaVIbWVDOR50Jwy3I2RRdD7yaG961NnVqFbfT9SUV5yVhBClL2KTGkTAwpReuUaTrdNcF3UTetIqB-LKnBkuotqb0lJXqU_kM3sVnruDsMsQFKfdi_2fj31QHqGxD5etY
CitedBy_id crossref_primary_10_1016_j_tcs_2024_114931
crossref_primary_10_1016_j_ic_2023_105064
crossref_primary_10_1007_s00224_021_10032_1
Cites_doi 10.1145/2371656.2371660
10.1016/0031-8914(61)90063-5
10.4159/harvard.9780674180758
10.1017/9781107477063
10.1103/PhysRev.87.410
10.1137/1.9781611975482.30
10.1137/070690201
10.1109/FOCS.2014.70
10.1016/j.jcss.2010.06.005
10.1007/BF02280291
10.1145/321864.321877
10.1137/110840194
10.1145/1806689.1806789
10.1137/0222066
10.1109/FOCS.2008.34
10.1109/FOCS.2006.7
10.1137/070682575
10.1103/PhysRev.65.117
10.1080/14786436108243366
10.1137/1.9781611975031.118
10.1137/1.9781611973082.132
10.1145/800133.804350
10.1007/BF01213009
10.1017/CBO9780511752506
10.1137/090757496
10.1103/PhysRev.87.404
10.1109/FOCS.2010.49
10.1214/aoap/1026915617
10.1145/1536414.1536511
10.1137/1.9781611973105.93
10.1006/inco.1996.0016
10.1137/1.9780898718546
10.1016/j.jcss.2011.12.002
10.1016/j.tcs.2005.09.011
10.1016/j.jcss.2009.08.003
10.1137/S0097539700377025
10.1103/PhysRev.85.808
10.1145/1314690.1314691
10.1016/0095-8956(90)90132-J
10.1090/S0894-0347-07-00568-1
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1007/s00224-020-09983-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1433-0490
EndPage 1391
ExternalDocumentID 10_1007_s00224_020_09983_8
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1714275
  funderid: https://doi.org/10.13039/100000001
– fundername: Fundamental Research Funds for the Central Universities
  funderid: https://doi.org/10.13039/501100012226
– fundername: Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (CN)
– fundername: Science and Technology Innovation 2030
  grantid: ”New Generation of Artificial Intelligence” Major Project No. 2018AAA0100903
– fundername: Key Programme
  grantid: 61932002
  funderid: https://doi.org/10.13039/501100010903
– fundername: National Natural Science Foundation of China
  grantid: 61922052
  funderid: https://doi.org/10.13039/501100001809
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: https://doi.org/10.13039/501100004739
GroupedDBID --Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
MK~
ML~
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF-
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XOL
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2348-a636c87f35a3b9df44531902c9f98b1b94f6fd6f971ac5d8bc2d2a3855884e353
IEDL.DBID RSV
ISSN 1432-4350
IngestDate Tue Nov 04 23:11:54 EST 2025
Sat Nov 29 03:28:55 EST 2025
Tue Nov 18 22:35:44 EST 2025
Fri Feb 21 02:34:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords P-hardness
Constraint satisfaction problems
Dichotomy theorems
Edge coloring models
Holant problems
Polynomial time algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2348-a636c87f35a3b9df44531902c9f98b1b94f6fd6f971ac5d8bc2d2a3855884e353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2473361617
PQPubID 48907
PageCount 30
ParticipantIDs proquest_journals_2473361617
crossref_citationtrail_10_1007_s00224_020_09983_8
crossref_primary_10_1007_s00224_020_09983_8
springer_journals_10_1007_s00224_020_09983_8
PublicationCentury 2000
PublicationDate 20201100
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Theory of computing systems
PublicationTitleAbbrev Theory Comput Syst
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BulatovAAGroheMThe complexity of partition functionsTheor. Comput. Sci.20053482-3148186218137410.1016/j.tcs.2005.09.011
Cai, J., Chen, X.: A Decidable Dichotomy Theorem on Directed Graph Homomorphisms with Non-Negative Weights. In: 51Th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pp 437–446. IEEE Computer Society, Las Vegas (2010)
KasteleynPWThe statistics of dimers on a latticePhysica1961271209122510.1016/0031-8914(61)90063-5
CreignouNHermannMComplexity of generalized satisfiability counting problemsInf. Comput.19961251112138580410.1006/inco.1996.0016
Cai, J., Lu, P., Xia, M.: Dichotomy for Holant* problems with domain size 3. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, pp. 1278–1295, New Orleans (2013)
ValiantLGQuantum circuits that can be simulated classically in polynomial timeSIAM J. Comput.200231412291254191996410.1137/S0097539700377025
GoldbergLAJerrumMApproximating the partition function of the ferromagnetic potts modelJ. ACM201259525:125:31299582410.1145/2371656.2371660
Randall, D.: Mixing. In: 44Th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pp. 4–15 (2003)
Dyer, M. E., Richerby, D.: On the complexity of #CSP. In: Schulman, L.J. (ed.) Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp 725–734. ACM, Cambridge (2010)
OnsagerLCrystal statistics. i. a two-dimensional model with an order-disorder transitionPhys. Rev.1944653-41171491031510.1103/PhysRev.65.117
MadrasNRandallDMarkov chain decomposition for convergence rate analysisAnn. Appl. Probab.2002122581606191064110.1214/aoap/1026915617
LadnerREOn the structure of polynomial time reducibilityJ. ACM197522115517146469810.1145/321864.321877
DyerMEGoldbergLAJerrumMAn approximation trichotomy for Boolean #CSPJ. Comput. Syst. Sci.2010763-4267277265649210.1016/j.jcss.2009.08.003
BulatovAAThe complexity of the counting constraint satisfaction problemJ. ACM201360534:134:4131246831281.68130
LiebESokalAA general Lee-Yang theorem for one-component and multicomponent ferromagnetsCommun. Math. Phys.198180215317962315610.1007/BF01213009
YangCLeeTStatistical theory of equations of state and phase transitions. I. Theory of condensationPhys. Rev.19528734044095302810.1103/PhysRev.87.404
BaxterRJExactly solved models in statistical mechanics1982LondonAcademic Press0538.60093
Valiant, L. G.: Accidental algorthims. In: FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science. https://doi.org/10.1109/FOCS.2006.7, pp 509–517. IEEE Computer Society, Washington (2006)
CaiJLuPHolographic algorithms: From art to scienceJ. Comput. Syst. Sci.20117714161276712410.1016/j.jcss.2010.06.005
McCoy, B., Wu, T.: The two-dimensional Ising model. Harvard University Press, Cambridge (1973)
Kasteleyn, P. W.: Graph Theory and Crystal Physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp 43–110. Academic Press, London (1967)
Backens, M.: A New Holant Dichotomy Inspired by Quantum Computation. In: 44Th International Colloquium on Automata, Languages, and Programming, ICALP 2017, Warsaw, pp. 16:1–16:14 (2017)
IsingEBeitrag zur theorie des ferromagnetismusZ. Phys. Hadrons Nucl.19253112532581439.82056
Cai, J. Y., Lu, P., Xia, M.: Holant Problems and Counting CSP. In: Mitzenmacher, M. (ed.) STOC, pp 715–724. ACM (2009)
LovászLOperations with structuresActa Math. Hung.19671832132821452910.1007/BF02280291
ValiantLGHolographic algorithmsSIAM J. Comput.200837515651594238628110.1137/070682575https://doi.org/10.1137/070682575
Welsh, D.: Complexity: knots, colourings and counting. Cambridge University Press, Cambridge (1993)
Cai, J., Chen, X.: Complexity dichotomies for counting problems. Cambridge University Press, Cambridge (2017)
Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. Siam Monographs On Discrete Mathematics And Applications (2001)
FreedmanMLovászLSchrijverAReflection positivity, rank connectivity, and homomorphism of graphsJ. AMS200720375122573961107.05089
SzegedyBEdge coloring models and reflection positivityJ. Amer. Math. Soc.200720969988232871210.1090/S0894-0347-07-00568-1
Dyer, M. E., Goldberg, L. A., Jalsenius, M., Richerby, D.: The Complexity of Approximating Bounded-Degree Boolean #CSP. In: Marion, J., Schwentick, T. (eds.) STACS, LIPIcs, vol. 5, pp 323–334. Schloss Dagstuhl - Leibniz-Zentrum fu̇r Informatik (2010)
TemperleyHNVFisherMEDimer problem in statistical mechanics c an exact resultPhilos. Mag.196161061 C 106313639810.1080/14786436108243366
Cai, J., Lu, P., Xia, M.: Dichotomy for real Holantc problems. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pp. 1802–1821, New Orleans (2018)
JerrumMSinclairAPolynomial-time approximation algorithms for the ising modelSIAM J. Comput.199322510871116123716410.1137/0222066
Lin, J., Wang, H.: The Complexity of Holant Problems over Boolean Domain with Non-Negative Weights. In: 44Th International Colloquium on Automata, Languages, and Programming, ICALP 2017, pp 29:1–29:14, Warsaw (2017)
Cai, J. Y., Lu, P., Xia, M.: Holographic algorithms by Fibonacci gates and holographic reductions for hardness. In: FOCS ’08: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society, Washington (2008)
LeeTYangCStatistical theory of equations of state and phase transitions. II. Lattice gas and Ising modelPhys. Rev.19528734104195302910.1103/PhysRev.87.410
Cai, J., Lu, P., Xia, M.: Dichotomy for Holant* problems of Boolean domain. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 1714–1728, San Francisco (2011)
GoldbergLAGroheMJerrumMThurleyMA complexity dichotomy for partition functions with mixed signsSIAM J. Comput.201039733363402267807710.1137/090757496
Jerrum, M., Sinclair, A.: The Markov Chain Monte Carlo Method: an Approach to Approximate Counting and Integration. In: Approximation Algorithms for NP-Hard Problems, pp. 482–520. PWS Publishing (1996)
Cai, J. Y., Govorov, A.: Perfect matchings, rank of connection tensors and graph homomorphisms. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pp. 476–495. Society for Industrial and Applied Mathematics, Philadelphia (2019)
Backens, M.: A Complete Dichotomy for Complex-Valued Holantc. In: 45Th International Colloquium on Automata, Languages, and Programming, ICALP 2018, pp. 12:1–12:14 (2018)
YangCThe spontaneous magnetization of a two-dimensional Ising modelPhys. Rev.19528558088165174010.1103/PhysRev.85.808
Cai, J., Guo, H., Williams, T.: The Complexity of Counting Edge Colorings and a Dichotomy for Some Higher Domain Holant Problems. In: 55Th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pp. 601–610, Philadelphia (2014)
CaiJChenXLuPGraph homomorphisms with complex values: a dichotomy theoremSIAM J. Comput.20134239241029305676410.1137/110840194
BulatovAADyerMEGoldbergLAJalseniusMJerrumMRicherbyDThe complexity of weighted and unweighted #CSPJ. Comput. Syst. Sci.2012782681688288135610.1016/j.jcss.2011.12.002
Schaefer, T. J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226, San Diego (1978)
DyerMEGoldbergLAJerrumMThe complexity of weighted Boolean #CSPSIAM J. Comput.200938519701986247628210.1137/070690201
HellPNešetřilJOn the complexity of H-coloringJ. Combin. Theory Ser. B199048192110104755510.1016/0095-8956(90)90132-J
DyerMEGreenhillCSThe complexity of counting graph homomorphisms. Random StructAlgorithms2000173-426028918011350965.68073
Dyer, M. E., Goldberg, L. A., Paterson, M.: On counting homomorphisms to directed acyclic graphs. J. ACM 54(6), 27:1–27:23 (2007)
E Lieb (9983_CR37) 1981; 80
ME Dyer (9983_CR22) 2010; 76
9983_CR25
9983_CR23
9983_CR1
9983_CR2
9983_CR20
AA Bulatov (9983_CR4) 2013; 60
HNV Temperley (9983_CR46) 1961; 6
C Yang (9983_CR52) 1952; 87
N Creignou (9983_CR18) 1996; 125
9983_CR38
9983_CR34
9983_CR32
ME Dyer (9983_CR24) 2000; 17
P Hell (9983_CR29) 1990; 48
PW Kasteleyn (9983_CR33) 1961; 27
AA Bulatov (9983_CR6) 2005; 348
C Yang (9983_CR51) 1952; 85
LA Goldberg (9983_CR27) 2010; 39
LA Goldberg (9983_CR28) 2012; 59
RE Ladner (9983_CR35) 1975; 22
M Jerrum (9983_CR31) 1993; 22
9983_CR48
B Szegedy (9983_CR45) 2007; 20
ME Dyer (9983_CR21) 2009; 38
9983_CR43
9983_CR44
9983_CR41
T Lee (9983_CR36) 1952; 87
LG Valiant (9983_CR47) 2002; 31
E Ising (9983_CR30) 1925; 31
J Cai (9983_CR11) 2011; 77
AA Bulatov (9983_CR5) 2012; 78
9983_CR19
J Cai (9983_CR9) 2013; 42
9983_CR16
9983_CR17
9983_CR14
9983_CR15
9983_CR12
LG Valiant (9983_CR49) 2008; 37
9983_CR13
9983_CR10
M Freedman (9983_CR26) 2007; 20
N Madras (9983_CR40) 2002; 12
9983_CR50
9983_CR7
9983_CR8
RJ Baxter (9983_CR3) 1982
L Onsager (9983_CR42) 1944; 65
L Lovász (9983_CR39) 1967; 18
References_xml – reference: Valiant, L. G.: Accidental algorthims. In: FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science. https://doi.org/10.1109/FOCS.2006.7, pp 509–517. IEEE Computer Society, Washington (2006)
– reference: GoldbergLAJerrumMApproximating the partition function of the ferromagnetic potts modelJ. ACM201259525:125:31299582410.1145/2371656.2371660
– reference: MadrasNRandallDMarkov chain decomposition for convergence rate analysisAnn. Appl. Probab.2002122581606191064110.1214/aoap/1026915617
– reference: Cai, J., Chen, X.: A Decidable Dichotomy Theorem on Directed Graph Homomorphisms with Non-Negative Weights. In: 51Th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pp 437–446. IEEE Computer Society, Las Vegas (2010)
– reference: Cai, J., Chen, X.: Complexity dichotomies for counting problems. Cambridge University Press, Cambridge (2017)
– reference: DyerMEGoldbergLAJerrumMThe complexity of weighted Boolean #CSPSIAM J. Comput.200938519701986247628210.1137/070690201
– reference: JerrumMSinclairAPolynomial-time approximation algorithms for the ising modelSIAM J. Comput.199322510871116123716410.1137/0222066
– reference: Jerrum, M., Sinclair, A.: The Markov Chain Monte Carlo Method: an Approach to Approximate Counting and Integration. In: Approximation Algorithms for NP-Hard Problems, pp. 482–520. PWS Publishing (1996)
– reference: CreignouNHermannMComplexity of generalized satisfiability counting problemsInf. Comput.19961251112138580410.1006/inco.1996.0016
– reference: OnsagerLCrystal statistics. i. a two-dimensional model with an order-disorder transitionPhys. Rev.1944653-41171491031510.1103/PhysRev.65.117
– reference: Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. Siam Monographs On Discrete Mathematics And Applications (2001)
– reference: KasteleynPWThe statistics of dimers on a latticePhysica1961271209122510.1016/0031-8914(61)90063-5
– reference: Cai, J., Lu, P., Xia, M.: Dichotomy for Holant* problems of Boolean domain. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 1714–1728, San Francisco (2011)
– reference: Dyer, M. E., Richerby, D.: On the complexity of #CSP. In: Schulman, L.J. (ed.) Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp 725–734. ACM, Cambridge (2010)
– reference: CaiJChenXLuPGraph homomorphisms with complex values: a dichotomy theoremSIAM J. Comput.20134239241029305676410.1137/110840194
– reference: Dyer, M. E., Goldberg, L. A., Paterson, M.: On counting homomorphisms to directed acyclic graphs. J. ACM 54(6), 27:1–27:23 (2007)
– reference: Dyer, M. E., Goldberg, L. A., Jalsenius, M., Richerby, D.: The Complexity of Approximating Bounded-Degree Boolean #CSP. In: Marion, J., Schwentick, T. (eds.) STACS, LIPIcs, vol. 5, pp 323–334. Schloss Dagstuhl - Leibniz-Zentrum fu̇r Informatik (2010)
– reference: Randall, D.: Mixing. In: 44Th Symposium on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pp. 4–15 (2003)
– reference: McCoy, B., Wu, T.: The two-dimensional Ising model. Harvard University Press, Cambridge (1973)
– reference: CaiJLuPHolographic algorithms: From art to scienceJ. Comput. Syst. Sci.20117714161276712410.1016/j.jcss.2010.06.005
– reference: Lin, J., Wang, H.: The Complexity of Holant Problems over Boolean Domain with Non-Negative Weights. In: 44Th International Colloquium on Automata, Languages, and Programming, ICALP 2017, pp 29:1–29:14, Warsaw (2017)
– reference: DyerMEGoldbergLAJerrumMAn approximation trichotomy for Boolean #CSPJ. Comput. Syst. Sci.2010763-4267277265649210.1016/j.jcss.2009.08.003
– reference: BulatovAAThe complexity of the counting constraint satisfaction problemJ. ACM201360534:134:4131246831281.68130
– reference: Kasteleyn, P. W.: Graph Theory and Crystal Physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp 43–110. Academic Press, London (1967)
– reference: ValiantLGQuantum circuits that can be simulated classically in polynomial timeSIAM J. Comput.200231412291254191996410.1137/S0097539700377025
– reference: Cai, J. Y., Lu, P., Xia, M.: Holographic algorithms by Fibonacci gates and holographic reductions for hardness. In: FOCS ’08: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society, Washington (2008)
– reference: TemperleyHNVFisherMEDimer problem in statistical mechanics c an exact resultPhilos. Mag.196161061 C 106313639810.1080/14786436108243366
– reference: BulatovAADyerMEGoldbergLAJalseniusMJerrumMRicherbyDThe complexity of weighted and unweighted #CSPJ. Comput. Syst. Sci.2012782681688288135610.1016/j.jcss.2011.12.002
– reference: Cai, J., Lu, P., Xia, M.: Dichotomy for Holant* problems with domain size 3. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, pp. 1278–1295, New Orleans (2013)
– reference: IsingEBeitrag zur theorie des ferromagnetismusZ. Phys. Hadrons Nucl.19253112532581439.82056
– reference: LiebESokalAA general Lee-Yang theorem for one-component and multicomponent ferromagnetsCommun. Math. Phys.198180215317962315610.1007/BF01213009
– reference: BaxterRJExactly solved models in statistical mechanics1982LondonAcademic Press0538.60093
– reference: Schaefer, T. J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226, San Diego (1978)
– reference: YangCLeeTStatistical theory of equations of state and phase transitions. I. Theory of condensationPhys. Rev.19528734044095302810.1103/PhysRev.87.404
– reference: Backens, M.: A New Holant Dichotomy Inspired by Quantum Computation. In: 44Th International Colloquium on Automata, Languages, and Programming, ICALP 2017, Warsaw, pp. 16:1–16:14 (2017)
– reference: HellPNešetřilJOn the complexity of H-coloringJ. Combin. Theory Ser. B199048192110104755510.1016/0095-8956(90)90132-J
– reference: Cai, J. Y., Govorov, A.: Perfect matchings, rank of connection tensors and graph homomorphisms. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pp. 476–495. Society for Industrial and Applied Mathematics, Philadelphia (2019)
– reference: YangCThe spontaneous magnetization of a two-dimensional Ising modelPhys. Rev.19528558088165174010.1103/PhysRev.85.808
– reference: Backens, M.: A Complete Dichotomy for Complex-Valued Holantc. In: 45Th International Colloquium on Automata, Languages, and Programming, ICALP 2018, pp. 12:1–12:14 (2018)
– reference: LadnerREOn the structure of polynomial time reducibilityJ. ACM197522115517146469810.1145/321864.321877
– reference: ValiantLGHolographic algorithmsSIAM J. Comput.200837515651594238628110.1137/070682575https://doi.org/10.1137/070682575
– reference: Welsh, D.: Complexity: knots, colourings and counting. Cambridge University Press, Cambridge (1993)
– reference: GoldbergLAGroheMJerrumMThurleyMA complexity dichotomy for partition functions with mixed signsSIAM J. Comput.201039733363402267807710.1137/090757496
– reference: LovászLOperations with structuresActa Math. Hung.19671832132821452910.1007/BF02280291
– reference: FreedmanMLovászLSchrijverAReflection positivity, rank connectivity, and homomorphism of graphsJ. AMS200720375122573961107.05089
– reference: SzegedyBEdge coloring models and reflection positivityJ. Amer. Math. Soc.200720969988232871210.1090/S0894-0347-07-00568-1
– reference: Cai, J., Lu, P., Xia, M.: Dichotomy for real Holantc problems. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pp. 1802–1821, New Orleans (2018)
– reference: Cai, J., Guo, H., Williams, T.: The Complexity of Counting Edge Colorings and a Dichotomy for Some Higher Domain Holant Problems. In: 55Th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pp. 601–610, Philadelphia (2014)
– reference: LeeTYangCStatistical theory of equations of state and phase transitions. II. Lattice gas and Ising modelPhys. Rev.19528734104195302910.1103/PhysRev.87.410
– reference: BulatovAAGroheMThe complexity of partition functionsTheor. Comput. Sci.20053482-3148186218137410.1016/j.tcs.2005.09.011
– reference: DyerMEGreenhillCSThe complexity of counting graph homomorphisms. Random StructAlgorithms2000173-426028918011350965.68073
– reference: Cai, J. Y., Lu, P., Xia, M.: Holant Problems and Counting CSP. In: Mitzenmacher, M. (ed.) STOC, pp 715–724. ACM (2009)
– volume: 59
  start-page: 25:1
  issue: 5
  year: 2012
  ident: 9983_CR28
  publication-title: J. ACM
  doi: 10.1145/2371656.2371660
– volume: 27
  start-page: 1209
  year: 1961
  ident: 9983_CR33
  publication-title: Physica
  doi: 10.1016/0031-8914(61)90063-5
– ident: 9983_CR20
– volume: 17
  start-page: 260
  issue: 3-4
  year: 2000
  ident: 9983_CR24
  publication-title: Algorithms
– ident: 9983_CR43
– ident: 9983_CR2
– ident: 9983_CR41
  doi: 10.4159/harvard.9780674180758
– ident: 9983_CR8
  doi: 10.1017/9781107477063
– volume: 87
  start-page: 410
  issue: 3
  year: 1952
  ident: 9983_CR36
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.87.410
– ident: 9983_CR15
  doi: 10.1137/1.9781611975482.30
– volume: 38
  start-page: 1970
  issue: 5
  year: 2009
  ident: 9983_CR21
  publication-title: SIAM J. Comput.
  doi: 10.1137/070690201
– ident: 9983_CR34
– ident: 9983_CR10
  doi: 10.1109/FOCS.2014.70
– volume: 77
  start-page: 41
  issue: 1
  year: 2011
  ident: 9983_CR11
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2010.06.005
– volume: 18
  start-page: 321
  year: 1967
  ident: 9983_CR39
  publication-title: Acta Math. Hung.
  doi: 10.1007/BF02280291
– volume: 60
  start-page: 34:1
  issue: 5
  year: 2013
  ident: 9983_CR4
  publication-title: J. ACM
– volume: 22
  start-page: 155
  issue: 1
  year: 1975
  ident: 9983_CR35
  publication-title: J. ACM
  doi: 10.1145/321864.321877
– volume: 42
  start-page: 924
  issue: 3
  year: 2013
  ident: 9983_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/110840194
– ident: 9983_CR25
  doi: 10.1145/1806689.1806789
– volume: 31
  start-page: 253
  issue: 1
  year: 1925
  ident: 9983_CR30
  publication-title: Z. Phys. Hadrons Nucl.
– ident: 9983_CR1
– volume: 22
  start-page: 1087
  issue: 5
  year: 1993
  ident: 9983_CR31
  publication-title: SIAM J. Comput.
  doi: 10.1137/0222066
– ident: 9983_CR16
  doi: 10.1109/FOCS.2008.34
– ident: 9983_CR48
  doi: 10.1109/FOCS.2006.7
– volume: 37
  start-page: 1565
  issue: 5
  year: 2008
  ident: 9983_CR49
  publication-title: SIAM J. Comput.
  doi: 10.1137/070682575
– volume: 65
  start-page: 117
  issue: 3-4
  year: 1944
  ident: 9983_CR42
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.65.117
– volume: 6
  start-page: 1061 C 1063
  year: 1961
  ident: 9983_CR46
  publication-title: Philos. Mag.
  doi: 10.1080/14786436108243366
– ident: 9983_CR14
  doi: 10.1137/1.9781611975031.118
– ident: 9983_CR12
  doi: 10.1137/1.9781611973082.132
– ident: 9983_CR44
  doi: 10.1145/800133.804350
– volume: 80
  start-page: 153
  issue: 2
  year: 1981
  ident: 9983_CR37
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01213009
– ident: 9983_CR50
  doi: 10.1017/CBO9780511752506
– volume: 39
  start-page: 3336
  issue: 7
  year: 2010
  ident: 9983_CR27
  publication-title: SIAM J. Comput.
  doi: 10.1137/090757496
– ident: 9983_CR32
– volume: 87
  start-page: 404
  issue: 3
  year: 1952
  ident: 9983_CR52
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.87.404
– ident: 9983_CR7
  doi: 10.1109/FOCS.2010.49
– volume: 20
  start-page: 37
  year: 2007
  ident: 9983_CR26
  publication-title: J. AMS
– volume: 12
  start-page: 581
  issue: 2
  year: 2002
  ident: 9983_CR40
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/aoap/1026915617
– ident: 9983_CR17
  doi: 10.1145/1536414.1536511
– ident: 9983_CR38
– ident: 9983_CR13
  doi: 10.1137/1.9781611973105.93
– volume: 125
  start-page: 1
  issue: 1
  year: 1996
  ident: 9983_CR18
  publication-title: Inf. Comput.
  doi: 10.1006/inco.1996.0016
– ident: 9983_CR19
  doi: 10.1137/1.9780898718546
– volume: 78
  start-page: 681
  issue: 2
  year: 2012
  ident: 9983_CR5
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2011.12.002
– volume: 348
  start-page: 148
  issue: 2-3
  year: 2005
  ident: 9983_CR6
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2005.09.011
– volume-title: Exactly solved models in statistical mechanics
  year: 1982
  ident: 9983_CR3
– volume: 76
  start-page: 267
  issue: 3-4
  year: 2010
  ident: 9983_CR22
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2009.08.003
– volume: 31
  start-page: 1229
  issue: 4
  year: 2002
  ident: 9983_CR47
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539700377025
– volume: 85
  start-page: 808
  issue: 5
  year: 1952
  ident: 9983_CR51
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.85.808
– ident: 9983_CR23
  doi: 10.1145/1314690.1314691
– volume: 48
  start-page: 92
  issue: 1
  year: 1990
  ident: 9983_CR29
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(90)90132-J
– volume: 20
  start-page: 969
  year: 2007
  ident: 9983_CR45
  publication-title: J. Amer. Math. Soc.
  doi: 10.1090/S0894-0347-07-00568-1
SSID ssj0003800
Score 2.2332976
Snippet Holant problems are a general framework to study counting problems. Both counting constraint satisfaction problems (#CSP) and graph homomorphisms are special...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1362
SubjectTerms Algorithms
Boolean
Boolean algebra
Complex variables
Complexity
Computer Science
Homomorphisms
Polynomials
Theorems
Theory of Computation
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL3iNcBAeYpCQR7YwKJ-JHEmxFMMgDoAYoscx5YqlQRIQeIP-AP-jy_Bdp1WIMHCHMeyfJ-27zkXYLewQdUoV1ZhgzHmJFc41UmMidaKGMmN9ExMd5fJ9bW4v0974cKtDmWVjU_0jrqolLsjP6DcEfe5bPzw8Qm7rlHudTW00JiGWZvZEFfSdUV7Y0_MhIeg2FU4ZFDUDaAZD53zwQu7w5PNkQTD4ntgmmSbPx5Ifdw5b_13xUuwGDJOdDRSkWWY0uUKtJpuDigY9wosXI0ZXOtViE_7Dp1VPbwhm9aiC3sCLoef7x-oN-pAU6OqRHY8Oq6qgZYlOq0eZL9cg9vzs5uTCxx6LGBFGRdYxixWIjEskixPC8O5M8ouValJRU7ylJvYFLFJEyJVVIhc0YJKJiIHcNUsYuswU1al3gAUScLt6aqIEmas-xUy7irFE6qp1hGRSRtIs8GZCgTkrg_GIBtTJ3uhZFYomRdKJtqwN_7ncUS_8efoTiOJLJhinU3E0Ib9RpaTz7_Ptvn3bFswT536eFxiB2aGzy96G-bU67BfP-94RfwClnTgiw
  priority: 102
  providerName: ProQuest
Title Dichotomy for Holant∗ Problems on the Boolean Domain
URI https://link.springer.com/article/10.1007/s00224-020-09983-8
https://www.proquest.com/docview/2473361617
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1433-0490
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003800
  issn: 1432-4350
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6KEcoECrLoWVD71RSxs_YufIU0iUVcQbLpHj2NJKS4LIgtR_0H_A_-svqe1NgooAiV5GijJxrBmPZ0b2NwPwvXBO1Wp_rcI5Y8yiXOPEiBhHxujIKmZVqMR0_lMMh_LyMkkbUFjd3nZvjyTDTt2B3YK7wT7dcVGNpFjOwrxzd9I3bDg-Oe_2XyoD8MT92-OB-KCByrw8xr_u6CnGfHYsGrzN_tL_zfMTLDbRJdqaLodlmDHlCiy1nRtQY8grsHDUVWutVyHeHXkkVnXzC7kQFh24bLec_Pn9iNJpt5kaVSVy_Gi7qsZGlWi3ulGj8jOc7e-d7hzgpp8C1oQyiVVMYy2FpVzRPCksY94AB0QnNpF5lCfMxraIbSIipXkhc00KoqjkHsxqKKdfYK6sSvMVEFcRc5lUwQW1bquVKh5ozQQxxBgeKdGDqBVrppti477nxTjryiQHMWVOTFkQUyZ7sNl9czsttfEm93qrrawxuzojzFd39ClbD3602nl6_fpoa-9j_wYfiVdwwCSuw9zk7t5swAf9MBnVd32YFRdXfZjf3humx-7pUGBHjwY7npLUU3HiaMqv-2Hp_gXxZt3V
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTsMwEB0hQAIWlK8oXy9gBRaN4yTOAiGgoCJK1QUgdsFxbKkSJEAKqDfgBtyCQ3ESbDdpBRLsWLCOY8mZ5_nEfm8ANhMdVJUw1yp0MMbUiQUOZeBjR0rhKE4Vt0pMV82g1WLX12F7BN5LLoy5Vln6ROuok0yYf-S7hBrhPpON798_YNM1ypyuli00-rA4k70XXbLle6d1bd8tQk6OL44auOgqgAVxKcPcd33BAuV63I3DRFFqYFgjIlQhi504pMpXia_CwOHCS1gsSEK4yzxD6ZS2S4R2-WPUKIuZq4KkPfD8LrOUF71qw0TyagVJx1L1bLDEpljTORlzMfsaCIfZ7bcDWRvnTir_7QvNwHSRUaOD_haYhRGZzkGl7FaBCuc1B1PnA4XafB78esewz7K7HtJpO2roCj_tfry-oXa_w06OshTp8egwy24lT1E9u-OddAEu_2QtizCaZqlcAuRxh-rqMfECV-nwwrhfE4IGRBIpPYcHVXBKg0aiEFg3fT5uo4E0tAVBpEEQWRBErArbg3fu-_Iiv45eLS0fFa4mj4Zmr8JOiZ3h459nW_59tg2YaFycN6PmaetsBSaJga7lYK7CaPfxSa7BuHjudvLHdbsJENz8NaY-AR0CPEo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSsQwFL2IiujC8YnjMwtdaXCapm26EFHHQVGHWaiIm5qmCQxoq3ZU5g_8A__Fz_FLTDLtDAq6c-G6aaDJyX0099wDsJ5op6qEKavQzhhTJxY4lIGPHSmFozhV3HZiujwNmk12dRW2huC95MKYssrSJlpDnWTC_CPfJtQ07jPR-LYqyiJa9cbu_QM2ClLmprWU0-hB5ER2X3T6lu8c1_VebxDSODw_OMKFwgAWxKUMc9_1BQuU63E3DhNFqYFkjYhQhSx24pAqXyW-CgOHCy9hsSAJ4S7zDL1TWsUIbf5HAp1jmnLClnfd9wIus_QXvQKGleTVCsKOpe1Zx4lN4qbjM-Zi9tUpDiLdb5ez1uc1Kv95taZgsoi00V7vaEzDkExnoFKqWKDCqM3AxFm_c20-C369bVhp2V0X6XAeHenMP-18vL6hVk95J0dZivR4tJ9lt5KnqJ7d8XY6Bxd_8i3zMJxmqVwA5HGH6qwy8QJXabfDuF8TggZEEik9hwdVcMrNjUTReN3of9xG_ZbRFhCRBkRkARGxKmz237nvtR35dfRyiYKoMEF5NIBAFbZKHA0e_zzb4u-zrcGYhlJ0etw8WYJxYlBsqZnLMNx5fJIrMCqeO-38cdWeBwQ3fw2pT_KYRTY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dichotomy+for+Holant%E2%88%97+Problems+on+the+Boolean+Domain&rft.jtitle=Theory+of+computing+systems&rft.au=Cai%2C+Jin-Yi&rft.au=Lu%2C+Pinyan&rft.au=Xia%2C+Mingji&rft.date=2020-11-01&rft.issn=1432-4350&rft.eissn=1433-0490&rft.volume=64&rft.issue=8&rft.spage=1362&rft.epage=1391&rft_id=info:doi/10.1007%2Fs00224-020-09983-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00224_020_09983_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-4350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-4350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-4350&client=summon