Effect of Metallic Nanocoatings Deposited on Silicon Oxide on Wetting by Filler Melts I. Wetting of Ti, Nb, Cr, V, and Mo Nanocoatings Deposited on SiO2 with Filler Melts
The effect of metallic nanocoatings on the wetting of silicon oxide with lead-based filler melts (Pb–15 wt.% In and Pb–2.5 wt.% Ag) was studied by the sessile drop method with capillary cleaning of the melt in 1 ∙ 10 –3 Pa vacuum at 500°C. The dependence of the contact angle between the filler melt...
Uloženo v:
| Vydáno v: | Powder metallurgy and metal ceramics Ročník 59; číslo 1-2; s. 29 - 34 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1068-1302, 1573-9066 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The effect of metallic nanocoatings on the wetting of silicon oxide with lead-based filler melts (Pb–15 wt.% In and Pb–2.5 wt.% Ag) was studied by the sessile drop method with capillary cleaning of the melt in 1 ∙ 10
–3
Pa vacuum at 500°C. The dependence of the contact angle between the filler melt and single coatings (Ti, Nb, Cr, V, Mo) on their thickness δ is shown: the contact angle decreases linearly (from the angle for silicon oxide to the angle for ‘threshold’ coating thickness) with increasing coating thickness. The ‘threshold’ coating thickness for different metals depends on the chemical affinity of the coating metal to oxygen. The higher the chemical affinity, the greater the ‘threshold’ thickness coating. The immobilization (adhesive bonding) of metal coatings on the substrate surface is determined by the contact interaction of SiO
2
and the coating metal. The choice of metal couples for Mo–Cu, Nb–Cu, V–Cu, Cr–Cu, and Ti–Cu double coatings deposited on SiO
2
is due to various metal interactions. The dependences of contact angle on thickness, the second layer (Cu coating) having constant thickness δ
Cu
of 100 nm, are similar in nature to that for a single coating. In these systems, wetting improves linearly with increasing coating thickness in the region of small δ. The wetting of the metallic coating deposited on the oxide surface by metallic filler melt is determined by the coating thickness (amount of metal deposited), coating structure, affinity of the coating metal to oxygen (coating–substrate adhesive attraction) promoting the shape of ‘islands’ and the ease of dispersion, dissolution of the coating in the filler melt, and wettability of the adhesive metal oxide coating. |
|---|---|
| AbstractList | The effect of metallic nanocoatings on the wetting of silicon oxide with lead-based filler melts (Pb–15 wt.% In and Pb–2.5 wt.% Ag) was studied by the sessile drop method with capillary cleaning of the melt in 1 ∙ 10
–3
Pa vacuum at 500°C. The dependence of the contact angle between the filler melt and single coatings (Ti, Nb, Cr, V, Mo) on their thickness δ is shown: the contact angle decreases linearly (from the angle for silicon oxide to the angle for ‘threshold’ coating thickness) with increasing coating thickness. The ‘threshold’ coating thickness for different metals depends on the chemical affinity of the coating metal to oxygen. The higher the chemical affinity, the greater the ‘threshold’ thickness coating. The immobilization (adhesive bonding) of metal coatings on the substrate surface is determined by the contact interaction of SiO
2
and the coating metal. The choice of metal couples for Mo–Cu, Nb–Cu, V–Cu, Cr–Cu, and Ti–Cu double coatings deposited on SiO
2
is due to various metal interactions. The dependences of contact angle on thickness, the second layer (Cu coating) having constant thickness δ
Cu
of 100 nm, are similar in nature to that for a single coating. In these systems, wetting improves linearly with increasing coating thickness in the region of small δ. The wetting of the metallic coating deposited on the oxide surface by metallic filler melt is determined by the coating thickness (amount of metal deposited), coating structure, affinity of the coating metal to oxygen (coating–substrate adhesive attraction) promoting the shape of ‘islands’ and the ease of dispersion, dissolution of the coating in the filler melt, and wettability of the adhesive metal oxide coating. The effect of metallic nanocoatings on the wetting of silicon oxide with lead-based filler melts (Pb–15 wt.% In and Pb–2.5 wt.% Ag) was studied by the sessile drop method with capillary cleaning of the melt in 1 ∙ 10–3 Pa vacuum at 500°C. The dependence of the contact angle between the filler melt and single coatings (Ti, Nb, Cr, V, Mo) on their thickness δ is shown: the contact angle decreases linearly (from the angle for silicon oxide to the angle for ‘threshold’ coating thickness) with increasing coating thickness. The ‘threshold’ coating thickness for different metals depends on the chemical affinity of the coating metal to oxygen. The higher the chemical affinity, the greater the ‘threshold’ thickness coating. The immobilization (adhesive bonding) of metal coatings on the substrate surface is determined by the contact interaction of SiO2 and the coating metal. The choice of metal couples for Mo–Cu, Nb–Cu, V–Cu, Cr–Cu, and Ti–Cu double coatings deposited on SiO2 is due to various metal interactions. The dependences of contact angle on thickness, the second layer (Cu coating) having constant thickness δCu of 100 nm, are similar in nature to that for a single coating. In these systems, wetting improves linearly with increasing coating thickness in the region of small δ. The wetting of the metallic coating deposited on the oxide surface by metallic filler melt is determined by the coating thickness (amount of metal deposited), coating structure, affinity of the coating metal to oxygen (coating–substrate adhesive attraction) promoting the shape of ‘islands’ and the ease of dispersion, dissolution of the coating in the filler melt, and wettability of the adhesive metal oxide coating. |
| Author | Krasovskyy, V. P. Gab, I. I. Stetsyuk, T. V. Kostyuk, B. D. Krasovskaya, N. A. |
| Author_xml | – sequence: 1 givenname: V. P. surname: Krasovskyy fullname: Krasovskyy, V. P. email: vitalkras@ipms.kiev.ua organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine – sequence: 2 givenname: B. D. surname: Kostyuk fullname: Kostyuk, B. D. organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine – sequence: 3 givenname: I. I. surname: Gab fullname: Gab, I. I. organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine – sequence: 4 givenname: N. A. surname: Krasovskaya fullname: Krasovskaya, N. A. organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine – sequence: 5 givenname: T. V. surname: Stetsyuk fullname: Stetsyuk, T. V. organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine |
| BookMark | eNp9kbtOAzEQRS0EEuHxA1SWaLMwfqyzKVFIAAlIwau0vLt2MFrsYDsCfomvxCEIBEWqGXnuuePR3UGbzjuN0AGBIwIwOI6EEBAFUCgACCuLagP1SDlgxRCE2Mw9iKogDOg22onxKYsAOOmhj7ExuknYG3ylk-o62-Br5XzjVbJuFvGpnvtok26xd_jG5nmu0zfb6uXDg05LGa7f8cR2nQ7ZpUsRXxz9jLLzre3j67qPR6GP7_tYuRZf-bVrphS_2vT4x3QPbRnVRb3_XXfR3WR8OzovLqdnF6OTy6KhjOcja1BQ8gFjrK2E4Vo0QCteCUqamjMuyhYMCEINlIYQkTs1HNaGt60eqoFhu-hw5TsP_mWhY5JPfhFcXikpp6wUJatoVlUrVRN8jEEb2diUj_EuBWU7SUAuk5GrZGRORn4lI6uM0n_oPNhnFd7XQ2wFxSx2Mx1-f7WG-gT2b6CJ |
| CitedBy_id | crossref_primary_10_3103_S1063457623020053 crossref_primary_10_1007_s11106_020_00146_5 crossref_primary_10_1016_j_surfcoat_2024_131219 |
| Cites_doi | 10.1149/1.2428700 10.1007/BF00793227 10.1016/S1369-7021(04)00627-3 10.1016/B978-0-12-571814-1.50011-7 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11106-020-00135-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts Engineering |
| EISSN | 1573-9066 |
| EndPage | 34 |
| ExternalDocumentID | 10_1007_s11106_020_00135_8 |
| GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 2.D 28- 29O 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 XU3 YLTOR Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR BENPR BGLVJ CCPQU CITATION HCIFZ KB. M7S PDBOC PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c2348-1b0a0547333d86f4e6c02848621cb43465d0f0612f05f116612a99bf4dde9a7f3 |
| IEDL.DBID | RSV |
| ISSN | 1068-1302 |
| IngestDate | Thu Sep 25 00:57:00 EDT 2025 Tue Nov 18 22:24:02 EST 2025 Sat Nov 29 03:56:47 EST 2025 Fri Feb 21 02:35:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | silicon oxide ‘threshold’ coating thickness wetting metal nanocoatings immobilization of nanostructured metallic coatings |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2348-1b0a0547333d86f4e6c02848621cb43465d0f0612f05f116612a99bf4dde9a7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2423565382 |
| PQPubID | 326338 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2423565382 crossref_citationtrail_10_1007_s11106_020_00135_8 crossref_primary_10_1007_s11106_020_00135_8 springer_journals_10_1007_s11106_020_00135_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20200500 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 5 year: 2020 text: 20200500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Powder metallurgy and metal ceramics |
| PublicationTitleAbbrev | Powder Metall Met Ceram |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | KostyukBDNaidichYVKolesnichenkoGAShaikevichSSWetting of bimetal Mo–Cu, Ti–Cu, and V–Cu coatings deposited on SiO2 with tin meltAdgez. Raspl. Paika Mater.1982121113 KobayashiNIntroduction to Nanotechnology [Russian translation]2005MoscowBINOM134 NaidichYVGabIIKostyukBDStetsyukTVStudy of joining (brazing) of ceramic materials using metal nanocoatingsDop. Nats. Akad. Nauk Ukrainy2007597104 Zh.I. Alferov, P.S. Kopiev, R.A. Suris, A.L. Aseev, S.V. Gaponov, V.I. Panov, E.A. Poltoratskii, and N.N. Sibeldin, “Nanomaterials and nanotechnologies,” Mikrosyst. Tekh., Issue 8, 3–13 (2003). HansenMAnderkoKConstitution of Binary Alloys1958New YorkMcGraw-Hill10.1149/1.2428700 TolstykhVPIntroduction to Optical Absorption Spectroscopy of Nanosized Materials [in Russian]2014Saint PetersburgSolo187 PooleCOwensFIntroduction to Nanotechnology2003New YorkJohn Wiley NaidichYVThe wettability of solids by liquid metalsProg. Surf. Membr. Sci.1981143534841:CAS:528:DyaL3MXlslKhsrw%3D10.1016/B978-0-12-571814-1.50011-7 SamsonovGVDvorinaLARudBMSilicides [in Russian]1979MoscowMetallurgiya272 NaidichYVChuvashovYNIshchukNFKrasovskiiVPWetting of some nonmetallic materials by aluminumPowder Metall. Met. Ceram.198322648148610.1007/BF00793227 VnukovNGChurinovGNNanomaterials and Nanotechnologies [in Russian]2007KrasnoyarskIzd. Sib. Federl. Univ103 ShunkFAConstitution of Binary Alloys1970New YorkMcGraw-Hill V.P. Krasovskii, I.I. Gab, B.D. Kostyuk, N.O. Krasovska, and T.V. Stetsyuk, “Development of brazing process for materials with a great difference in the thermal expansion coefficients,” Mizhvuz. Zb. Naukovi Notatki, Issue 66, 172–179 (2019). GusevAINanomaterials, Nanostructures, and Nanotechnologies [in Russian]2005MoscowFizmatlit RyabukhinAGGrubaONFormation enthalpies for silicides of 3-d elements in the Periodic TableVest. Yuzh. Ural. Gos. Univ.200737482 M.J. Pitkethly, Nanotoday, December (2004) pp. 20–29. V.A. Rabinovich and Z.Ya. Khavin, Concise Chemical Handbook [in Russian], Khimiya, Leningrad (1978). A.I. Efimov, L.P. Belorukova, I.V. Vasilkova, and V.P. Chechev, Properties of Inorganic Compounds: Handbook [in Russian], Khimiya, Leningrad (1983), p. 392. S.N. Shtykov and T.Yu. Rusanov, “Nanomaterials and nanotechnologies in chemical and biochemical sensors: capabilities and applications,” Ros. Khim. Z., LII, No. 2, 92–100 (2008). Yu.V. Naidich, B.D. Kostyuk, G.A. Kolesnichenko, and S.S. Shaikevich, “Wettability in the metallic melt–thin metallic film–nonmetallic substrate system,” in: Physical Chemistry of Condensed Phases, Superhard Materials, and Their Interfaces [in Russian], Naukova Dumka, Kyiv (1975), pp. 15–27. RocoMCWilliamsRSAlivisatosPIWGN Workshop Report: Nanotechnology Research Directions1999Kluwer, BostonVision for Nanotechnology in the Next Decade Yu.V. Naidich, I.I. Gab, T.V. Stetsyuk, and B.D. Kostyuk, “Atomization kinetics of chromium nanofilms deposited onto oxide materials in vacuum annealing,” Adgez. Raspl. Paika Mater., Issue 51, 54–61 (2018). YV Naidich (135_CR13) 1983; 22 AI Gusev (135_CR5) 2005 C Poole (135_CR7) 2003 AG Ryabukhin (135_CR19) 2007; 3 VP Tolstykh (135_CR21) 2014 135_CR17 (135_CR2) 1999 NG Vnukov (135_CR8) 2007 BD Kostyuk (135_CR9) 1982; 12 M Hansen (135_CR15) 1958 FA Shunk (135_CR16) 1970 YV Naidich (135_CR10) 2007; 5 GV Samsonov (135_CR20) 1979 135_CR6 135_CR3 135_CR1 135_CR11 N Kobayashi (135_CR4) 2005 YV Naidich (135_CR18) 1981; 14 135_CR14 135_CR12 |
| References_xml | – reference: PooleCOwensFIntroduction to Nanotechnology2003New YorkJohn Wiley – reference: S.N. Shtykov and T.Yu. Rusanov, “Nanomaterials and nanotechnologies in chemical and biochemical sensors: capabilities and applications,” Ros. Khim. Z., LII, No. 2, 92–100 (2008). – reference: NaidichYVThe wettability of solids by liquid metalsProg. Surf. Membr. Sci.1981143534841:CAS:528:DyaL3MXlslKhsrw%3D10.1016/B978-0-12-571814-1.50011-7 – reference: KostyukBDNaidichYVKolesnichenkoGAShaikevichSSWetting of bimetal Mo–Cu, Ti–Cu, and V–Cu coatings deposited on SiO2 with tin meltAdgez. Raspl. Paika Mater.1982121113 – reference: NaidichYVGabIIKostyukBDStetsyukTVStudy of joining (brazing) of ceramic materials using metal nanocoatingsDop. Nats. Akad. Nauk Ukrainy2007597104 – reference: HansenMAnderkoKConstitution of Binary Alloys1958New YorkMcGraw-Hill10.1149/1.2428700 – reference: NaidichYVChuvashovYNIshchukNFKrasovskiiVPWetting of some nonmetallic materials by aluminumPowder Metall. Met. Ceram.198322648148610.1007/BF00793227 – reference: Yu.V. Naidich, I.I. Gab, T.V. Stetsyuk, and B.D. Kostyuk, “Atomization kinetics of chromium nanofilms deposited onto oxide materials in vacuum annealing,” Adgez. Raspl. Paika Mater., Issue 51, 54–61 (2018). – reference: RyabukhinAGGrubaONFormation enthalpies for silicides of 3-d elements in the Periodic TableVest. Yuzh. Ural. Gos. Univ.200737482 – reference: Yu.V. Naidich, B.D. Kostyuk, G.A. Kolesnichenko, and S.S. Shaikevich, “Wettability in the metallic melt–thin metallic film–nonmetallic substrate system,” in: Physical Chemistry of Condensed Phases, Superhard Materials, and Their Interfaces [in Russian], Naukova Dumka, Kyiv (1975), pp. 15–27. – reference: V.P. Krasovskii, I.I. Gab, B.D. Kostyuk, N.O. Krasovska, and T.V. Stetsyuk, “Development of brazing process for materials with a great difference in the thermal expansion coefficients,” Mizhvuz. Zb. Naukovi Notatki, Issue 66, 172–179 (2019). – reference: M.J. Pitkethly, Nanotoday, December (2004) pp. 20–29. – reference: Zh.I. Alferov, P.S. Kopiev, R.A. Suris, A.L. Aseev, S.V. Gaponov, V.I. Panov, E.A. Poltoratskii, and N.N. Sibeldin, “Nanomaterials and nanotechnologies,” Mikrosyst. Tekh., Issue 8, 3–13 (2003). – reference: SamsonovGVDvorinaLARudBMSilicides [in Russian]1979MoscowMetallurgiya272 – reference: VnukovNGChurinovGNNanomaterials and Nanotechnologies [in Russian]2007KrasnoyarskIzd. Sib. Federl. Univ103 – reference: V.A. Rabinovich and Z.Ya. Khavin, Concise Chemical Handbook [in Russian], Khimiya, Leningrad (1978). A.I. Efimov, L.P. Belorukova, I.V. Vasilkova, and V.P. Chechev, Properties of Inorganic Compounds: Handbook [in Russian], Khimiya, Leningrad (1983), p. 392. – reference: RocoMCWilliamsRSAlivisatosPIWGN Workshop Report: Nanotechnology Research Directions1999Kluwer, BostonVision for Nanotechnology in the Next Decade – reference: GusevAINanomaterials, Nanostructures, and Nanotechnologies [in Russian]2005MoscowFizmatlit – reference: KobayashiNIntroduction to Nanotechnology [Russian translation]2005MoscowBINOM134 – reference: ShunkFAConstitution of Binary Alloys1970New YorkMcGraw-Hill – reference: TolstykhVPIntroduction to Optical Absorption Spectroscopy of Nanosized Materials [in Russian]2014Saint PetersburgSolo187 – volume-title: IWGN Workshop Report: Nanotechnology Research Directions year: 1999 ident: 135_CR2 – volume-title: Constitution of Binary Alloys year: 1970 ident: 135_CR16 – start-page: 272 volume-title: Silicides [in Russian] year: 1979 ident: 135_CR20 – start-page: 103 volume-title: Nanomaterials and Nanotechnologies [in Russian] year: 2007 ident: 135_CR8 – volume-title: Constitution of Binary Alloys year: 1958 ident: 135_CR15 doi: 10.1149/1.2428700 – volume: 22 start-page: 481 issue: 6 year: 1983 ident: 135_CR13 publication-title: Powder Metall. Met. Ceram. doi: 10.1007/BF00793227 – ident: 135_CR14 – ident: 135_CR17 – ident: 135_CR1 – volume-title: Nanomaterials, Nanostructures, and Nanotechnologies [in Russian] year: 2005 ident: 135_CR5 – volume: 5 start-page: 97 year: 2007 ident: 135_CR10 publication-title: Dop. Nats. Akad. Nauk Ukrainy – start-page: 134 volume-title: Introduction to Nanotechnology [Russian translation] year: 2005 ident: 135_CR4 – ident: 135_CR6 – start-page: 187 volume-title: Introduction to Optical Absorption Spectroscopy of Nanosized Materials [in Russian] year: 2014 ident: 135_CR21 – ident: 135_CR3 doi: 10.1016/S1369-7021(04)00627-3 – ident: 135_CR12 – volume: 12 start-page: 11 year: 1982 ident: 135_CR9 publication-title: Adgez. Raspl. Paika Mater. – volume: 3 start-page: 74 year: 2007 ident: 135_CR19 publication-title: Vest. Yuzh. Ural. Gos. Univ. – ident: 135_CR11 – volume: 14 start-page: 353 year: 1981 ident: 135_CR18 publication-title: Prog. Surf. Membr. Sci. doi: 10.1016/B978-0-12-571814-1.50011-7 – volume-title: Introduction to Nanotechnology year: 2003 ident: 135_CR7 |
| SSID | ssj0010041 |
| Score | 2.1437507 |
| Snippet | The effect of metallic nanocoatings on the wetting of silicon oxide with lead-based filler melts (Pb–15 wt.% In and Pb–2.5 wt.% Ag) was studied by the sessile... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 29 |
| SubjectTerms | Adhesive bonding Adhesives Affinity Automotive parts Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Chromium Composites Contact angle Contact melting Copper Glass Lead Materials Science Melts Metal coatings Metal oxides Metallic Materials Molybdenum Nanostructured Materials Natural Materials Niobium Oxide coatings Sessile drop method Silicon dioxide Silicon oxides Substrates Thickness Titanium Vanadium Wettability Wetting |
| Title | Effect of Metallic Nanocoatings Deposited on Silicon Oxide on Wetting by Filler Melts I. Wetting of Ti, Nb, Cr, V, and Mo Nanocoatings Deposited on SiO2 with Filler Melts |
| URI | https://link.springer.com/article/10.1007/s11106-020-00135-8 https://www.proquest.com/docview/2423565382 |
| Volume | 59 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Link Contemporary 1997-Present customDbUrl: eissn: 1573-9066 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010041 issn: 1068-1302 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN5o9aAH38bWR-bgTTCF5Xk01UYTW03U6o2wDxKSBkxpjf4lf6WzCxQ10URPBHYZCDMw3zAz3xJyjC4qlojtTeEF1ER_7ZqMOdxkvkR4zCiVVDcKX_vDYfD0FN5WTWFFXe1epyT1l7ppdkNPpQpmVSe0hTKDRbLkKrYZFaPfjea5A0UhpXOcHsZHVNXvdH6W8dUdNRjzW1pUe5v--v_uc4OsVegSzkpz2CQLMtsiq584B3FvlBazck6xTd5L9mLIExhIxOHjlAN-cHOex6oeuoBzqcu6pIA8g7sUx3F785oKqQ48Sl02DewN-rqpEKWMpwVcnc6HUPJ9asCQGdCbGDAyIM4EDPJfL3Njg_pB_EXoDnnoX9z3Ls1q-QaT29TBZ8-6cVctbUypCLzEkR5HMONgCGVx5lDHc0U3UQgr6bqJZSFQsOMwVIWDQoaxn9Bd0sryTO4RYCH1qM9DmsQYL2GI42tewcB1RMCE5bSJVWsx4hW3uVpiYxw1rMxKKxFqJdJaiYI2OZmf81wye_w6-6A2jqh6y4tIYVEExDSw28SojaEZ_lla52_T98mKre1J1VkekNZ0MpOHZJm_TNNicqSt_wO2rPkr |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xkiiH8iiIUChz4Fa7ir0bP46INgI1CUikgZvlfViyFNlVHBD8JX4lsxs7KZVAgpNl73pseWZ3vvG8AE5IRaWasL2rgoi5pK87rhBcuiLUBI8FY5rZROFeOBhEt7fxVZ0UVjXR7o1L0u7Ui2Q30lQmYNZkQntEM1qGVW7a7Bgb_Xo09x2YElLWxxmQfcRM_M7B6zReqqMFxvzPLWq1TXfzY--5BZ9rdImnM3HYhiVd7MDGPzUH6WyUV3ezOdUXeJpVL8Yyw74mHD7OJdKGW8oyNfHQFf7UNqxLKywLvM5pnI6XD7nS5sKNtmHTKB6xa5MKicp4WuHFj_kQUR7mDg6Eg2cTB0cOpoXCfvnmYy59ND-IXxDdhT_dX8Ozc7du3-BKn3H69qKdtk1rY8ZUFGRcB5LADCcTypOCMx50VDszCCtrdzLPI6Dgp3FsAgeVjtMwY3uwUpSF3gcUMQtYKGOWpWQvkYkT2rqCUYerSCiPt8BruJjIura5abExThZVmQ1XEuJKYrmSRC34Pr_n76yyx5uzDxvhSOpVXiUGixIgZpHfAqcRhsXw69QO3jf9GNbPh_1e0rsY_P4Kn3wrWybm8hBWppM7fQRr8n6aV5NvdiU8A2tt_A8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC58LKIHdV3F8VkHb5usk3RPHkdRB0UdZdVZbyH9CASGRCaj6F_yV1rdmYcKCounkHSnEqjq1Fepr6oB9shFpZqwvauCiLnkr1uuEFy6ItQEjwVjmtlC4fOw04nu7uKrN1X8lu0-SknWNQ2mS1Mx2L9X2f6k8I28liHPmqpoj-RH0zDLKZIxpK6_191xHsG0k7L5zoBiJWa4PBufy3jvmiZ480OK1Hqe9tL333kZFoeoEw9qM_kJU7pYgYU3vQjprJtXD_Wc6he81F2NsczwQhM-7-US6UNcyjI1POkKj7Sle2mFZYHXOY3T8fIpV9pc-KctnRrFM7ZtsSFJ6Q0qPP0zHiLJN7mDHeHgYd_BroNpofCi_PIxlz6aH8fvhK7Cbfv45vDEHW7r4EqfcdKDaKZNs-UxYyoKMq4DSSCHU2jlScEZD1qqmRnklTVbmecRgPDTODaEQqXjNMzYGswUZaHXAUXMAhbKmGUpxVEU-oS232DU4ioSyuMN8EYaTeSw57nZeqOXTLo1G60kpJXEaiWJGvB7fM993fHjy9lbI0NJhqu_SgxGJaDMIr8BzsgwJsOfS9v4v-m7MHd11E7OTztnmzDvW9MyVMwtmBn0H_Q2_JCPg7zq79hF8QpGGwUC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Metallic+Nanocoatings+Deposited+on+Silicon+Oxide+on+Wetting+by+Filler+Melts+I.+Wetting+of+Ti%2C+Nb%2C+Cr%2C+V%2C+and+Mo+Nanocoatings+Deposited+on+SiO2+with+Filler+Melts&rft.jtitle=Powder+metallurgy+and+metal+ceramics&rft.au=Krasovskyy%2C+V.+P.&rft.au=Kostyuk%2C+B.+D.&rft.au=Gab%2C+I.+I.&rft.au=Krasovskaya%2C+N.+A.&rft.date=2020-05-01&rft.pub=Springer+US&rft.issn=1068-1302&rft.eissn=1573-9066&rft.volume=59&rft.issue=1-2&rft.spage=29&rft.epage=34&rft_id=info:doi/10.1007%2Fs11106-020-00135-8&rft.externalDocID=10_1007_s11106_020_00135_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-1302&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-1302&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-1302&client=summon |