A comprehensive survey of data mining
Data mining plays an important role in various human activities because it extracts the unknown useful patterns (or knowledge). Due to its capabilities, data mining become an essential task in large number of application domains such as banking, retail, medical, insurance, bioinformatics, etc. To ta...
Uložené v:
| Vydané v: | International journal of information technology (Singapore. Online) Ročník 12; číslo 4; s. 1243 - 1257 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
Springer Singapore
01.12.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2511-2104, 2511-2112 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Data mining plays an important role in various human activities because it extracts the unknown useful patterns (or knowledge). Due to its capabilities, data mining become an essential task in large number of application domains such as banking, retail, medical, insurance, bioinformatics, etc. To take a holistic view of the research trends in the area of data mining, a comprehensive survey is presented in this paper. This paper presents a systematic and comprehensive survey of various data mining tasks and techniques. Further, various real-life applications of data mining are presented in this paper. The challenges and issues in area of data mining research are also presented in this paper. |
|---|---|
| AbstractList | Data mining plays an important role in various human activities because it extracts the unknown useful patterns (or knowledge). Due to its capabilities, data mining become an essential task in large number of application domains such as banking, retail, medical, insurance, bioinformatics, etc. To take a holistic view of the research trends in the area of data mining, a comprehensive survey is presented in this paper. This paper presents a systematic and comprehensive survey of various data mining tasks and techniques. Further, various real-life applications of data mining are presented in this paper. The challenges and issues in area of data mining research are also presented in this paper. |
| Author | Gupta, Manoj Kumar Chandra, Pravin |
| Author_xml | – sequence: 1 givenname: Manoj Kumar orcidid: 0000-0002-4481-8432 surname: Gupta fullname: Gupta, Manoj Kumar email: manojkgupta5@gmail.com, manojgupta5@yahoo.com organization: University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University – sequence: 2 givenname: Pravin surname: Chandra fullname: Chandra, Pravin organization: University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University |
| BookMark | eNp9kE9LAzEQxYNUsNZ-AU8L4nE1k2R3ssdS_AcFL3oO2W1SI21Sk22h397oioKHHoYZhvebN7xzMvLBG0Iugd4ApXibBEikJWW5qGBY4gkZswqgZABs9DtTcUamKbmWcmA1rxDG5HpWdGGzjebN-OT2pki7uDeHIthiqXtdbJx3fnVBTq1eJzP96RPyen_3Mn8sF88PT_PZouwYF1ga2aJsq1ZA13JE0GbJRINoGq11BVq0jCHWDCSTFjtbNxobW3V2WdU67_iEXA13tzF87Ezq1XvYRZ8tFRPIJcgam6xig6qLIaVorNpGt9HxoICqr0TUkIjKiajvRBRmSP6DOtfr3gXfR-3Wx1E-oCn7-JWJf18doT4B8DR08A |
| CitedBy_id | crossref_primary_10_1057_s41272_024_00474_w crossref_primary_10_1080_1369118X_2024_2358170 crossref_primary_10_1155_2022_1158509 crossref_primary_10_3390_computers14040146 crossref_primary_10_21015_vtse_v12i3_1882 crossref_primary_10_1016_j_humgen_2025_201385 crossref_primary_10_3390_app11136237 crossref_primary_10_1186_s12911_024_02566_4 crossref_primary_10_1007_s41870_025_02469_1 crossref_primary_10_1155_2022_1605359 crossref_primary_10_1515_geo_2022_0577 crossref_primary_10_1088_1757_899X_1085_1_012021 crossref_primary_10_14202_vetworld_2025_1109_1126 crossref_primary_10_1155_2022_8217774 crossref_primary_10_1007_s41870_024_02214_0 crossref_primary_10_1002_asi_24718 crossref_primary_10_1016_j_procs_2024_10_004 crossref_primary_10_1109_ACCESS_2023_3304669 crossref_primary_10_1007_s11042_021_11255_7 crossref_primary_10_3233_BD_240018 crossref_primary_10_1007_s41870_025_02593_y crossref_primary_10_1007_s10489_025_06749_y crossref_primary_10_1007_s41870_021_00619_9 crossref_primary_10_1109_ACCESS_2020_3016715 crossref_primary_10_1360_SSI_2024_0169 crossref_primary_10_1080_01969722_2021_2018545 crossref_primary_10_1155_2023_5596605 crossref_primary_10_1016_j_cities_2023_104437 crossref_primary_10_3390_ejihpe15040061 crossref_primary_10_1155_2022_8046620 crossref_primary_10_1007_s41870_023_01292_w crossref_primary_10_2478_amns_2024_3121 crossref_primary_10_7717_peerj_cs_854 crossref_primary_10_1109_TKDE_2024_3354960 crossref_primary_10_7717_peerj_cs_1844 crossref_primary_10_1016_j_procs_2024_10_117 crossref_primary_10_1016_j_procs_2022_11_154 crossref_primary_10_1007_s41870_024_01974_z crossref_primary_10_1155_2022_1846345 crossref_primary_10_1007_s41060_022_00340_1 |
| Cites_doi | 10.1016/j.eswa.2009.05.029 10.1145/1132956.1132958 10.1007/s10618-013-0340-z 10.1016/j.chb.2016.11.036 10.1145/2994132 10.1007/s10618-014-0356-z 10.1016/S0305-0548(99)00141-0 10.1016/j.eswa.2012.02.063 10.1142/S0219622006002258 10.1145/1824795.1824798 10.1145/2829956 10.1007/s10618-015-0409-y 10.1145/2379776.2379788 10.15623/ijret.2013.0211019 10.35940/ijrte.D6837.118419 10.1007/s10618-013-0336-8 10.1109/45.624335 10.1016/j.eswa.2008.10.013 10.1016/j.fss.2005.05.036 10.1145/2733381 10.1145/2812809 10.1007/s10618-012-0258-x 10.1007/s10618-014-0394-6 10.1145/2898359 10.1007/s10618-013-0326-x 10.1191/096228000701555181 10.1007/s41870-017-0067-y 10.1016/j.dss.2013.11.001 10.1007/978-3-030-30577-2_79 10.1037/10694-000 10.1016/j.asoc.2008.01.004 10.1145/1978802.1978804 10.17148/IJARCCE.2014.31003 10.1145/1541880.1541884 10.1016/j.chb.2010.10.014 10.1002/0471221627 10.1145/2997656 10.1007/s10618-011-0239-5 10.1109/69.553155 10.1007/s10618-014-0347-0 10.1007/s10618-012-0295-5 10.1145/2522968.2522981 10.1145/1132960.1132963 10.1145/2742642 10.35940/ijitee.j9774.0881019 10.1007/s10618-013-0310-5 10.1007/s10618-011-0246-6 10.1016/j.eswa.2012.02.005 10.1016/j.artint.2006.09.001 10.1016/j.future.2016.09.007 10.1016/j.ins.2009.12.017 10.1016/j.envsoft.2003.03.004 10.1007/s10618-014-0375-9 10.1007/978-94-011-5014-9_11 10.1016/j.knosys.2008.06.003 10.5772/66152 10.1023/A:1008640732416 10.1016/j.eswa.2005.06.024 10.1016/j.knosys.2006.04.003 |
| ContentType | Journal Article |
| Copyright | Bharati Vidyapeeth's Institute of Computer Applications and Management 2020 Bharati Vidyapeeth's Institute of Computer Applications and Management 2020. |
| Copyright_xml | – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2020 – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2020. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s41870-020-00427-7 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2511-2112 |
| EndPage | 1257 |
| ExternalDocumentID | 10_1007_s41870_020_00427_7 |
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AANZL AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGRTI AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z7Z Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ABUWG ACSTC AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- PHGZM PHGZT PQGLB 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2347-e8b78b5b41cb3771aed24977e9aaa51a4b2277621828f7cf69a79f5cfd56a8283 |
| IEDL.DBID | RSV |
| ISSN | 2511-2104 |
| IngestDate | Thu Sep 18 00:04:37 EDT 2025 Sat Nov 29 03:11:45 EST 2025 Tue Nov 18 22:43:41 EST 2025 Fri Feb 21 02:32:44 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Survey Data mining applications Clustering Data mining tasks Data mining techniques Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2347-e8b78b5b41cb3771aed24977e9aaa51a4b2277621828f7cf69a79f5cfd56a8283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4481-8432 |
| PQID | 2473818679 |
| PQPubID | 2034493 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2473818679 crossref_primary_10_1007_s41870_020_00427_7 crossref_citationtrail_10_1007_s41870_020_00427_7 springer_journals_10_1007_s41870_020_00427_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20201200 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Heidelberg |
| PublicationSubtitle | An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management |
| PublicationTitle | International journal of information technology (Singapore. Online) |
| PublicationTitleAbbrev | Int. j. inf. tecnol |
| PublicationYear | 2020 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | ReddyDJanaPKA new clustering algorithm based on Voronoi diagramInt J Data Min Model Manag2014614964 PadhyNMishraPPanigrahiRA survey of data mining applications and future scopeInt J Comput Sci Eng Inf Technol2012234358 WangFSunJSurvey on distance metric learning and dimensionality reduction in data miningData Min Knowl Discov20142953456433124701403.68215 HeckermanDA tutorial on learning with Bayesian networksLearning in graphical models1998NetherlandsSpringer3013540921.62029 CrawSusanWiratungaNirmalieRoweRay CLearning adaptation knowledge to improve case-based reasoningArtif Intell20061701175119222886801130.68318 ThompsonBExploratory and confirmatory factor analysis: understanding concepts and applications2004Washington, DCAmerican Psychological Association JinHWangSZhouQLiYAn improved method for density-based clusteringInt J Data Min Model Manag201464347368 RafalakMDejaMWierzbickiANielekRKakolMWeb content classification using distributions of subjective quality evaluationsACM Trans Web2016104 HullermeierEykeFuzzy sets in machine learning and data miningAppl Soft Comput20111114931505 HanJKamberMPeiJData mining concepts and techniques20123NetherlandsElsevier1230.68018 MihociAHokimotoTModelling limit order book volume covariance structuresAdvances in statistical methodologies and their application to real problems2017CroatiaIntechOpen10.5772/66152 Turban E, Aronson JE, Liang TP, Sharda R (2007) Decision support and business intelligence systems. 8th edn, Pearson Education, UK WeissSHIndurkhyaNPredictive data mining: a practical guide1998San FranciscoMorgan Kaufmann Publishers0885.68050 PadhraicSData mining: analysis on grand scaleStat Method Med Res20009430932710.1191/0962280007015551811121.62664 Friedman JH (1997) Data mining and statistics: What is the connection? in: Keynote Speech of the 29th Symposium on the Interface: Computing Science and Statistics, Houston, TX, 1997 KiranmaiBDamodaramAA review on evaluation measures for data mining tasksInt J Eng Comput Sci20143772177220 LeeGYunUA new efficient approach for mining uncertain frequent patterns using minimum data structure without false positivesFuture Gener Comput Syst20176889110 AnderbergMRCluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks2014USAAcademic Press YangQWuX10 challenging problems in data mining researchInt J Inf Technol Decis Making200654597604 KotsiantisSBSupervised machine learning: a review of classification techniquesInformatica20073124926823504861162.68552 CarpinetoCOsinskiSRomanoGWeissDA survey of web clustering enginesACM Comput. Surv.2009413138 VenkatadriMReddyLCA review on data mining from past to the futureInt J Comput Appl20111571922 LiGZakiMJSampling frequent and minimal boolean patterns: theory and application in classificationData Min Knowl Discov2015301181225344135610.1007/s10618-015-0409-y1411.68114 MenardiGTorelliNTraining and assessing classification rules with imbalanced dataData Min Knowl Discov2012281428314756510.1007/s10618-012-0295-51281.68198 ChenYLWengCHMining fuzzy association rules from questionnaire dataKnowl Based Syst20092214656 MabroukehNREzeifeCIA taxonomy of sequential pattern mining algorithmsACM Comput Surv2010431 KuzeyCUyarADelenThe impact of multinationality on firm value: a comparative analysis of machine learning techniquesDecis Support Syst201459127142 Shah-HosseiniHImproving K-means clustering algorithm with the intelligent water drops (IWD) algorithmInt J Data Min Model Manag201354301317 EslingPAgonCTime-series data miningACM Comput Surv20124511341293.68104 Data mining—applications & trends. https://www.tutorialspoint.com/data_mining/dm_applications_trends.htm EnkeDavidThawornwongSuraphanThe use of data mining and neural networks for forecasting stock market returnsExpert Syst Appl200529927940 GengLHamiltonHJInterestingness measures for data mining: a surveyACM Comput Surv2006383132 GuptaMKChandraPMP-K-means: modified partition based cluster initialization method for k-means algorithmInt J Recent Technol Eng20198411401148 MampaeyMVreekenJSummarizing categorical data by clustering attributesData Min Knowl Discov201126113017330097751260.68339 HungLNThuTNTMining frequent itemsets with weights over data stream using inverted matrixIJ Inf Technol Comput Sci2016106371 Gupta MK, Chandra P (2019) An efficient approach for selection of initial cluster centroids for k-means clustering algorithm. In: Proceedings international conference on recent developments in science engineering and technology (REDSET-2019), November 15–16 2019 Gibert K, Sanchez-Marre M, Codina V (2010) Choosing the right data mining technique: classification of methods and intelligent recommendation. In: International Congress on Environment Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada SawantVShahKA review of distributed data mining using agentsInt J Adv Technol Eng Res2013352733 DeviSVSGApplications and trends in data miningOrient J Comput Sci Technol201364413419 GhewareSDKejkarASTondareSMData mining: tasks, tools, techniques and applicationsInt J Adv Res Comput Commun Eng201431080958098 CampelloRJGBMoulaviDZimekASanderJHierarchical density estimates for data clustering, visualization, and outlier detectionACM Trans Knowl Discov Data2015101151 Gupta MK, Chandra P (2019) A comparative study of clustering algorithms. In: Proceedings of the 13th INDIACom-2019; IEEE Conference ID: 461816; 6th International Conference on “Computing for Sustainable Global Development” SharmaMData mining: a literature surveyInt J Emerg Res Manag Technol20143214 DasRKalitaJBhattacharyaA pattern matching approach for clustering gene expression dataInt J Data Min Model Manag201132130149 FuYData mining: tasks, techniques, and applicationsIEEE Potentials19971641820 SaeedSAliMPrivacy-preserving back-propagation and extreme learning machine algorithmsData Knowl Eng201279–804061 FanChin-YuanFanPei-ShuChanTe-YiChangShu-HaoUsing hybrid data mining and machine learning clustering analysis to predict the turnover rate for technology professionalsExpert Syst Appl20123988448851 Gupta MK, Chandra P (2019) P-k-means: k-means using partition based cluster initialization method. In: Proceedings of the international conference on advancements in computing and management (ICACM 2019), Elsevier SSRN, pp 567–573 JacksonJData mining: a conceptual overviewCommun Assoc Inf Syst20028267296 JainNSrivastavaVData mining techniques: a survey paperInt J Res Eng Technol2013211116119 MezykEdwardUnoldOlgierdMachine learning approach to model sport trainingComput Hum Behav20112714991506 Data mining examples: most common applications of data mining (2019). https://www.softwaretestinghelp.com/data-mining-examples/. Accessed 27 Dec 2019 KanevskiMParkinRPozdnukhovATimoninVMaignanMDemyanovVCanuSEnvironmental data mining and modelling based on machine learning algorithms and geostatisticsEnviron Model Softw200419845855 SohrabiMKRoshaniRFrequent itemset mining using cellular learning automataComput Hum Behav201768244253 ChanPhilip KSalvatoreJSOn the accuracy of meta-learning for scalable data miningJ Intell Inf Syst19978528 SimKGopalkrishnanVZimekACongGA survey on enhanced subspace clusteringData Min Knowl Discov201226233239730177411270.68260 Top 14 useful applications for data mining. https://bigdata-madesimple.com/14-useful-applications-of-data-mining/. Accessed 20 Aug 2014 HeaZXuaXHuangbJZDengaSMining class outliers: concepts, algorithms and applications in CRMExpert Syst Appl2004274681e97 ChenMHanJYuPSData mining: an overview from a database perspectiveIEEE Trans Knowl Data Eng199686866883 KumarDBezdekJCRajasegararSPalaniswamiMLeckieCChanJGubbiJAdaptive cluster tendency visualization and anomaly detection for streaming dataACM Trans Knowl Discov Data2016112124 CeglarARoddickJFAssociation miningACM Comput Surv2006382142 HüllermeierEykeFuzzy methods in machine learning and data mining: status and prospectsFuzzy Sets Syst20051563874062180474 HungLNThuTNTNguyenGCAn efficient algorithm in mining frequent itemsets with weights over data stream using tree data structureIJ Intell Syst Appl2015122331 PeiYFernXZTjahjaTVRosalesR‘Comparing clustering with pairwise and relative constraints: a unified frameworkACM Trans Knowl Discov Data2016112 MukherjeeSShawRHaldarNChangdarSA survey of data mining applications and techniquesInt J Comput Sci Inf Technol20156546634666 MorikKBhaduriKKarguptaHIntroduction to data mining for sustainabilityData Min Knowl Discov2011242311324 GuptaMKChandraPHYBCIM: hypercube based cluster initialization method for k-meansIJ Innov Technol Explor Eng20198103584358710.35940/ijitee.j9774.0881019 PonniahPData warehousing fundamentals2001USAWiley Heikki M (1996) Data mining: machine learning, statistics, and databases. In: SSDBM ’96: proceedings of the eighth international conference on scientific and statistical database management, June 1996, pp 2–9 BouguessaMClustering categorical data in projected spacesData Min Knowl Discov20132913383300472 WangBRahalIDongAParallel hierarchical clustering using weighted confidence affinityInt J Data Min Model Manag201132110129 GuptaAMumickISMaintenance of materialized views: problems, techniques, and applicationsIEEE Data Eng Bull19951823 RustogiSSharmaMMorwalSImproved Parallel Apriori Algorithm for Multi-coresIJ Inf Technol Comput Sci201741823 AroraRKGuptaMKe-Governance using data warehousing and data miningInt J Comput Appl201716982831 Gupta MK, Chandra P (2019) An empirical evaluation of k-means clustering algorithm using different distance/similarity metrics. In: Proceedings of the international conference on emerging trends in information technology (ICETIT-2019), emerging trends in information technology, LNEE 605 pp 884–892 DOI: https://doi.org/10.1007/978-3-030-30577-2_79 KohYSRavanaSDUnsupervised rare pattern mining: a surveyACM Trans Knowl Discov Data2016104129 SilvaJAFariaERBarrosRCHruschkaERde CarvalhoACPLFGamaJData stream clustering: a surveyACM Comput Surv20134611311288.68200 Politano PM, Walton RO (2017) D Reddy (427_CR54) 2014; 6 Edward Mezyk (427_CR76) 2011; 27 RJGB Campello (427_CR25) 2015; 10 B Wang (427_CR66) 2011; 3 A Lew (427_CR101) 2006 Q Yang (427_CR108) 2006; 5 Susan Craw (427_CR61) 2006; 170 M Chen (427_CR13) 1996; 8 G Lee (427_CR45) 2017; 68 J Jackson (427_CR87) 2002; 8 GB Wetherill (427_CR90) 1987 C Tew (427_CR63) 2013; 28 F Angiulli (427_CR21) 2013; 28 M Venkatadri (427_CR12) 2011; 15 MK Sohrabi (427_CR60) 2017; 68 G Li (427_CR46) 2015; 30 F Angiulli (427_CR22) 2016; 10 H Jin (427_CR39) 2014; 6 SB Kotsiantis (427_CR43) 2007; 31 MR Anderberg (427_CR91) 2014 E Dincer (427_CR31) 2006 C Kuzey (427_CR94) 2014; 59 427_CR14 YS Koh (427_CR41) 2016; 10 G Menardi (427_CR50) 2012; 28 B Thompson (427_CR93) 2004 M Rafalak (427_CR53) 2016; 10 K Sim (427_CR59) 2012; 26 Y Singh (427_CR85) 2007; 1 SH Liao (427_CR97) 2012; 39 RK Arora (427_CR4) 2017; 169 Du Gengshen (427_CR80) 2014; 259 Y Fu (427_CR18) 1997; 16 J Han (427_CR6) 2012 NR Mabroukeh (427_CR48) 2010; 43 NZ Zacharis (427_CR67) 2018; 3 MK Keleş (427_CR106) 2017; 11 LN Hung (427_CR36) 2015; 12 V Bhatnagar (427_CR23) 2015; 7 427_CR89 C Carpineto (427_CR26) 2009; 41 F Wang (427_CR65) 2014; 29 K Morik (427_CR5) 2011; 24 P Ponniah (427_CR15) 2001 KC Tan (427_CR62) 2009; 36 V Sawant (427_CR71) 2013; 3 Eyke Hullermeier (427_CR79) 2011; 11 W Zhang (427_CR68) 2015; 29 A Ceglar (427_CR27) 2006; 38 Philip K Chan (427_CR95) 1997; 8 AK Jain (427_CR38) 1999; 31 N Padhy (427_CR109) 2012; 2 A Khandare (427_CR40) 2017; 10 427_CR72 A Mihoci (427_CR92) 2017 RSJ Baker (427_CR100) 2010 Chih-Fong Tsai (427_CR96) 2009; 36 JA Silva (427_CR57) 2013; 46 P Esling (427_CR77) 2012; 45 A Mukhopadhyay (427_CR51) 2015; 47 MK Gupta (427_CR74) 2019; 8 S Rustogi (427_CR55) 2017; 4 SD Gheware (427_CR9) 2014; 3 LN Hung (427_CR37) 2016; 10 Mu-Jung Huang (427_CR82) 2006; 19 427_CR69 M Kanevski (427_CR98) 2004; 19 427_CR2 427_CR1 427_CR103 427_CR3 S Saeed (427_CR84) 2012; 79–80 Chin-Yuan Fan (427_CR29) 2012; 39 H Shah-Hosseini (427_CR56) 2013; 5 M Mampaey (427_CR49) 2011; 26 N Jain (427_CR99) 2013; 2 A Gupta (427_CR70) 1995; 18 S Padhraic (427_CR83) 2000; 9 D Heckerman (427_CR88) 1998 Y Pei (427_CR52) 2016; 11 SH Weiss (427_CR17) 1998 TW Liao (427_CR47) 2007 427_CR107 427_CR8 427_CR7 427_CR105 S Mukherjee (427_CR102) 2015; 6 L Wang (427_CR64) 2015; 29 427_CR110 A Algergawy (427_CR20) 2011; 43 A Silva (427_CR58) 2014; 29 R Das (427_CR30) 2011; 3 Eyke Hüllermeier (427_CR78) 2005; 156 MK Gupta (427_CR73) 2019; 8 ME Yahia (427_CR86) 2010; 7 D Kumar (427_CR44) 2016; 11 David Enke (427_CR75) 2005; 29 YL Chen (427_CR28) 2009; 22 P Kosina (427_CR42) 2015; 29 D Abuaiadah (427_CR19) 2015; 15 B Kiranmai (427_CR10) 2014; 3 M Bouguessa (427_CR24) 2013; 29 SVSG Devi (427_CR104) 2013; 6 L Geng (427_CR32) 2006; 38 Kate A Smith (427_CR81) 2000; 27 P Chandra (427_CR16) 2018; 10 M Sharma (427_CR11) 2014; 3 427_CR33 Z Hea (427_CR35) 2004; 27 427_CR34 |
| References_xml | – reference: JacksonJData mining: a conceptual overviewCommun Assoc Inf Syst20028267296 – reference: BouguessaMClustering categorical data in projected spacesData Min Knowl Discov20132913383300472 – reference: SawantVShahKA review of distributed data mining using agentsInt J Adv Technol Eng Res2013352733 – reference: HungLNThuTNTNguyenGCAn efficient algorithm in mining frequent itemsets with weights over data stream using tree data structureIJ Intell Syst Appl2015122331 – reference: SilvaAAntunesCMulti-relational pattern mining over data streamsData Min Knowl Discov201429617831814340182710.1007/s10618-014-0394-61405.68306 – reference: WeissSHIndurkhyaNPredictive data mining: a practical guide1998San FranciscoMorgan Kaufmann Publishers0885.68050 – reference: MorikKBhaduriKKarguptaHIntroduction to data mining for sustainabilityData Min Knowl Discov2011242311324 – reference: AbuaiadahDUsing bisect k-means clustering technique in the analysis of arabic documentsACM Trans Asian Low-Resour Lang Inf Process2015153117 – reference: Politano PM, Walton RO (2017) Statistics & research methodol. Lulu. com – reference: YangQWuX10 challenging problems in data mining researchInt J Inf Technol Decis Making200654597604 – reference: MukhopadhyayAMaulikUBandyopadhyaySA survey of multiobjective evolutionary clusteringACM Comput Surv2015474146 – reference: AroraRKGuptaMKe-Governance using data warehousing and data miningInt J Comput Appl201716982831 – reference: WangLDongMExemplar-based low-rank matrix decomposition for data clusteringData Min Knowl Discov20152932435733124641403.68217 – reference: HullermeierEykeFuzzy sets in machine learning and data miningAppl Soft Comput20111114931505 – reference: MabroukehNREzeifeCIA taxonomy of sequential pattern mining algorithmsACM Comput Surv2010431 – reference: DasRKalitaJBhattacharyaA pattern matching approach for clustering gene expression dataInt J Data Min Model Manag201132130149 – reference: KotsiantisSBSupervised machine learning: a review of classification techniquesInformatica20073124926823504861162.68552 – reference: GengshenDuRuheGuentherTwo machine-learning techniques for mining solutions of the ReleasePlanner™ decision support systemInf Sci2014259474489 – reference: TewCGiraud-CarrierCTannerKBurtonSBehavior-based clustering and analysis of interestingness measures for association rule miningData Min Knowl Discov20132841004104531769301298.68230 – reference: CampelloRJGBMoulaviDZimekASanderJHierarchical density estimates for data clustering, visualization, and outlier detectionACM Trans Knowl Discov Data2015101151 – reference: PadhraicSData mining: analysis on grand scaleStat Method Med Res20009430932710.1191/0962280007015551811121.62664 – reference: CrawSusanWiratungaNirmalieRoweRay CLearning adaptation knowledge to improve case-based reasoningArtif Intell20061701175119222886801130.68318 – reference: DincerEThe k-means algorithm in data mining and an application in medicine2006KocaeliKocaeli Univesity – reference: PadhyNMishraPPanigrahiRA survey of data mining applications and future scopeInt J Comput Sci Eng Inf Technol2012234358 – reference: KanevskiMParkinRPozdnukhovATimoninVMaignanMDemyanovVCanuSEnvironmental data mining and modelling based on machine learning algorithms and geostatisticsEnviron Model Softw200419845855 – reference: FanChin-YuanFanPei-ShuChanTe-YiChangShu-HaoUsing hybrid data mining and machine learning clustering analysis to predict the turnover rate for technology professionalsExpert Syst Appl20123988448851 – reference: KosinaPGamaJVery fast decision rules for classification in data streamsData Min Knowl Discov20152911682023300476 – reference: KuzeyCUyarADelenThe impact of multinationality on firm value: a comparative analysis of machine learning techniquesDecis Support Syst201459127142 – reference: Fayadd U, Piatesky-Shapiro G, Smyth P (1996) Knowledge discovery and data mining: towards a unifying framework. In: Proceedings of the 2nd ACM international conference on knowledge discovery and data mining (KDD), Portland, pp 82–88 – reference: TanKCTeohEJYuaQGohKCA hybrid evolutionary algorithm for attribute selection in data miningExpert Syst Appl200936486168630 – reference: AngiulliFFassettiFExploiting domain knowledge to detect outliersData Min Knowl Discov201328251956831475771281.68171 – reference: KeleşMKAn overview: the impact of data mining applications on various sectorsTech J2017113128132 – reference: VenkatadriMReddyLCA review on data mining from past to the futureInt J Comput Appl20111571922 – reference: Top 14 useful applications for data mining. https://bigdata-madesimple.com/14-useful-applications-of-data-mining/. Accessed 20 Aug 2014 – reference: GhewareSDKejkarASTondareSMData mining: tasks, tools, techniques and applicationsInt J Adv Res Comput Commun Eng201431080958098 – reference: Shah-HosseiniHImproving K-means clustering algorithm with the intelligent water drops (IWD) algorithmInt J Data Min Model Manag201354301317 – reference: Gupta MK, Chandra P (2019) A comparative study of clustering algorithms. In: Proceedings of the 13th INDIACom-2019; IEEE Conference ID: 461816; 6th International Conference on “Computing for Sustainable Global Development” – reference: Data mining examples: most common applications of data mining (2019). https://www.softwaretestinghelp.com/data-mining-examples/. Accessed 27 Dec 2019 – reference: HeaZXuaXHuangbJZDengaSMining class outliers: concepts, algorithms and applications in CRMExpert Syst Appl2004274681e97 – reference: CarpinetoCOsinskiSRomanoGWeissDA survey of web clustering enginesACM Comput. Surv.2009413138 – reference: KhandareAAlviASPerformance analysis of improved clustering algorithm on real and synthetic dataIJ Comput Netw Inf Secur2017105765 – reference: Data mining—applications & trends. https://www.tutorialspoint.com/data_mining/dm_applications_trends.htm – reference: GengLHamiltonHJInterestingness measures for data mining: a surveyACM Comput Surv2006383132 – reference: Gupta MK, Chandra P (2019) An empirical evaluation of k-means clustering algorithm using different distance/similarity metrics. In: Proceedings of the international conference on emerging trends in information technology (ICETIT-2019), emerging trends in information technology, LNEE 605 pp 884–892 DOI: https://doi.org/10.1007/978-3-030-30577-2_79 – reference: GuptaMKChandraPHYBCIM: hypercube based cluster initialization method for k-meansIJ Innov Technol Explor Eng20198103584358710.35940/ijitee.j9774.0881019 – reference: JinHWangSZhouQLiYAn improved method for density-based clusteringInt J Data Min Model Manag201464347368 – reference: LiaoTWTriantaphyllouERecent advances in data mining of enterprise data: algorithms and applications2007SingaporeWorld Scientific Publishing111145 – reference: RustogiSSharmaMMorwalSImproved Parallel Apriori Algorithm for Multi-coresIJ Inf Technol Comput Sci201741823 – reference: Friedman JH (1997) Data mining and statistics: What is the connection? in: Keynote Speech of the 29th Symposium on the Interface: Computing Science and Statistics, Houston, TX, 1997 – reference: HüllermeierEykeFuzzy methods in machine learning and data mining: status and prospectsFuzzy Sets Syst20051563874062180474 – reference: SohrabiMKRoshaniRFrequent itemset mining using cellular learning automataComput Hum Behav201768244253 – reference: HungLNThuTNTMining frequent itemsets with weights over data stream using inverted matrixIJ Inf Technol Comput Sci2016106371 – reference: MenardiGTorelliNTraining and assessing classification rules with imbalanced dataData Min Knowl Discov2012281428314756510.1007/s10618-012-0295-51281.68198 – reference: MihociAHokimotoTModelling limit order book volume covariance structuresAdvances in statistical methodologies and their application to real problems2017CroatiaIntechOpen10.5772/66152 – reference: PeiYFernXZTjahjaTVRosalesR‘Comparing clustering with pairwise and relative constraints: a unified frameworkACM Trans Knowl Discov Data2016112 – reference: ChenYLWengCHMining fuzzy association rules from questionnaire dataKnowl Based Syst20092214656 – reference: YahiaMEEl-taherMEA new approach for evaluation of data mining techniquesInt J Comput Sci Issues201075181186 – reference: BakerRSJMcGawBPetersonPBakerEData mining for educationInternational encyclopedia of education20103Oxford, UKElsevier – reference: KiranmaiBDamodaramAA review on evaluation measures for data mining tasksInt J Eng Comput Sci20143772177220 – reference: MukherjeeSShawRHaldarNChangdarSA survey of data mining applications and techniquesInt J Comput Sci Inf Technol20156546634666 – reference: RafalakMDejaMWierzbickiANielekRKakolMWeb content classification using distributions of subjective quality evaluationsACM Trans Web2016104 – reference: ThompsonBExploratory and confirmatory factor analysis: understanding concepts and applications2004Washington, DCAmerican Psychological Association – reference: FuYData mining: tasks, techniques, and applicationsIEEE Potentials19971641820 – reference: SaeedSAliMPrivacy-preserving back-propagation and extreme learning machine algorithmsData Knowl Eng201279–804061 – reference: EnkeDavidThawornwongSuraphanThe use of data mining and neural networks for forecasting stock market returnsExpert Syst Appl200529927940 – reference: ChandraPGuptaMKComprehensive survey on data warehousing researchInt J Inform Technol2018102217224 – reference: JainNSrivastavaVData mining techniques: a survey paperInt J Res Eng Technol2013211116119 – reference: Gupta MK, Chandra P (2019) An efficient approach for selection of initial cluster centroids for k-means clustering algorithm. In: Proceedings international conference on recent developments in science engineering and technology (REDSET-2019), November 15–16 2019 – reference: KumarDBezdekJCRajasegararSPalaniswamiMLeckieCChanJGubbiJAdaptive cluster tendency visualization and anomaly detection for streaming dataACM Trans Knowl Discov Data2016112124 – reference: DeviSVSGApplications and trends in data miningOrient J Comput Sci Technol201364413419 – reference: LiGZakiMJSampling frequent and minimal boolean patterns: theory and application in classificationData Min Knowl Discov2015301181225344135610.1007/s10618-015-0409-y1411.68114 – reference: KohYSRavanaSDUnsupervised rare pattern mining: a surveyACM Trans Knowl Discov Data2016104129 – reference: Heikki M (1996) Data mining: machine learning, statistics, and databases. In: SSDBM ’96: proceedings of the eighth international conference on scientific and statistical database management, June 1996, pp 2–9 – reference: SimKGopalkrishnanVZimekACongGA survey on enhanced subspace clusteringData Min Knowl Discov201226233239730177411270.68260 – reference: Turban E, Aronson JE, Liang TP, Sharda R (2007) Decision support and business intelligence systems. 8th edn, Pearson Education, UK – reference: BhatnagarVAhujaSKaurSDiscriminant analysis-based cluster ensembleInt J Data Min Modell Manag20157283107 – reference: GuptaAMumickISMaintenance of materialized views: problems, techniques, and applicationsIEEE Data Eng Bull19951823 – reference: AnderbergMRCluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks2014USAAcademic Press – reference: CeglarARoddickJFAssociation miningACM Comput Surv2006382142 – reference: SilvaJAFariaERBarrosRCHruschkaERde CarvalhoACPLFGamaJData stream clustering: a surveyACM Comput Surv20134611311288.68200 – reference: SmithKate AGuptaJatinder NDNeural networks in business: techniques and applications for the operations researcherComput Oper Res200027102310440961.90016 – reference: HeckermanDA tutorial on learning with Bayesian networksLearning in graphical models1998NetherlandsSpringer3013540921.62029 – reference: AngiulliFFassettiFToward generalizing the unification with statistical outliers: the gradient outlier factor measureACM Trans Knowl Discov Data2016103126 – reference: ZacharisNZClassification and regression trees (CART) for predictive modeling in blended learningIJ Intell Syst Appl2018319 – reference: Fayadd U, Piatesky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AAAI Press/The MIT Press, Massachusetts Institute of Technology. ISBN 0–262 56097–6 Fayap – reference: WangFSunJSurvey on distance metric learning and dimensionality reduction in data miningData Min Knowl Discov20142953456433124701403.68215 – reference: HanJKamberMPeiJData mining concepts and techniques20123NetherlandsElsevier1230.68018 – reference: Gibert K, Sanchez-Marre M, Codina V (2010) Choosing the right data mining technique: classification of methods and intelligent recommendation. In: International Congress on Environment Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada – reference: GuptaMKChandraPMP-K-means: modified partition based cluster initialization method for k-means algorithmInt J Recent Technol Eng20198411401148 – reference: EslingPAgonCTime-series data miningACM Comput Surv20124511341293.68104 – reference: LewAMauchHIntroduction to data mining and its applications2006BerlinSpringer – reference: HuangMu-JungTsouYee-LinLeeShow-ChinIntegrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledgeKnowl Based Syst200619396403 – reference: ChenMHanJYuPSData mining: an overview from a database perspectiveIEEE Trans Knowl Data Eng199686866883 – reference: Han J, Fu Y (1996) Exploration of the power of attribute-oriented induction in data mining. Adv Knowl Discov Data Min. AAAI/MIT Press, pp 399-421 – reference: JainAKMurtyMNFlynnPJData clustering: a reviewACM Comput. Surv1999313160 – reference: SharmaMData mining: a literature surveyInt J Emerg Res Manag Technol20143214 – reference: MezykEdwardUnoldOlgierdMachine learning approach to model sport trainingComput Hum Behav20112714991506 – reference: LeeGYunUA new efficient approach for mining uncertain frequent patterns using minimum data structure without false positivesFuture Gener Comput Syst20176889110 – reference: WangBRahalIDongAParallel hierarchical clustering using weighted confidence affinityInt J Data Min Model Manag201132110129 – reference: ReddyDJanaPKA new clustering algorithm based on Voronoi diagramInt J Data Min Model Manag2014614964 – reference: LiaoSHChuPHHsiaoPYData mining techniques and applications—a decade review from 2000 to 2011Expert Syst Appl2012391130311311 – reference: SinghYBhatiaPKSangwanOPA review of studies on machine learning techniquesInt J Comput Sci Secur2007117084 – reference: AlgergawyAMesitiMNayakRSaakeGXML data clustering: an overviewACM Comput Surv20114341251293.68083 – reference: ZhangWLiRFengDChernikovAChrisochoidesNOsgoodCJiSEvolutionary soft co-clustering: formulations, algorithms, and applicationsData Min Knowl Discov20152976579133343201405.62087 – reference: Gupta MK, Chandra P (2019) P-k-means: k-means using partition based cluster initialization method. In: Proceedings of the international conference on advancements in computing and management (ICACM 2019), Elsevier SSRN, pp 567–573 – reference: WetherillGBRegression analysis with application1987UKChapman & Hall Ltd – reference: PonniahPData warehousing fundamentals2001USAWiley – reference: MampaeyMVreekenJSummarizing categorical data by clustering attributesData Min Knowl Discov201126113017330097751260.68339 – reference: ChanPhilip KSalvatoreJSOn the accuracy of meta-learning for scalable data miningJ Intell Inf Syst19978528 – reference: TsaiChih-FongHsuYu-FengLinChia-YingLinWei-YangIntrusion detection by machine learning: a reviewExpert Syst Appl2009361199412000 – volume: 36 start-page: 11994 year: 2009 ident: 427_CR96 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.05.029 – volume: 38 start-page: 1 issue: 2 year: 2006 ident: 427_CR27 publication-title: ACM Comput Surv doi: 10.1145/1132956.1132958 – volume: 3 start-page: 110 issue: 2 year: 2011 ident: 427_CR66 publication-title: Int J Data Min Model Manag – volume: 29 start-page: 168 issue: 1 year: 2015 ident: 427_CR42 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-013-0340-z – volume: 68 start-page: 244 year: 2017 ident: 427_CR60 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2016.11.036 – volume: 10 start-page: 4 year: 2016 ident: 427_CR53 publication-title: ACM Trans Web doi: 10.1145/2994132 – volume: 29 start-page: 534 year: 2014 ident: 427_CR65 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0356-z – volume: 6 start-page: 4663 issue: 5 year: 2015 ident: 427_CR102 publication-title: Int J Comput Sci Inf Technol – volume: 27 start-page: 681e97 issue: 4 year: 2004 ident: 427_CR35 publication-title: Expert Syst Appl – ident: 427_CR33 – volume: 27 start-page: 1023 year: 2000 ident: 427_CR81 publication-title: Comput Oper Res doi: 10.1016/S0305-0548(99)00141-0 – volume: 6 start-page: 413 issue: 4 year: 2013 ident: 427_CR104 publication-title: Orient J Comput Sci Technol – ident: 427_CR110 – volume: 5 start-page: 301 issue: 4 year: 2013 ident: 427_CR56 publication-title: Int J Data Min Model Manag – volume-title: Predictive data mining: a practical guide year: 1998 ident: 427_CR17 – volume: 39 start-page: 11303 year: 2012 ident: 427_CR97 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.02.063 – volume: 5 start-page: 597 issue: 4 year: 2006 ident: 427_CR108 publication-title: Int J Inf Technol Decis Making doi: 10.1142/S0219622006002258 – volume: 43 start-page: 1 year: 2010 ident: 427_CR48 publication-title: ACM Comput Surv doi: 10.1145/1824795.1824798 – volume: 10 start-page: 1 issue: 3 year: 2016 ident: 427_CR22 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/2829956 – volume: 30 start-page: 181 issue: 1 year: 2015 ident: 427_CR46 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-015-0409-y – ident: 427_CR3 – volume: 8 start-page: 267 year: 2002 ident: 427_CR87 publication-title: Commun Assoc Inf Syst – volume: 45 start-page: 1 issue: 1 year: 2012 ident: 427_CR77 publication-title: ACM Comput Surv doi: 10.1145/2379776.2379788 – volume: 3 start-page: 27 issue: 5 year: 2013 ident: 427_CR71 publication-title: Int J Adv Technol Eng Res – ident: 427_CR8 – volume: 15 start-page: 19 issue: 7 year: 2011 ident: 427_CR12 publication-title: Int J Comput Appl – volume: 169 start-page: 28 issue: 8 year: 2017 ident: 427_CR4 publication-title: Int J Comput Appl – volume-title: Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks year: 2014 ident: 427_CR91 – volume: 2 start-page: 116 issue: 11 year: 2013 ident: 427_CR99 publication-title: Int J Res Eng Technol doi: 10.15623/ijret.2013.0211019 – volume: 8 start-page: 1140 issue: 4 year: 2019 ident: 427_CR73 publication-title: Int J Recent Technol Eng doi: 10.35940/ijrte.D6837.118419 – ident: 427_CR103 – volume: 29 start-page: 3 issue: 1 year: 2013 ident: 427_CR24 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-013-0336-8 – volume: 16 start-page: 18 issue: 4 year: 1997 ident: 427_CR18 publication-title: IEEE Potentials doi: 10.1109/45.624335 – volume: 7 start-page: 83 issue: 2 year: 2015 ident: 427_CR23 publication-title: Int J Data Min Modell Manag – volume: 36 start-page: 8616 issue: 4 year: 2009 ident: 427_CR62 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.10.013 – volume: 156 start-page: 387 year: 2005 ident: 427_CR78 publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2005.05.036 – volume: 10 start-page: 1 issue: 1 year: 2015 ident: 427_CR25 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/2733381 – volume: 15 start-page: 1 issue: 3 year: 2015 ident: 427_CR19 publication-title: ACM Trans Asian Low-Resour Lang Inf Process doi: 10.1145/2812809 – volume: 26 start-page: 332 issue: 2 year: 2012 ident: 427_CR59 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0258-x – volume: 29 start-page: 1783 issue: 6 year: 2014 ident: 427_CR58 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0394-6 – volume: 10 start-page: 1 issue: 4 year: 2016 ident: 427_CR41 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/2898359 – volume: 31 start-page: 249 year: 2007 ident: 427_CR43 publication-title: Informatica – volume: 28 start-page: 1004 issue: 4 year: 2013 ident: 427_CR63 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-013-0326-x – volume: 9 start-page: 309 issue: 4 year: 2000 ident: 427_CR83 publication-title: Stat Method Med Res doi: 10.1191/096228000701555181 – volume: 7 start-page: 181 issue: 5 year: 2010 ident: 427_CR86 publication-title: Int J Comput Sci Issues – volume: 4 start-page: 18 year: 2017 ident: 427_CR55 publication-title: IJ Inf Technol Comput Sci – volume: 10 start-page: 217 issue: 2 year: 2018 ident: 427_CR16 publication-title: Int J Inform Technol doi: 10.1007/s41870-017-0067-y – volume: 10 start-page: 63 year: 2016 ident: 427_CR37 publication-title: IJ Inf Technol Comput Sci – ident: 427_CR14 – volume: 3 start-page: 1 year: 2018 ident: 427_CR67 publication-title: IJ Intell Syst Appl – volume: 3 start-page: 7217 issue: 7 year: 2014 ident: 427_CR10 publication-title: Int J Eng Comput Sci – volume: 59 start-page: 127 year: 2014 ident: 427_CR94 publication-title: Decis Support Syst doi: 10.1016/j.dss.2013.11.001 – ident: 427_CR34 doi: 10.1007/978-3-030-30577-2_79 – volume-title: Exploratory and confirmatory factor analysis: understanding concepts and applications year: 2004 ident: 427_CR93 doi: 10.1037/10694-000 – ident: 427_CR105 – ident: 427_CR89 – volume: 11 start-page: 1493 year: 2011 ident: 427_CR79 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2008.01.004 – volume: 43 start-page: 1 issue: 4 year: 2011 ident: 427_CR20 publication-title: ACM Comput Surv doi: 10.1145/1978802.1978804 – ident: 427_CR2 – volume: 11 start-page: 128 issue: 3 year: 2017 ident: 427_CR106 publication-title: Tech J – volume: 10 start-page: 57 year: 2017 ident: 427_CR40 publication-title: IJ Comput Netw Inf Secur – volume-title: Introduction to data mining and its applications year: 2006 ident: 427_CR101 – volume: 18 start-page: 3 issue: 2 year: 1995 ident: 427_CR70 publication-title: IEEE Data Eng Bull – ident: 427_CR7 – volume: 3 start-page: 8095 issue: 10 year: 2014 ident: 427_CR9 publication-title: Int J Adv Res Comput Commun Eng doi: 10.17148/IJARCCE.2014.31003 – ident: 427_CR69 – volume: 3 start-page: 130 issue: 2 year: 2011 ident: 427_CR30 publication-title: Int J Data Min Model Manag – volume: 41 start-page: 1 issue: 3 year: 2009 ident: 427_CR26 publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541884 – volume: 27 start-page: 1499 year: 2011 ident: 427_CR76 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2010.10.014 – volume-title: Data warehousing fundamentals year: 2001 ident: 427_CR15 doi: 10.1002/0471221627 – volume: 11 start-page: 1 issue: 2 year: 2016 ident: 427_CR44 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/2997656 – volume: 24 start-page: 311 issue: 2 year: 2011 ident: 427_CR5 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-011-0239-5 – volume: 2 start-page: 43 issue: 3 year: 2012 ident: 427_CR109 publication-title: Int J Comput Sci Eng Inf Technol – volume: 8 start-page: 866 issue: 6 year: 1996 ident: 427_CR13 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/69.553155 – volume: 29 start-page: 324 year: 2015 ident: 427_CR64 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0347-0 – volume: 28 start-page: 4 issue: 1 year: 2012 ident: 427_CR50 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-012-0295-5 – volume: 46 start-page: 1 issue: 1 year: 2013 ident: 427_CR57 publication-title: ACM Comput Surv doi: 10.1145/2522968.2522981 – ident: 427_CR72 – volume: 38 start-page: 1 issue: 3 year: 2006 ident: 427_CR32 publication-title: ACM Comput Surv doi: 10.1145/1132960.1132963 – volume: 47 start-page: 1 issue: 4 year: 2015 ident: 427_CR51 publication-title: ACM Comput Surv doi: 10.1145/2742642 – volume: 8 start-page: 3584 issue: 10 year: 2019 ident: 427_CR74 publication-title: IJ Innov Technol Explor Eng doi: 10.35940/ijitee.j9774.0881019 – volume: 28 start-page: 519 issue: 2 year: 2013 ident: 427_CR21 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-013-0310-5 – ident: 427_CR107 – volume: 26 start-page: 130 issue: 1 year: 2011 ident: 427_CR49 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-011-0246-6 – volume: 39 start-page: 8844 year: 2012 ident: 427_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.02.005 – volume: 6 start-page: 49 issue: 1 year: 2014 ident: 427_CR54 publication-title: Int J Data Min Model Manag – volume: 170 start-page: 1175 year: 2006 ident: 427_CR61 publication-title: Artif Intell doi: 10.1016/j.artint.2006.09.001 – volume: 1 start-page: 70 issue: 1 year: 2007 ident: 427_CR85 publication-title: Int J Comput Sci Secur – start-page: 111 volume-title: Recent advances in data mining of enterprise data: algorithms and applications year: 2007 ident: 427_CR47 – volume: 68 start-page: 89 year: 2017 ident: 427_CR45 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2016.09.007 – volume: 3 start-page: 1 issue: 2 year: 2014 ident: 427_CR11 publication-title: Int J Emerg Res Manag Technol – volume: 31 start-page: 1 issue: 3 year: 1999 ident: 427_CR38 publication-title: ACM Comput. Surv – volume: 259 start-page: 474 year: 2014 ident: 427_CR80 publication-title: Inf Sci doi: 10.1016/j.ins.2009.12.017 – volume: 19 start-page: 845 year: 2004 ident: 427_CR98 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2003.03.004 – volume: 29 start-page: 765 year: 2015 ident: 427_CR68 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-014-0375-9 – start-page: 301 volume-title: Learning in graphical models year: 1998 ident: 427_CR88 doi: 10.1007/978-94-011-5014-9_11 – volume-title: Data mining concepts and techniques year: 2012 ident: 427_CR6 – volume-title: International encyclopedia of education year: 2010 ident: 427_CR100 – volume: 22 start-page: 46 issue: 1 year: 2009 ident: 427_CR28 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2008.06.003 – volume-title: Advances in statistical methodologies and their application to real problems year: 2017 ident: 427_CR92 doi: 10.5772/66152 – volume: 8 start-page: 5 year: 1997 ident: 427_CR95 publication-title: J Intell Inf Syst doi: 10.1023/A:1008640732416 – volume: 6 start-page: 347 issue: 4 year: 2014 ident: 427_CR39 publication-title: Int J Data Min Model Manag – volume: 12 start-page: 23 year: 2015 ident: 427_CR36 publication-title: IJ Intell Syst Appl – ident: 427_CR1 – volume: 29 start-page: 927 year: 2005 ident: 427_CR75 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2005.06.024 – volume: 11 start-page: 2 year: 2016 ident: 427_CR52 publication-title: ACM Trans Knowl Discov Data – volume: 79–80 start-page: 40 year: 2012 ident: 427_CR84 publication-title: Data Knowl Eng – volume-title: Regression analysis with application year: 1987 ident: 427_CR90 – volume-title: The k-means algorithm in data mining and an application in medicine year: 2006 ident: 427_CR31 – volume: 19 start-page: 396 year: 2006 ident: 427_CR82 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2006.04.003 |
| SSID | ssib031263571 ssj0002710285 |
| Score | 2.4205277 |
| Snippet | Data mining plays an important role in various human activities because it extracts the unknown useful patterns (or knowledge). Due to its capabilities, data... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1243 |
| SubjectTerms | Artificial Intelligence Bioinformatics Computer Imaging Computer Science Data mining Image Processing and Computer Vision Machine Learning Medical research Original Research Pattern Recognition and Graphics Software Engineering Vision |
| Title | A comprehensive survey of data mining |
| URI | https://link.springer.com/article/10.1007/s41870-020-00427-7 https://www.proquest.com/docview/2473818679 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 2511-2112 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: RSV dateStart: 20170301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDnnTBPHaTPRZRPBXxRW9Lkk1Q0VZ224L_3iTdbVVU0OtmEpZ5ZGbIzDcAh8xK6VeiRDHqEpRYOpM69ZD7wlpjTZ7mIgyb4L2e6PfTq6oprKyr3esnyXBTz5rdGBZ-SArxndCM8IgvwpJzd8Kb4_XNfa1FFHt8lSrIeQpPa96J-lpGH05HLsdhVffM98d-9lDzsPPLS2lwQBfN__36OqxVASfqTjVkAxbMoAXNepgDqmy7BasfkAk34aiLfLF5YR6mBe6oHBcT84aGFvmaUvQS5kpswd3F-e3ZZVRNVIg0oYxHRiguVKwY1opyjqXJXfrFuUmllDGWTBHC3fXokg5hubZJKnlqY23zOJHuG92GxmA4MDuAuDRYO3oXomCmiZQ4z1VCJZUJNzlWbcA1FzNdwY37qRfP2QwoOXAlc1zJAlcy3obj2Z7XKdjGr9SdWjhZZXhlRhinAaQvbcNJLYz58s-n7f6NfA9WiJdnKGzpQGNUjM0-LOvJ6LEsDoJCvgO5NNVs |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD06k4nZoHfdKCadJe-zjEMXEO0Sl7K2mboKKbdD_A_94kazcVFfS1uYRyyeXuyHffARxyJYQZcfyYM52geEKb1Kmh3A-UkkqmYRrYZhPYbgfdbnidF4UNCrR78SRpb-ppsRungWmS4ppKaO6ig_OwwLXHMkC-m9v74hQxavhV8iDnyT6tGSdqsIwmnHZ0jsPz6pnvl_3soWZh55eXUuuAGuX__foarOYBJ6lPTsg6zMleBcpFMweS23YFVj4wE27AUZ0YsHkmHyYAdzIYZWP5RvqKGEwpebF9JTbhrnHeOWs6eUcFJ3EZR0cGMQaxF3OaxAyRCpnq9AtRhkIIjwoeuy7q61EnHYHCRPmhwFB5iUo9X-hvbAtKvX5PbgNBIWmi5XWIQnniCkHTNPaZYMJHmdK4CrTQYpTkdOOm68VzNCVKtlqJtFYiq5UIq3A8nfM6Idv4VbpWbE6UG94gcjkyS9IXVuGk2IzZ8M-r7fxN_ACWmp2rVtS6aF_uwrJr9taCXGpQGmYjuQeLyXj4OMj27eF8B8OJ2FA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD8xOnU_ugT1pm0rRpH4c6FGUM_GBvIW0SVLQb3Qf435uk7TZFBfG1uQZ6yfXuuLvfD-CIKM7NihvExNMJis-1SZ0ZyP1QKamkiERoySZoux12u1FnZorfdruXJcl8psGgNKXDRl-oxmTwjaDQEKZgMxVNMHXpPCwQQxpk8vW7x_JGechgrRQBz4stsxmHavoaTWjt6nyHFJM032_72VtNQ9AvVVPrjFrV_3_GGqwWgajTzG_OOszJdAOqJcmDU9j8BqzMIBZuwnHTMU3omXzKG9-dwSgby3enpxzTa-q8Wb6JLXhoXd6fX7kF04KbYI9QV4YxDWM_JiiJPUoRl0KnZZTKiHPuI05ijKn-bepkJFQ0UUHEaaT8RAk_4PqZtw2VtJfKHXAolyjR8jp0QSTBnCMh4sDjHg-oFCiuASo1ypIChtywYbyyCYCy1QrTWmFWK4zW4GTyTj8H4fhVul4eFCsMcsAwoZ4F74tqcFoezHT55912_yZ-CEudixa7vW7f7MEyNkdre1_qUBlmI7kPi8l4-DzIDuw9_QDEP-E0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+survey+of+data+mining&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Gupta%2C+Manoj+Kumar&rft.au=Chandra%2C+Pravin&rft.date=2020-12-01&rft.pub=Springer+Singapore&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=12&rft.issue=4&rft.spage=1243&rft.epage=1257&rft_id=info:doi/10.1007%2Fs41870-020-00427-7&rft.externalDocID=10_1007_s41870_020_00427_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon |