KAF + RSigELU: a nonlinear and kernel-based activation function for deep neural networks
Activation functions (AFs) are the basis for neural network architectures used in real-world problems to accurately model and learn complex relationships between variables. They are preferred to process the input information coming to the network and to produce the corresponding output. The kernel-b...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 34; číslo 16; s. 13909 - 13923 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.08.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!