Cubixel: a novel paradigm in image processing using three-dimensional pixel representation
This paper introduces the innovative concept of the Cubixel—a three-dimensional representation of the traditional pixel—alongside the derived metric, Volume of the Void (VoV), which measures spatial disparities within images. By converting pixels into Cubixels, we can analyze the image’s 3D properti...
Gespeichert in:
| Veröffentlicht in: | Multimedia tools and applications Jg. 84; H. 23; S. 26215 - 26265 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1573-7721, 1380-7501, 1573-7721 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper introduces the innovative concept of the Cubixel—a three-dimensional representation of the traditional pixel—alongside the derived metric, Volume of the Void (VoV), which measures spatial disparities within images. By converting pixels into Cubixels, we can analyze the image’s 3D properties, thereby enriching image processing and computer vision tasks. Utilizing Cubixels, we’ve developed algorithms for advanced image segmentation, edge detection, texture analysis, and feature extraction, yielding a deeper comprehension of image content. Our empirical experimental results on benchmark images and datasets showcase the applicability of these concepts. Further, we discuss future applications of Cubixels and VoV in various domains, particularly in medical imaging, where they have the potential to significantly enhance diagnostic processes. By interpreting images as complex ‘urban landscapes’, we envision a new frontier for deep learning models that simulate and learn from diverse environmental conditions. The integration of Cubixels into deep learning architectures promises to revolutionize the field, providing a pathway towards more intelligent, context-aware artificial intelligence systems. With this groundbreaking work, we aim to inspire future research that will unlock the full potential of image data, transforming both theoretical understanding and practical applications. Our code is available at
https://github.com/sanadv/Cubixel
. |
|---|---|
| AbstractList | This paper introduces the innovative concept of the Cubixel—a three-dimensional representation of the traditional pixel—alongside the derived metric, Volume of the Void (VoV), which measures spatial disparities within images. By converting pixels into Cubixels, we can analyze the image’s 3D properties, thereby enriching image processing and computer vision tasks. Utilizing Cubixels, we’ve developed algorithms for advanced image segmentation, edge detection, texture analysis, and feature extraction, yielding a deeper comprehension of image content. Our empirical experimental results on benchmark images and datasets showcase the applicability of these concepts. Further, we discuss future applications of Cubixels and VoV in various domains, particularly in medical imaging, where they have the potential to significantly enhance diagnostic processes. By interpreting images as complex ‘urban landscapes’, we envision a new frontier for deep learning models that simulate and learn from diverse environmental conditions. The integration of Cubixels into deep learning architectures promises to revolutionize the field, providing a pathway towards more intelligent, context-aware artificial intelligence systems. With this groundbreaking work, we aim to inspire future research that will unlock the full potential of image data, transforming both theoretical understanding and practical applications. Our code is available at
https://github.com/sanadv/Cubixel
. This paper introduces the innovative concept of the Cubixel—a three-dimensional representation of the traditional pixel—alongside the derived metric, Volume of the Void (VoV), which measures spatial disparities within images. By converting pixels into Cubixels, we can analyze the image’s 3D properties, thereby enriching image processing and computer vision tasks. Utilizing Cubixels, we’ve developed algorithms for advanced image segmentation, edge detection, texture analysis, and feature extraction, yielding a deeper comprehension of image content. Our empirical experimental results on benchmark images and datasets showcase the applicability of these concepts. Further, we discuss future applications of Cubixels and VoV in various domains, particularly in medical imaging, where they have the potential to significantly enhance diagnostic processes. By interpreting images as complex ‘urban landscapes’, we envision a new frontier for deep learning models that simulate and learn from diverse environmental conditions. The integration of Cubixels into deep learning architectures promises to revolutionize the field, providing a pathway towards more intelligent, context-aware artificial intelligence systems. With this groundbreaking work, we aim to inspire future research that will unlock the full potential of image data, transforming both theoretical understanding and practical applications. Our code is available at https://github.com/sanadv/Cubixel. |
| Author | Aburass, Sanad |
| Author_xml | – sequence: 1 givenname: Sanad orcidid: 0000-0002-7757-3953 surname: Aburass fullname: Aburass, Sanad email: saburass@luther.edu, saburass@miu.edu organization: Department of Computer Science, Luther College, Department of Computer Science, Maharishi International University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9FMNvvlTYpfUPCiFy8hm52uKdtsTXZF_71pV1A89JIMYZ7JO8-MTFznkJBz4JfAeX4VALgUjAvJBOcFsOyITCHNE5bnAiZ_6hMyC2HNOWSpkFPyuhgq-4ntNdXUdR_Y0q32urbNhlpH7UY3SLe-MxiCdQ0d9mf_5hFZbTfogu2cjtBuBvW49RjQ9bqPz6fkeKXbgGc_95y83N0-Lx7Y8un-cXGzZEYkMmPGVLzmFchqVcgykwLKWKbAMS9LqAuDieaploXUtS4rozWCSSuoeMQyCcmcXIxzY873AUOv1t3gY6qgEpFEL6ksdl1i7DK-C8HjSm19XM9_KeBq51CNDlV0qPYOVRah4h9k7Lhc77VtD6PJiIb4j2vQ_6Y6QH0DZzCIww |
| CitedBy_id | crossref_primary_10_1007_s10278_025_01481_y |
| Cites_doi | 10.1049/ipr2.12419 10.2147/NAN.S66439 10.1109/JBHI.2023.3336726 10.1155/2018/7068349 10.1016/j.image.2013.06.003 10.1007/s10462-021-10061-9 10.1007/s10462-022-10176-7 10.1016/j.vlsi.2019.07.005 10.1007/s11042-020-09634-7 10.1007/s41095-020-0174-8 10.1007/978-3-030-30493-5_48 10.14569/IJACSA.2020.0111216 10.1016/j.autcon.2021.103675 10.1109/ACCESS.2019.2956508 10.1109/TPAMI.2020.2982166 10.3844/jcssp.2022.757.769 10.1016/S0927-0507(05)80124-0 10.1007/s11831-023-09919-8 10.1109/JSTARS.2021.3076005 10.1109/TPAMI.2021.3053577 10.1007/978-94-010-0510-4_8 10.3390/electronics10101187 10.1007/s11042-019-08070-6 10.1007/978-3-031-47448-4_5 10.1016/j.injury.2022.04.013 10.1007/s00371-021-02166-7 10.1016/j.imu.2023.101393 10.1038/sdata.2018.161 10.1007/s41095-022-0271-y 10.1016/j.neucom.2018.01.091 10.1090/conm/453 10.1109/TIP.2022.3184250 10.1016/j.eswa.2021.114574 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11042-024-20081-6 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 26265 |
| ExternalDocumentID | 10_1007_s11042_024_20081_6 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX AFFHD CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2346-ccb0d0b14bf849642194bf510e7991d8ce3a05a484ada9bcaae1c5b1b00d06413 |
| IEDL.DBID | RSV |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Thu Nov 06 12:27:14 EST 2025 Sat Nov 29 07:42:27 EST 2025 Tue Nov 18 21:51:52 EST 2025 Fri Jul 18 01:11:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | Image processing Image representation Computer vision |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2346-ccb0d0b14bf849642194bf510e7991d8ce3a05a484ada9bcaae1c5b1b00d06413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7757-3953 |
| PQID | 3231045481 |
| PQPubID | 54626 |
| PageCount | 51 |
| ParticipantIDs | proquest_journals_3231045481 crossref_primary_10_1007_s11042_024_20081_6 crossref_citationtrail_10_1007_s11042_024_20081_6 springer_journals_10_1007_s11042_024_20081_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20250700 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 7 year: 2025 text: 20250700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | X Yao (20081_CR19) 2022; 81 O Dorgham (20081_CR11) 2017; 12 Z Wang (20081_CR27) 2019; 78 20081_CR40 K Bayoudh (20081_CR21) 2022; 38 J Al Shaqsi (20081_CR5) 2023; 43 J Prakash (20081_CR15) 2023; 30 M Gao (20081_CR22) 2023; 56 C Scarpazza (20081_CR18) 2016; 5 JSB Mitchell (20081_CR39) 1995 L Tanzi (20081_CR3) 2022; 53 Y-P Xiao (20081_CR37) 2020; 6 Z Wang (20081_CR14) 2021; 43 Z Wang (20081_CR25) 2021; 171 M-H Guo (20081_CR2) 2022; 8 X Feng (20081_CR10) 2019; 69 20081_CR33 L Jiao (20081_CR1) 2019; 7 P Tschandl (20081_CR28) 2018; 5 20081_CR36 S Subudhi (20081_CR16) 2021; 14 Y Xu (20081_CR17) 2021; 126 S Aburass (20081_CR32) 2023 20081_CR34 20081_CR13 20081_CR35 N Le (20081_CR20) 2022; 55 R Wang (20081_CR7) 2022; 16 S Aburass (20081_CR8) 2022; 18 A Voulodimos (20081_CR9) 2018; 2018 S Klocek (20081_CR12) 2019 M Delfour (20081_CR38) 2010 A Beghdadi (20081_CR6) 2013; 28 Z Wang (20081_CR26) 2022; 31 F Garcia-Lamont (20081_CR30) 2018; 292 F Yang (20081_CR23) 2024; 28 H Zhu (20081_CR31) 2021; 10 20081_CR4 20081_CR24 S AbuRass (20081_CR29) 2020; 11 |
| References_xml | – volume: 16 start-page: 1243 issue: 5 year: 2022 ident: 20081_CR7 publication-title: IET Image Process doi: 10.1049/ipr2.12419 – volume: 5 start-page: 19 year: 2016 ident: 20081_CR18 publication-title: Neurosci Neuroecon doi: 10.2147/NAN.S66439 – volume: 28 start-page: 858 issue: 2 year: 2024 ident: 20081_CR23 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2023.3336726 – volume: 2018 start-page: 1 year: 2018 ident: 20081_CR9 publication-title: Comput Intell Neurosci doi: 10.1155/2018/7068349 – volume-title: Shapes and geometries: metrics, analysis, differential Calculus, and optimization year: 2010 ident: 20081_CR38 – volume: 28 start-page: 811 issue: 8 year: 2013 ident: 20081_CR6 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2013.06.003 – volume: 55 start-page: 2733 issue: 4 year: 2022 ident: 20081_CR20 publication-title: Artif Intell Rev doi: 10.1007/s10462-021-10061-9 – volume: 56 start-page: 457 issue: 1 year: 2023 ident: 20081_CR22 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10176-7 – volume: 69 start-page: 309 year: 2019 ident: 20081_CR10 publication-title: Integration doi: 10.1016/j.vlsi.2019.07.005 – volume: 81 start-page: 41361 issue: 29 year: 2022 ident: 20081_CR19 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-09634-7 – volume: 6 start-page: 113 issue: 2 year: 2020 ident: 20081_CR37 publication-title: Comput Vis Media (Beijing) doi: 10.1007/s41095-020-0174-8 – start-page: 496 volume-title: Hypernetwork functional image representation year: 2019 ident: 20081_CR12 doi: 10.1007/978-3-030-30493-5_48 – volume: 11 start-page: 130 issue: 12 year: 2020 ident: 20081_CR29 publication-title: Int J Adv Comput Sci Appl doi: 10.14569/IJACSA.2020.0111216 – volume: 126 start-page: 103675 year: 2021 ident: 20081_CR17 publication-title: Autom Constr doi: 10.1016/j.autcon.2021.103675 – volume: 7 start-page: 172231 year: 2019 ident: 20081_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2956508 – volume: 43 start-page: 3365 issue: 10 year: 2021 ident: 20081_CR14 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.2982166 – volume: 18 start-page: 757 issue: 8 year: 2022 ident: 20081_CR8 publication-title: J Comput Sci doi: 10.3844/jcssp.2022.757.769 – start-page: 425 volume-title: Chapter 7 a survey of computational geometry year: 1995 ident: 20081_CR39 doi: 10.1016/S0927-0507(05)80124-0 – volume: 30 start-page: 3749 issue: 6 year: 2023 ident: 20081_CR15 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-09919-8 – volume: 14 start-page: 5015 year: 2021 ident: 20081_CR16 publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2021.3076005 – ident: 20081_CR24 doi: 10.1109/TPAMI.2021.3053577 – ident: 20081_CR35 – ident: 20081_CR4 doi: 10.1007/978-94-010-0510-4_8 – volume: 10 start-page: 1187 issue: 10 year: 2021 ident: 20081_CR31 publication-title: Electronics (Basel) doi: 10.3390/electronics10101187 – ident: 20081_CR33 – volume: 78 start-page: 34483 issue: 24 year: 2019 ident: 20081_CR27 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08070-6 – start-page: 56 volume-title: Performance evaluation of Swin vision transformer model using gradient accumulation optimization technique year: 2023 ident: 20081_CR32 doi: 10.1007/978-3-031-47448-4_5 – volume: 53 start-page: 2625 issue: 7 year: 2022 ident: 20081_CR3 publication-title: Injury doi: 10.1016/j.injury.2022.04.013 – volume: 38 start-page: 2939 issue: 8 year: 2022 ident: 20081_CR21 publication-title: Vis Comput doi: 10.1007/s00371-021-02166-7 – volume: 43 start-page: 101393 year: 2023 ident: 20081_CR5 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2023.101393 – volume: 5 start-page: 180161 issue: 1 year: 2018 ident: 20081_CR28 publication-title: Sci Data doi: 10.1038/sdata.2018.161 – volume: 8 start-page: 331 issue: 3 year: 2022 ident: 20081_CR2 publication-title: Comput Vis Media (Beijing) doi: 10.1007/s41095-022-0271-y – volume: 292 start-page: 1 year: 2018 ident: 20081_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.091 – ident: 20081_CR40 doi: 10.1090/conm/453 – ident: 20081_CR13 – ident: 20081_CR36 – volume: 12 start-page: 253 issue: 4 year: 2017 ident: 20081_CR11 publication-title: Int J Soft Comput – volume: 31 start-page: 4527 year: 2022 ident: 20081_CR26 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2022.3184250 – ident: 20081_CR34 – volume: 171 start-page: 114574 year: 2021 ident: 20081_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114574 |
| SSID | ssj0016524 |
| Score | 2.3988347 |
| Snippet | This paper introduces the innovative concept of the Cubixel—a three-dimensional representation of the traditional pixel—alongside the derived metric, Volume of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 26215 |
| SubjectTerms | Artificial intelligence Comparative studies Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Deep learning Edge detection Image processing Image segmentation Machine learning Medical imaging Morphology Multimedia Information Systems Pixels Representations Special Purpose and Application-Based Systems Track 6: Computer Vision for Multimedia Applications Urban environments Volumetric analysis |
| Title | Cubixel: a novel paradigm in image processing using three-dimensional pixel representation |
| URI | https://link.springer.com/article/10.1007/s11042-024-20081-6 https://www.proquest.com/docview/3231045481 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDN11odrOPeJNi8SBF8EHxsuRVWWi3pS_8-Wb20VVRQS_LwiZhyWQyX5h83wCchxgkQ6ns7ifwgMKlEwmPO1QHWgvfV0ZnROG7sNeL-n1-X5DCZuVt9zIlme3UFdmNIpXExhS0bESdYB02fFSbwTP6w_MqdxD4LivoMd_3-xyCKlz5JRWaRZhu_X__tgs7BaIk1_kS2IM1kzagXlZrIIXzNmD7g_TgPrx0FjJ5M8MrIkg6XpohQRFwnbyOSJKSZGS3GTLJSQS2PVlkz7k1vHE0FgTIxTzIBMcgmTJmyWJKD-Cpe_PYuXWKOguOcj0WOErJtm5LyuQgYhyZr9y-Wmc1oUWPOlLGE21fsIgJLbhUQhiqfEmtx2qLaKh3CLV0nJojIMob-BrJvEoaJi34VIa7OkLQRAeCh02g5dTHqhAhx1oYw7iST8apjO1UZhUyaRw04WLVZ5JLcPzaulVaNC7ccRZ7iGKZPZzRJlyWFqw-_zza8d-an8CWi_WBs-u8LajNpwtzCptqOU9m07Nsmb4D-XXi9A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQHp1NxOjUPvmlhadNLfJPhmDiH4JThS8ltUti6sRv-fJNeVhUV9KUUmoSSk5Nzwsn3fQDnvgmSPhd692PmgEK5FTCHWlh6UjLXFUomQOG23-kEvR59yEBh0_y2e16STHbqAuyGDZRExxRj2QBb3iqsESOzY87oj8_L2oHn2iSDx3zf73MIKvLKL6XQJMI0y__7tx3YzjJKdJ0ugV1YUXEFyrlaA8qctwJbH6gH9-ClMefRmxpcIYbi0UINkCEBl9HrEEUxioZ6m0HjFESg26N58pxpwytLGkGAlMwDjc0YKGHGzFFM8T48NW-6jZaV6SxYwnaIZwnB67LOMeH9gFCDfKX6VTur8nX2KAOhHFZ3GQkIk4xywZjCwuVYe6zUGQ12DqAUj2J1CEg4fVcaMK_ginCdfApFbRmYpAn3GfWrgPOpD0VGQm60MAZhQZ9spjLUU5koZOLQq8LFss84peD4tXUtt2iYueM0dEwWS_ThDFfhMrdg8fnn0Y7-1vwMNlrd-3bYvu3cHcOmbbSCk6u9NSjNJnN1AutiMYumk9Nkyb4DpUnl2A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHp1NxOjUPvmlxWdObbzIdimMMbwxfSm6TwtaVrRv-fJNe1ikqiC-l0CSUnJycL-R83wE4dXSQdBhXux_VBxSPGS41PQMLWwhqWVyKhCjcdjodt9fzugss_iTbPb-STDkNWqUpjC8i0b8oiG9Y00pUfNFWdrFhL8MKUScZndT18Pgyv0ewrQbJqDLf9_scjgqM-eVaNIk2rfL__3MLNjOkia7SpbENSzKsQDmv4oAyp67AxoIk4Q68NqcseJeDS0RROJrJAdLi4CJ4G6IgRMFQbT8oSskFqj2aJs9YLQhpCF0oIBX5QJEeAyWKmTm7KdyF59bNU_PWyOovGLxhEtvgnNVFnWHC-i7xNCPWU6_KiaWjUKVwuTRp3aLEJVRQj3FKJeYWw8qThUI62NyDUjgK5T4gbvYtoUm-nEnCFCjl0msIV4Mp3KeeUwWcm8HnmTi5rpEx8AtZZT2VvprKpHIm9u0qnM37RKk0x6-ta7l1_cxNJ76p0S1RhzZchfPcmsXnn0c7-FvzE1jrXrf89l3n_hDWG7qEcJLxW4NSPJ7KI1jlsziYjI-T1fsBnLDuvA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cubixel%3A+a+novel+paradigm+in+image+processing+using+three-dimensional+pixel+representation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Aburass%2C+Sanad&rft.date=2025-07-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=23&rft.spage=26215&rft.epage=26265&rft_id=info:doi/10.1007%2Fs11042-024-20081-6&rft.externalDocID=10_1007_s11042_024_20081_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |