Cubixel: a novel paradigm in image processing using three-dimensional pixel representation

This paper introduces the innovative concept of the Cubixel—a three-dimensional representation of the traditional pixel—alongside the derived metric, Volume of the Void (VoV), which measures spatial disparities within images. By converting pixels into Cubixels, we can analyze the image’s 3D properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications Jg. 84; H. 23; S. 26215 - 26265
1. Verfasser: Aburass, Sanad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2025
Springer Nature B.V
Schlagworte:
ISSN:1573-7721, 1380-7501, 1573-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper introduces the innovative concept of the Cubixel—a three-dimensional representation of the traditional pixel—alongside the derived metric, Volume of the Void (VoV), which measures spatial disparities within images. By converting pixels into Cubixels, we can analyze the image’s 3D properties, thereby enriching image processing and computer vision tasks. Utilizing Cubixels, we’ve developed algorithms for advanced image segmentation, edge detection, texture analysis, and feature extraction, yielding a deeper comprehension of image content. Our empirical experimental results on benchmark images and datasets showcase the applicability of these concepts. Further, we discuss future applications of Cubixels and VoV in various domains, particularly in medical imaging, where they have the potential to significantly enhance diagnostic processes. By interpreting images as complex ‘urban landscapes’, we envision a new frontier for deep learning models that simulate and learn from diverse environmental conditions. The integration of Cubixels into deep learning architectures promises to revolutionize the field, providing a pathway towards more intelligent, context-aware artificial intelligence systems. With this groundbreaking work, we aim to inspire future research that will unlock the full potential of image data, transforming both theoretical understanding and practical applications. Our code is available at https://github.com/sanadv/Cubixel .
AbstractList This paper introduces the innovative concept of the Cubixel—a three-dimensional representation of the traditional pixel—alongside the derived metric, Volume of the Void (VoV), which measures spatial disparities within images. By converting pixels into Cubixels, we can analyze the image’s 3D properties, thereby enriching image processing and computer vision tasks. Utilizing Cubixels, we’ve developed algorithms for advanced image segmentation, edge detection, texture analysis, and feature extraction, yielding a deeper comprehension of image content. Our empirical experimental results on benchmark images and datasets showcase the applicability of these concepts. Further, we discuss future applications of Cubixels and VoV in various domains, particularly in medical imaging, where they have the potential to significantly enhance diagnostic processes. By interpreting images as complex ‘urban landscapes’, we envision a new frontier for deep learning models that simulate and learn from diverse environmental conditions. The integration of Cubixels into deep learning architectures promises to revolutionize the field, providing a pathway towards more intelligent, context-aware artificial intelligence systems. With this groundbreaking work, we aim to inspire future research that will unlock the full potential of image data, transforming both theoretical understanding and practical applications. Our code is available at https://github.com/sanadv/Cubixel .
This paper introduces the innovative concept of the Cubixel—a three-dimensional representation of the traditional pixel—alongside the derived metric, Volume of the Void (VoV), which measures spatial disparities within images. By converting pixels into Cubixels, we can analyze the image’s 3D properties, thereby enriching image processing and computer vision tasks. Utilizing Cubixels, we’ve developed algorithms for advanced image segmentation, edge detection, texture analysis, and feature extraction, yielding a deeper comprehension of image content. Our empirical experimental results on benchmark images and datasets showcase the applicability of these concepts. Further, we discuss future applications of Cubixels and VoV in various domains, particularly in medical imaging, where they have the potential to significantly enhance diagnostic processes. By interpreting images as complex ‘urban landscapes’, we envision a new frontier for deep learning models that simulate and learn from diverse environmental conditions. The integration of Cubixels into deep learning architectures promises to revolutionize the field, providing a pathway towards more intelligent, context-aware artificial intelligence systems. With this groundbreaking work, we aim to inspire future research that will unlock the full potential of image data, transforming both theoretical understanding and practical applications. Our code is available at https://github.com/sanadv/Cubixel.
Author Aburass, Sanad
Author_xml – sequence: 1
  givenname: Sanad
  orcidid: 0000-0002-7757-3953
  surname: Aburass
  fullname: Aburass, Sanad
  email: saburass@luther.edu, saburass@miu.edu
  organization: Department of Computer Science, Luther College, Department of Computer Science, Maharishi International University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9FMNvvlTYpfUPCiFy8hm52uKdtsTXZF_71pV1A89JIMYZ7JO8-MTFznkJBz4JfAeX4VALgUjAvJBOcFsOyITCHNE5bnAiZ_6hMyC2HNOWSpkFPyuhgq-4ntNdXUdR_Y0q32urbNhlpH7UY3SLe-MxiCdQ0d9mf_5hFZbTfogu2cjtBuBvW49RjQ9bqPz6fkeKXbgGc_95y83N0-Lx7Y8un-cXGzZEYkMmPGVLzmFchqVcgykwLKWKbAMS9LqAuDieaploXUtS4rozWCSSuoeMQyCcmcXIxzY873AUOv1t3gY6qgEpFEL6ksdl1i7DK-C8HjSm19XM9_KeBq51CNDlV0qPYOVRah4h9k7Lhc77VtD6PJiIb4j2vQ_6Y6QH0DZzCIww
CitedBy_id crossref_primary_10_1007_s10278_025_01481_y
Cites_doi 10.1049/ipr2.12419
10.2147/NAN.S66439
10.1109/JBHI.2023.3336726
10.1155/2018/7068349
10.1016/j.image.2013.06.003
10.1007/s10462-021-10061-9
10.1007/s10462-022-10176-7
10.1016/j.vlsi.2019.07.005
10.1007/s11042-020-09634-7
10.1007/s41095-020-0174-8
10.1007/978-3-030-30493-5_48
10.14569/IJACSA.2020.0111216
10.1016/j.autcon.2021.103675
10.1109/ACCESS.2019.2956508
10.1109/TPAMI.2020.2982166
10.3844/jcssp.2022.757.769
10.1016/S0927-0507(05)80124-0
10.1007/s11831-023-09919-8
10.1109/JSTARS.2021.3076005
10.1109/TPAMI.2021.3053577
10.1007/978-94-010-0510-4_8
10.3390/electronics10101187
10.1007/s11042-019-08070-6
10.1007/978-3-031-47448-4_5
10.1016/j.injury.2022.04.013
10.1007/s00371-021-02166-7
10.1016/j.imu.2023.101393
10.1038/sdata.2018.161
10.1007/s41095-022-0271-y
10.1016/j.neucom.2018.01.091
10.1090/conm/453
10.1109/TIP.2022.3184250
10.1016/j.eswa.2021.114574
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-20081-6
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 26265
ExternalDocumentID 10_1007_s11042_024_20081_6
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
AFFHD
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2346-ccb0d0b14bf849642194bf510e7991d8ce3a05a484ada9bcaae1c5b1b00d06413
IEDL.DBID RSV
ISSN 1573-7721
1380-7501
IngestDate Thu Nov 06 12:27:14 EST 2025
Sat Nov 29 07:42:27 EST 2025
Tue Nov 18 21:51:52 EST 2025
Fri Jul 18 01:11:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Image processing
Image representation
Computer vision
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2346-ccb0d0b14bf849642194bf510e7991d8ce3a05a484ada9bcaae1c5b1b00d06413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7757-3953
PQID 3231045481
PQPubID 54626
PageCount 51
ParticipantIDs proquest_journals_3231045481
crossref_primary_10_1007_s11042_024_20081_6
crossref_citationtrail_10_1007_s11042_024_20081_6
springer_journals_10_1007_s11042_024_20081_6
PublicationCentury 2000
PublicationDate 20250700
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References X Yao (20081_CR19) 2022; 81
O Dorgham (20081_CR11) 2017; 12
Z Wang (20081_CR27) 2019; 78
20081_CR40
K Bayoudh (20081_CR21) 2022; 38
J Al Shaqsi (20081_CR5) 2023; 43
J Prakash (20081_CR15) 2023; 30
M Gao (20081_CR22) 2023; 56
C Scarpazza (20081_CR18) 2016; 5
JSB Mitchell (20081_CR39) 1995
L Tanzi (20081_CR3) 2022; 53
Y-P Xiao (20081_CR37) 2020; 6
Z Wang (20081_CR14) 2021; 43
Z Wang (20081_CR25) 2021; 171
M-H Guo (20081_CR2) 2022; 8
X Feng (20081_CR10) 2019; 69
20081_CR33
L Jiao (20081_CR1) 2019; 7
P Tschandl (20081_CR28) 2018; 5
20081_CR36
S Subudhi (20081_CR16) 2021; 14
Y Xu (20081_CR17) 2021; 126
S Aburass (20081_CR32) 2023
20081_CR34
20081_CR13
20081_CR35
N Le (20081_CR20) 2022; 55
R Wang (20081_CR7) 2022; 16
S Aburass (20081_CR8) 2022; 18
A Voulodimos (20081_CR9) 2018; 2018
S Klocek (20081_CR12) 2019
M Delfour (20081_CR38) 2010
A Beghdadi (20081_CR6) 2013; 28
Z Wang (20081_CR26) 2022; 31
F Garcia-Lamont (20081_CR30) 2018; 292
F Yang (20081_CR23) 2024; 28
H Zhu (20081_CR31) 2021; 10
20081_CR4
20081_CR24
S AbuRass (20081_CR29) 2020; 11
References_xml – volume: 16
  start-page: 1243
  issue: 5
  year: 2022
  ident: 20081_CR7
  publication-title: IET Image Process
  doi: 10.1049/ipr2.12419
– volume: 5
  start-page: 19
  year: 2016
  ident: 20081_CR18
  publication-title: Neurosci Neuroecon
  doi: 10.2147/NAN.S66439
– volume: 28
  start-page: 858
  issue: 2
  year: 2024
  ident: 20081_CR23
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2023.3336726
– volume: 2018
  start-page: 1
  year: 2018
  ident: 20081_CR9
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2018/7068349
– volume-title: Shapes and geometries: metrics, analysis, differential Calculus, and optimization
  year: 2010
  ident: 20081_CR38
– volume: 28
  start-page: 811
  issue: 8
  year: 2013
  ident: 20081_CR6
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2013.06.003
– volume: 55
  start-page: 2733
  issue: 4
  year: 2022
  ident: 20081_CR20
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-10061-9
– volume: 56
  start-page: 457
  issue: 1
  year: 2023
  ident: 20081_CR22
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10176-7
– volume: 69
  start-page: 309
  year: 2019
  ident: 20081_CR10
  publication-title: Integration
  doi: 10.1016/j.vlsi.2019.07.005
– volume: 81
  start-page: 41361
  issue: 29
  year: 2022
  ident: 20081_CR19
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-09634-7
– volume: 6
  start-page: 113
  issue: 2
  year: 2020
  ident: 20081_CR37
  publication-title: Comput Vis Media (Beijing)
  doi: 10.1007/s41095-020-0174-8
– start-page: 496
  volume-title: Hypernetwork functional image representation
  year: 2019
  ident: 20081_CR12
  doi: 10.1007/978-3-030-30493-5_48
– volume: 11
  start-page: 130
  issue: 12
  year: 2020
  ident: 20081_CR29
  publication-title: Int J Adv Comput Sci Appl
  doi: 10.14569/IJACSA.2020.0111216
– volume: 126
  start-page: 103675
  year: 2021
  ident: 20081_CR17
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2021.103675
– volume: 7
  start-page: 172231
  year: 2019
  ident: 20081_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2956508
– volume: 43
  start-page: 3365
  issue: 10
  year: 2021
  ident: 20081_CR14
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.2982166
– volume: 18
  start-page: 757
  issue: 8
  year: 2022
  ident: 20081_CR8
  publication-title: J Comput Sci
  doi: 10.3844/jcssp.2022.757.769
– start-page: 425
  volume-title: Chapter 7 a survey of computational geometry
  year: 1995
  ident: 20081_CR39
  doi: 10.1016/S0927-0507(05)80124-0
– volume: 30
  start-page: 3749
  issue: 6
  year: 2023
  ident: 20081_CR15
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-023-09919-8
– volume: 14
  start-page: 5015
  year: 2021
  ident: 20081_CR16
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2021.3076005
– ident: 20081_CR24
  doi: 10.1109/TPAMI.2021.3053577
– ident: 20081_CR35
– ident: 20081_CR4
  doi: 10.1007/978-94-010-0510-4_8
– volume: 10
  start-page: 1187
  issue: 10
  year: 2021
  ident: 20081_CR31
  publication-title: Electronics (Basel)
  doi: 10.3390/electronics10101187
– ident: 20081_CR33
– volume: 78
  start-page: 34483
  issue: 24
  year: 2019
  ident: 20081_CR27
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08070-6
– start-page: 56
  volume-title: Performance evaluation of Swin vision transformer model using gradient accumulation optimization technique
  year: 2023
  ident: 20081_CR32
  doi: 10.1007/978-3-031-47448-4_5
– volume: 53
  start-page: 2625
  issue: 7
  year: 2022
  ident: 20081_CR3
  publication-title: Injury
  doi: 10.1016/j.injury.2022.04.013
– volume: 38
  start-page: 2939
  issue: 8
  year: 2022
  ident: 20081_CR21
  publication-title: Vis Comput
  doi: 10.1007/s00371-021-02166-7
– volume: 43
  start-page: 101393
  year: 2023
  ident: 20081_CR5
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2023.101393
– volume: 5
  start-page: 180161
  issue: 1
  year: 2018
  ident: 20081_CR28
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.161
– volume: 8
  start-page: 331
  issue: 3
  year: 2022
  ident: 20081_CR2
  publication-title: Comput Vis Media (Beijing)
  doi: 10.1007/s41095-022-0271-y
– volume: 292
  start-page: 1
  year: 2018
  ident: 20081_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.091
– ident: 20081_CR40
  doi: 10.1090/conm/453
– ident: 20081_CR13
– ident: 20081_CR36
– volume: 12
  start-page: 253
  issue: 4
  year: 2017
  ident: 20081_CR11
  publication-title: Int J Soft Comput
– volume: 31
  start-page: 4527
  year: 2022
  ident: 20081_CR26
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3184250
– ident: 20081_CR34
– volume: 171
  start-page: 114574
  year: 2021
  ident: 20081_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114574
SSID ssj0016524
Score 2.3988347
Snippet This paper introduces the innovative concept of the Cubixel—a three-dimensional representation of the traditional pixel—alongside the derived metric, Volume of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26215
SubjectTerms Artificial intelligence
Comparative studies
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Deep learning
Edge detection
Image processing
Image segmentation
Machine learning
Medical imaging
Morphology
Multimedia Information Systems
Pixels
Representations
Special Purpose and Application-Based Systems
Track 6: Computer Vision for Multimedia Applications
Urban environments
Volumetric analysis
Title Cubixel: a novel paradigm in image processing using three-dimensional pixel representation
URI https://link.springer.com/article/10.1007/s11042-024-20081-6
https://www.proquest.com/docview/3231045481
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDN11odrOPeJNi8SBF8EHxsuRVWWi3pS_8-Wb20VVRQS_LwiZhyWQyX5h83wCchxgkQ6ns7ifwgMKlEwmPO1QHWgvfV0ZnROG7sNeL-n1-X5DCZuVt9zIlme3UFdmNIpXExhS0bESdYB02fFSbwTP6w_MqdxD4LivoMd_3-xyCKlz5JRWaRZhu_X__tgs7BaIk1_kS2IM1kzagXlZrIIXzNmD7g_TgPrx0FjJ5M8MrIkg6XpohQRFwnbyOSJKSZGS3GTLJSQS2PVlkz7k1vHE0FgTIxTzIBMcgmTJmyWJKD-Cpe_PYuXWKOguOcj0WOErJtm5LyuQgYhyZr9y-Wmc1oUWPOlLGE21fsIgJLbhUQhiqfEmtx2qLaKh3CLV0nJojIMob-BrJvEoaJi34VIa7OkLQRAeCh02g5dTHqhAhx1oYw7iST8apjO1UZhUyaRw04WLVZ5JLcPzaulVaNC7ccRZ7iGKZPZzRJlyWFqw-_zza8d-an8CWi_WBs-u8LajNpwtzCptqOU9m07Nsmb4D-XXi9A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQHp1NxOjUPvmlhadNLfJPhmDiH4JThS8ltUti6sRv-fJNeVhUV9KUUmoSSk5Nzwsn3fQDnvgmSPhd692PmgEK5FTCHWlh6UjLXFUomQOG23-kEvR59yEBh0_y2e16STHbqAuyGDZRExxRj2QBb3iqsESOzY87oj8_L2oHn2iSDx3zf73MIKvLKL6XQJMI0y__7tx3YzjJKdJ0ugV1YUXEFyrlaA8qctwJbH6gH9-ClMefRmxpcIYbi0UINkCEBl9HrEEUxioZ6m0HjFESg26N58pxpwytLGkGAlMwDjc0YKGHGzFFM8T48NW-6jZaV6SxYwnaIZwnB67LOMeH9gFCDfKX6VTur8nX2KAOhHFZ3GQkIk4xywZjCwuVYe6zUGQ12DqAUj2J1CEg4fVcaMK_ginCdfApFbRmYpAn3GfWrgPOpD0VGQm60MAZhQZ9spjLUU5koZOLQq8LFss84peD4tXUtt2iYueM0dEwWS_ThDFfhMrdg8fnn0Y7-1vwMNlrd-3bYvu3cHcOmbbSCk6u9NSjNJnN1AutiMYumk9Nkyb4DpUnl2A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHp1NxOjUPvmlxWdObbzIdimMMbwxfSm6TwtaVrRv-fJNe1ikqiC-l0CSUnJycL-R83wE4dXSQdBhXux_VBxSPGS41PQMLWwhqWVyKhCjcdjodt9fzugss_iTbPb-STDkNWqUpjC8i0b8oiG9Y00pUfNFWdrFhL8MKUScZndT18Pgyv0ewrQbJqDLf9_scjgqM-eVaNIk2rfL__3MLNjOkia7SpbENSzKsQDmv4oAyp67AxoIk4Q68NqcseJeDS0RROJrJAdLi4CJ4G6IgRMFQbT8oSskFqj2aJs9YLQhpCF0oIBX5QJEeAyWKmTm7KdyF59bNU_PWyOovGLxhEtvgnNVFnWHC-i7xNCPWU6_KiaWjUKVwuTRp3aLEJVRQj3FKJeYWw8qThUI62NyDUjgK5T4gbvYtoUm-nEnCFCjl0msIV4Mp3KeeUwWcm8HnmTi5rpEx8AtZZT2VvprKpHIm9u0qnM37RKk0x6-ta7l1_cxNJ76p0S1RhzZchfPcmsXnn0c7-FvzE1jrXrf89l3n_hDWG7qEcJLxW4NSPJ7KI1jlsziYjI-T1fsBnLDuvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cubixel%3A+a+novel+paradigm+in+image+processing+using+three-dimensional+pixel+representation&rft.jtitle=Multimedia+tools+and+applications&rft.au=Aburass%2C+Sanad&rft.date=2025-07-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=84&rft.issue=23&rft.spage=26215&rft.epage=26265&rft_id=info:doi/10.1007%2Fs11042-024-20081-6&rft.externalDocID=10_1007_s11042_024_20081_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon