Comparative Analysis of Federated Association Rules in a Simulated Environment for Medical Applications

This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of biomedical and health informatics Ročník PP; s. 1 - 11
Hlavní autoři: Panos-Basterra, Juan, Rivas, Jose M., Morcillo-Jimenez, Roberto, Fernandez-Basso, Carlos, Ruiz, M. Dolores, Martin-Bautista, Maria J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 28.04.2025
Témata:
ISSN:2168-2194, 2168-2208, 2168-2208
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices, prioritizing data privacy and algorithm efficiency. This emerging paradigm in machine learning and data mining aims to preserve privacy in edge networks. In this study, the privacy of subject data is ensured as the algorithms operate and collaborate between nodes, sharing only the results of their computations while keeping raw data encapsulated and encrypted. The work evaluates key aspects such as execution time and encryption/decryption efficiency in edge networks. This analysis is motivated by the increasing demand for data analysis in the healthcare sector, where maintaining data privacy is critical due to the proliferation of data privacy regulations.
AbstractList This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices, prioritizing data privacy and algorithm efficiency. This emerging paradigm in machine learning and data mining aims to preserve privacy in edge networks. In this study, the privacy of subject data is ensured as the algorithms operate and collaborate between nodes, sharing only the results of their computations while keeping raw data encapsulated and encrypted. The work evaluates key aspects such as execution time and encryption/decryption efficiency in edge networks. This analysis is motivated by the increasing demand for data analysis in the healthcare sector, where maintaining data privacy is critical due to the proliferation of data privacy regulations.
This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices, prioritizing data privacy and algorithm efficiency. This emerging paradigm in machine learning and data mining aims to preserve privacy in edge networks. In this study, the privacy of subject data is ensured as the algorithms operate and collaborate between nodes, sharing only the results of their computations while keeping raw data encapsulated and encrypted. The work evaluates key aspects such as execution time and encryption/decryption efficiency in edge networks. This analysis is motivated by the increasing demand for data analysis in the healthcare sector, where maintaining data privacy is critical due to the proliferation of data privacy regulations.This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices, prioritizing data privacy and algorithm efficiency. This emerging paradigm in machine learning and data mining aims to preserve privacy in edge networks. In this study, the privacy of subject data is ensured as the algorithms operate and collaborate between nodes, sharing only the results of their computations while keeping raw data encapsulated and encrypted. The work evaluates key aspects such as execution time and encryption/decryption efficiency in edge networks. This analysis is motivated by the increasing demand for data analysis in the healthcare sector, where maintaining data privacy is critical due to the proliferation of data privacy regulations.
Author Morcillo-Jimenez, Roberto
Fernandez-Basso, Carlos
Ruiz, M. Dolores
Martin-Bautista, Maria J.
Panos-Basterra, Juan
Rivas, Jose M.
Author_xml – sequence: 1
  givenname: Juan
  surname: Panos-Basterra
  fullname: Panos-Basterra, Juan
  email: panosjuan1@gmail.com
  organization: Department of Computer Science and A.I, University of Granada, Spain
– sequence: 2
  givenname: Jose M.
  surname: Rivas
  fullname: Rivas, Jose M.
  email: jose.rivas@ugr.es
  organization: Department of Computer Science and A.I, University of Granada, Spain
– sequence: 3
  givenname: Roberto
  surname: Morcillo-Jimenez
  fullname: Morcillo-Jimenez, Roberto
  email: robermorji@ugr.es
  organization: Department of Computer Science and A.I, University of Granada, Spain
– sequence: 4
  givenname: Carlos
  surname: Fernandez-Basso
  fullname: Fernandez-Basso, Carlos
  email: cjferba@ugr.es
  organization: IT department of University of Granada and Causal Cognition Lab University College London
– sequence: 5
  givenname: M. Dolores
  orcidid: 0000-0003-1077-3173
  surname: Ruiz
  fullname: Ruiz, M. Dolores
  email: mdruiz@decsai.ugr.es
  organization: Department of Computer Science and A.I, University of Granada, Spain
– sequence: 6
  givenname: Maria J.
  surname: Martin-Bautista
  fullname: Martin-Bautista, Maria J.
  email: mbautis@decsai.ugr.es
  organization: Department of Computer Science and A.I, University of Granada, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40293898$$D View this record in MEDLINE/PubMed
BookMark eNpNkUtrGzEUhUVIyav5AYEQtOzGrt6Wlq6JmwSXQtKsB410VVRmpOnIE8i_r1w7IXdzLofv3MU95-g45QQIXVEyp5SYrw_f7u7njDA551IJKdQROmNU6RljRB-_7dSIU3RZyh9SR1fLqBN0KggzXBt9hn6vcj_Y0W7jC-Blst1riQXngNfgodrg8bKU7GIlcsKPUwcFx4Qtfor91P0HbtNLHHPqIW1xyCP-AT462-HlMHR12QXLZ_Qp2K7A5UEv0PP69tfqbrb5-f1-tdzMHONCzVyrlVHtAggJQTuigheWecOcqyJbSTwPNHDqYBGEJTII3XqvOW1lq03LL9CX_d1hzH8nKNumj8VB19kEeSoNp0YpIpSWFb05oFPbg2-GMfZ2fG3enlMBugfcmEsZIbwjlDS7DppdB82ug-bQQc1c7zMRAD7wZrHQTPJ_SaKDFQ
CODEN IJBHA9
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/JBHI.2025.3564546
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 11
ExternalDocumentID 40293898
10_1109_JBHI_2025_3564546
10977825
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
NPM
7X8
ID FETCH-LOGICAL-c2346-cb8696b7e00ff8c06fd4a2d92cca2d5b50d3f1f31ce7f4a05f48bdd831b5b89b3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Oct 03 00:14:42 EDT 2025
Wed Apr 30 01:44:47 EDT 2025
Sat Nov 29 07:57:48 EST 2025
Wed Aug 27 02:03:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2346-cb8696b7e00ff8c06fd4a2d92cca2d5b50d3f1f31ce7f4a05f48bdd831b5b89b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1077-3173
OpenAccessLink https://ieeexplore.ieee.org/document/10977825
PMID 40293898
PQID 3196604685
PQPubID 23479
PageCount 11
ParticipantIDs pubmed_primary_40293898
proquest_miscellaneous_3196604685
ieee_primary_10977825
crossref_primary_10_1109_JBHI_2025_3564546
PublicationCentury 2000
PublicationDate 2025-Apr-28
PublicationDateYYYYMMDD 2025-04-28
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-Apr-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000816896
Score 2.441271
Snippet This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Association rule learning
Association rules
Bioinformatics
Data privacy
Federated learning
Federated Mining
healthcare data
Homomorphic encryption
Itemsets
Machine learning algorithms
Medical services
Privacy-preserving
Proposals
Protocols
Shamir secret sharing
Vectors
Title Comparative Analysis of Federated Association Rules in a Simulated Environment for Medical Applications
URI https://ieeexplore.ieee.org/document/10977825
https://www.ncbi.nlm.nih.gov/pubmed/40293898
https://www.proquest.com/docview/3196604685
Volume PP
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUoQogLa4GyyUickNK6TuLlCBUVIIEQi9Rb5BVVghR14fsZO2nphQOXyAc7ifzszIxfZh5CF3mIMRwL6mUWLtzTRHLJEgWmUiqhDTEkik3wx0cxGMinOlk95sI45-LPZ64dmpHLtyMzC0dlncCWgkXLG6jBOauStRYHKlFBIupxUWgksBOzmsWEYZ3769s7iAZp3k5D_ZTg7y7ZoSis8rePGW1Nf-ufb7mNNmunEl9Vq2AHrbhyF60_1LT5Hnrv_db4xvMyJHjkcT-UkgBv0-IlmPDz7MNN8LDECr8MP4O-F3S4-c2Iw-Do4prhwVdLDHgTvfVvXnu3Sa2wkBiaZiwxWjDJNHeEeC8MYd5milpJAVdqc50Tm_quT7vGcZ8pkvtMaGtF2tW5FlKn-2i1HJXuEGGSccWc8innLjOGC5UxRaTrcs2E8rSFLufzXXxVhTSKGIAQWQRwigBOUYPTQs0wr0sdqyltofM5RAVsg8BtqNKNZpMifEkYxPoC-hxU2C1GQ4gswS8TR3_c9RhthIcHjoiKE7Q6Hc_cKVoz39PhZHwGa20gzuJa-wHdldCY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BQJQLrxYITyP1VGkTx-v141iiRgmkEaJFym3lZxWJ7qImy-_H9m7avfTAZeWDvbL82Tsz_nbmAzguYozhWFQvs-HBPckklyxTwVRKJbTBBiexCb5aifVa_uiS1VMujHMu_XzmRrGZuHxbmyZelY0jWxosWvEQHhWUEtyma91eqSQNiaTIRUIjC2eRdjxmGDj-9nW-CPEgKUZ5rKASPd6eJUrSKvd7mcnazJ7_5zxfwLPOrUSn7T54CQ9c9QqenHfE-SFcTe-qfKN9IRJUezSLxSSCv2lRDyj0s_nttmhTIYUuNtdR4St0OLvLiUPB1UUdx4NOexz4EfyanV1O51mnsZAZklOWGS2YZJo7jL0XBjNvqSJWkoAssYUusM39xOcT47inCheeCm2tyCe60ELq_DUMqrpybwFhyhVzyuecO2oMF4oyhaWbcM2E8mQIJ_v1Lv-0pTTKFIJgWUZwyghO2YEzhKO4rr2O7ZIO4cseojIchMhuqMrVzbaM3xIWon0R-rxpsbsdHYJkGTwz8e6et36Gg_nl-bJcLlbf38PTOJHIGBHxAQa7m8Z9hMfm726zvfmUdtw_8lLS9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Federated+Association+Rules+in+a+Simulated+Environment+for+Medical+Applications&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Panos-Basterra%2C+Juan&rft.au=Rivas%2C+Jose+M.&rft.au=Morcillo-Jimenez%2C+Roberto&rft.au=Fernandez-Basso%2C+Carlos&rft.date=2025-04-28&rft.pub=IEEE&rft.issn=2168-2194&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FJBHI.2025.3564546&rft.externalDocID=10977825
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon