Comparative Analysis of Federated Association Rules in a Simulated Environment for Medical Applications
This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices...
Uloženo v:
| Vydáno v: | IEEE journal of biomedical and health informatics Ročník PP; s. 1 - 11 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
28.04.2025
|
| Témata: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices, prioritizing data privacy and algorithm efficiency. This emerging paradigm in machine learning and data mining aims to preserve privacy in edge networks. In this study, the privacy of subject data is ensured as the algorithms operate and collaborate between nodes, sharing only the results of their computations while keeping raw data encapsulated and encrypted. The work evaluates key aspects such as execution time and encryption/decryption efficiency in edge networks. This analysis is motivated by the increasing demand for data analysis in the healthcare sector, where maintaining data privacy is critical due to the proliferation of data privacy regulations. |
|---|---|
| AbstractList | This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices, prioritizing data privacy and algorithm efficiency. This emerging paradigm in machine learning and data mining aims to preserve privacy in edge networks. In this study, the privacy of subject data is ensured as the algorithms operate and collaborate between nodes, sharing only the results of their computations while keeping raw data encapsulated and encrypted. The work evaluates key aspects such as execution time and encryption/decryption efficiency in edge networks. This analysis is motivated by the increasing demand for data analysis in the healthcare sector, where maintaining data privacy is critical due to the proliferation of data privacy regulations. This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices, prioritizing data privacy and algorithm efficiency. This emerging paradigm in machine learning and data mining aims to preserve privacy in edge networks. In this study, the privacy of subject data is ensured as the algorithms operate and collaborate between nodes, sharing only the results of their computations while keeping raw data encapsulated and encrypted. The work evaluates key aspects such as execution time and encryption/decryption efficiency in edge networks. This analysis is motivated by the increasing demand for data analysis in the healthcare sector, where maintaining data privacy is critical due to the proliferation of data privacy regulations.This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices, prioritizing data privacy and algorithm efficiency. This emerging paradigm in machine learning and data mining aims to preserve privacy in edge networks. In this study, the privacy of subject data is ensured as the algorithms operate and collaborate between nodes, sharing only the results of their computations while keeping raw data encapsulated and encrypted. The work evaluates key aspects such as execution time and encryption/decryption efficiency in edge networks. This analysis is motivated by the increasing demand for data analysis in the healthcare sector, where maintaining data privacy is critical due to the proliferation of data privacy regulations. |
| Author | Morcillo-Jimenez, Roberto Fernandez-Basso, Carlos Ruiz, M. Dolores Martin-Bautista, Maria J. Panos-Basterra, Juan Rivas, Jose M. |
| Author_xml | – sequence: 1 givenname: Juan surname: Panos-Basterra fullname: Panos-Basterra, Juan email: panosjuan1@gmail.com organization: Department of Computer Science and A.I, University of Granada, Spain – sequence: 2 givenname: Jose M. surname: Rivas fullname: Rivas, Jose M. email: jose.rivas@ugr.es organization: Department of Computer Science and A.I, University of Granada, Spain – sequence: 3 givenname: Roberto surname: Morcillo-Jimenez fullname: Morcillo-Jimenez, Roberto email: robermorji@ugr.es organization: Department of Computer Science and A.I, University of Granada, Spain – sequence: 4 givenname: Carlos surname: Fernandez-Basso fullname: Fernandez-Basso, Carlos email: cjferba@ugr.es organization: IT department of University of Granada and Causal Cognition Lab University College London – sequence: 5 givenname: M. Dolores orcidid: 0000-0003-1077-3173 surname: Ruiz fullname: Ruiz, M. Dolores email: mdruiz@decsai.ugr.es organization: Department of Computer Science and A.I, University of Granada, Spain – sequence: 6 givenname: Maria J. surname: Martin-Bautista fullname: Martin-Bautista, Maria J. email: mbautis@decsai.ugr.es organization: Department of Computer Science and A.I, University of Granada, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40293898$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkUtrGzEUhUVIyav5AYEQtOzGrt6Wlq6JmwSXQtKsB410VVRmpOnIE8i_r1w7IXdzLofv3MU95-g45QQIXVEyp5SYrw_f7u7njDA551IJKdQROmNU6RljRB-_7dSIU3RZyh9SR1fLqBN0KggzXBt9hn6vcj_Y0W7jC-Blst1riQXngNfgodrg8bKU7GIlcsKPUwcFx4Qtfor91P0HbtNLHHPqIW1xyCP-AT462-HlMHR12QXLZ_Qp2K7A5UEv0PP69tfqbrb5-f1-tdzMHONCzVyrlVHtAggJQTuigheWecOcqyJbSTwPNHDqYBGEJTII3XqvOW1lq03LL9CX_d1hzH8nKNumj8VB19kEeSoNp0YpIpSWFb05oFPbg2-GMfZ2fG3enlMBugfcmEsZIbwjlDS7DppdB82ug-bQQc1c7zMRAD7wZrHQTPJ_SaKDFQ |
| CODEN | IJBHA9 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/JBHI.2025.3564546 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 11 |
| ExternalDocumentID | 40293898 10_1109_JBHI_2025_3564546 10977825 |
| Genre | orig-research Journal Article |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX AGSQL CITATION EJD NPM 7X8 |
| ID | FETCH-LOGICAL-c2346-cb8696b7e00ff8c06fd4a2d92cca2d5b50d3f1f31ce7f4a05f48bdd831b5b89b3 |
| IEDL.DBID | RIE |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Fri Oct 03 00:14:42 EDT 2025 Wed Apr 30 01:44:47 EDT 2025 Sat Nov 29 07:57:48 EST 2025 Wed Aug 27 02:03:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2346-cb8696b7e00ff8c06fd4a2d92cca2d5b50d3f1f31ce7f4a05f48bdd831b5b89b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1077-3173 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10977825 |
| PMID | 40293898 |
| PQID | 3196604685 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | pubmed_primary_40293898 proquest_miscellaneous_3196604685 ieee_primary_10977825 crossref_primary_10_1109_JBHI_2025_3564546 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Apr-28 |
| PublicationDateYYYYMMDD | 2025-04-28 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-Apr-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000816896 |
| Score | 2.441271 |
| Snippet | This article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Association rule learning Association rules Bioinformatics Data privacy Federated learning Federated Mining healthcare data Homomorphic encryption Itemsets Machine learning algorithms Medical services Privacy-preserving Proposals Protocols Shamir secret sharing Vectors |
| Title | Comparative Analysis of Federated Association Rules in a Simulated Environment for Medical Applications |
| URI | https://ieeexplore.ieee.org/document/10977825 https://www.ncbi.nlm.nih.gov/pubmed/40293898 https://www.proquest.com/docview/3196604685 |
| Volume | PP |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUoQogLa4GyyUickNK6TuLlCBUVIIEQi9Rb5BVVghR14fsZO2nphQOXyAc7ifzszIxfZh5CF3mIMRwL6mUWLtzTRHLJEgWmUiqhDTEkik3wx0cxGMinOlk95sI45-LPZ64dmpHLtyMzC0dlncCWgkXLG6jBOauStRYHKlFBIupxUWgksBOzmsWEYZ3769s7iAZp3k5D_ZTg7y7ZoSis8rePGW1Nf-ufb7mNNmunEl9Vq2AHrbhyF60_1LT5Hnrv_db4xvMyJHjkcT-UkgBv0-IlmPDz7MNN8LDECr8MP4O-F3S4-c2Iw-Do4prhwVdLDHgTvfVvXnu3Sa2wkBiaZiwxWjDJNHeEeC8MYd5milpJAVdqc50Tm_quT7vGcZ8pkvtMaGtF2tW5FlKn-2i1HJXuEGGSccWc8innLjOGC5UxRaTrcs2E8rSFLufzXXxVhTSKGIAQWQRwigBOUYPTQs0wr0sdqyltofM5RAVsg8BtqNKNZpMifEkYxPoC-hxU2C1GQ4gswS8TR3_c9RhthIcHjoiKE7Q6Hc_cKVoz39PhZHwGa20gzuJa-wHdldCY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BQJQLrxYITyP1VGkTx-v141iiRgmkEaJFym3lZxWJ7qImy-_H9m7avfTAZeWDvbL82Tsz_nbmAzguYozhWFQvs-HBPckklyxTwVRKJbTBBiexCb5aifVa_uiS1VMujHMu_XzmRrGZuHxbmyZelY0jWxosWvEQHhWUEtyma91eqSQNiaTIRUIjC2eRdjxmGDj-9nW-CPEgKUZ5rKASPd6eJUrSKvd7mcnazJ7_5zxfwLPOrUSn7T54CQ9c9QqenHfE-SFcTe-qfKN9IRJUezSLxSSCv2lRDyj0s_nttmhTIYUuNtdR4St0OLvLiUPB1UUdx4NOexz4EfyanV1O51mnsZAZklOWGS2YZJo7jL0XBjNvqSJWkoAssYUusM39xOcT47inCheeCm2tyCe60ELq_DUMqrpybwFhyhVzyuecO2oMF4oyhaWbcM2E8mQIJ_v1Lv-0pTTKFIJgWUZwyghO2YEzhKO4rr2O7ZIO4cseojIchMhuqMrVzbaM3xIWon0R-rxpsbsdHYJkGTwz8e6et36Gg_nl-bJcLlbf38PTOJHIGBHxAQa7m8Z9hMfm726zvfmUdtw_8lLS9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Federated+Association+Rules+in+a+Simulated+Environment+for+Medical+Applications&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Panos-Basterra%2C+Juan&rft.au=Rivas%2C+Jose+M.&rft.au=Morcillo-Jimenez%2C+Roberto&rft.au=Fernandez-Basso%2C+Carlos&rft.date=2025-04-28&rft.pub=IEEE&rft.issn=2168-2194&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FJBHI.2025.3564546&rft.externalDocID=10977825 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |