Effect of Metallic Nanocoatings Deposited on Silicon Oxide on Wetting by Filler Melts II. Effect from the Annealing of Nanocoatings Deposited on SiO2 on their Structure and Interaction with the Oxide

The sessile drop method using capillary melt cleaning was employed in the experiment to study the effect of metallic nanocoatings (single Ti, Nb, and Mo coatings and binary Ti–Cu, Nb–Cu, and Mo–Cu coatings with a copper layer of constant thickness) on the wetting of silicon oxide by Pb–15 wt.% In me...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Powder metallurgy and metal ceramics Ročník 59; číslo 3-4; s. 134 - 140
Hlavní autori: Krasovskyy, V.P., Kostyuk, B.D., Gab, I.I., Krasovskaya, N.A., Stetsyuk, T.V.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2020
Springer Nature B.V
Predmet:
ISSN:1068-1302, 1573-9066
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The sessile drop method using capillary melt cleaning was employed in the experiment to study the effect of metallic nanocoatings (single Ti, Nb, and Mo coatings and binary Ti–Cu, Nb–Cu, and Mo–Cu coatings with a copper layer of constant thickness) on the wetting of silicon oxide by Pb–15 wt.% In melt in 1 ∙ 10 –3 Pa vacuum at 500°C after their annealing at 900°C. The metallic coatings were applied by electron beam evaporation in vacuum. The binary coatings were produced by sequential deposition of layers. The dependences of contact angle on coating thickness show that the ‘threshold’ thickness is determined by the annealing temperature of the coating or, in other words, its structure. The threshold coating thickness for different metals depends on their chemical affinity to oxygen. When freshly applied and annealed single Mo, Nb, and Ti coatings are wetted, their threshold thickness increases from 70 to 80 nm for the titanium coating, from 63 to 70 nm for the niobium coating, and from 50 to 60 nm for the molybdenum coating. The structure of Cu, Ni, Mo, Cr, Nb, and Ti coatings annealed at 600, 900, and 1200°C was studied. The initial (freshly deposited) metallic coatings showed high integrity. The coatings became dispersed after annealing and their integrity decreased with increasing temperature. The dispersed metallic coatings formed ‘islands’ of various shapes, round shape being predominant, depending on the chemical affinity of the coating metal to oxygen. The so-called ‘solid’ wetting was observed. The shape of the islands is determined by equilibrium between the metal–substrate attraction forces (interaction, adhesion) and the very strong surface tension of the metal (at such a small coating thickness). To use metallic coatings for brazing quartz with aluminum alloys, coatings of adhesive metals (Mo, Cr, Nb, Ti) should be annealed at temperatures of 900–1000°C with a holding time of 10 min. The coating thickness should be within the threshold range.
AbstractList The sessile drop method using capillary melt cleaning was employed in the experiment to study the effect of metallic nanocoatings (single Ti, Nb, and Mo coatings and binary Ti–Cu, Nb–Cu, and Mo–Cu coatings with a copper layer of constant thickness) on the wetting of silicon oxide by Pb–15 wt.% In melt in 1 ∙ 10 –3 Pa vacuum at 500°C after their annealing at 900°C. The metallic coatings were applied by electron beam evaporation in vacuum. The binary coatings were produced by sequential deposition of layers. The dependences of contact angle on coating thickness show that the ‘threshold’ thickness is determined by the annealing temperature of the coating or, in other words, its structure. The threshold coating thickness for different metals depends on their chemical affinity to oxygen. When freshly applied and annealed single Mo, Nb, and Ti coatings are wetted, their threshold thickness increases from 70 to 80 nm for the titanium coating, from 63 to 70 nm for the niobium coating, and from 50 to 60 nm for the molybdenum coating. The structure of Cu, Ni, Mo, Cr, Nb, and Ti coatings annealed at 600, 900, and 1200°C was studied. The initial (freshly deposited) metallic coatings showed high integrity. The coatings became dispersed after annealing and their integrity decreased with increasing temperature. The dispersed metallic coatings formed ‘islands’ of various shapes, round shape being predominant, depending on the chemical affinity of the coating metal to oxygen. The so-called ‘solid’ wetting was observed. The shape of the islands is determined by equilibrium between the metal–substrate attraction forces (interaction, adhesion) and the very strong surface tension of the metal (at such a small coating thickness). To use metallic coatings for brazing quartz with aluminum alloys, coatings of adhesive metals (Mo, Cr, Nb, Ti) should be annealed at temperatures of 900–1000°C with a holding time of 10 min. The coating thickness should be within the threshold range.
The sessile drop method using capillary melt cleaning was employed in the experiment to study the effect of metallic nanocoatings (single Ti, Nb, and Mo coatings and binary Ti–Cu, Nb–Cu, and Mo–Cu coatings with a copper layer of constant thickness) on the wetting of silicon oxide by Pb–15 wt.% In melt in 1 ∙ 10–3 Pa vacuum at 500°C after their annealing at 900°C. The metallic coatings were applied by electron beam evaporation in vacuum. The binary coatings were produced by sequential deposition of layers. The dependences of contact angle on coating thickness show that the ‘threshold’ thickness is determined by the annealing temperature of the coating or, in other words, its structure. The threshold coating thickness for different metals depends on their chemical affinity to oxygen. When freshly applied and annealed single Mo, Nb, and Ti coatings are wetted, their threshold thickness increases from 70 to 80 nm for the titanium coating, from 63 to 70 nm for the niobium coating, and from 50 to 60 nm for the molybdenum coating. The structure of Cu, Ni, Mo, Cr, Nb, and Ti coatings annealed at 600, 900, and 1200°C was studied. The initial (freshly deposited) metallic coatings showed high integrity. The coatings became dispersed after annealing and their integrity decreased with increasing temperature. The dispersed metallic coatings formed ‘islands’ of various shapes, round shape being predominant, depending on the chemical affinity of the coating metal to oxygen. The so-called ‘solid’ wetting was observed. The shape of the islands is determined by equilibrium between the metal–substrate attraction forces (interaction, adhesion) and the very strong surface tension of the metal (at such a small coating thickness). To use metallic coatings for brazing quartz with aluminum alloys, coatings of adhesive metals (Mo, Cr, Nb, Ti) should be annealed at temperatures of 900–1000°C with a holding time of 10 min. The coating thickness should be within the threshold range.
Author Krasovskaya, N.A.
Krasovskyy, V.P.
Stetsyuk, T.V.
Kostyuk, B.D.
Gab, I.I.
Author_xml – sequence: 1
  givenname: V.P.
  surname: Krasovskyy
  fullname: Krasovskyy, V.P.
  email: vitalkras@ipms.kiev.ua
  organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine
– sequence: 2
  givenname: B.D.
  surname: Kostyuk
  fullname: Kostyuk, B.D.
  organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine
– sequence: 3
  givenname: I.I.
  surname: Gab
  fullname: Gab, I.I.
  organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine
– sequence: 4
  givenname: N.A.
  surname: Krasovskaya
  fullname: Krasovskaya, N.A.
  organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine
– sequence: 5
  givenname: T.V.
  surname: Stetsyuk
  fullname: Stetsyuk, T.V.
  organization: Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine
BookMark eNp9kc1OHDEQhK2ISPyEF-BkKecB2-OxZ4-IQLISyR5IlKPV42mD0WBvbK8IT5jXwrOLhJTDntpyf1XVUh2TgxADEnLG2TlnTF9kzjlTDROsYYxL1XQfyBHvdNssmFIH9c1U3_CWiUNynPNjhRiT_Ij8u3YObaHR0e9YYJq8pT8gRBuh-HCf6Rdcx-wLjjQGeufrvs7VXz_i_PEby4zR4YXe-GnCVF2mkulyeU7fnF2KT7Q8IL0MAWGa6Rq2L2Ml5lklPtG7kja2bBJSCCNdhoIJbPF1_-zLw9Z3e8wn8tHBlPH0bZ6QXzfXP6--Nberr8ury9vGilZ2zcAFRwSQKAaUEjh0LUjdj6JXC7tQTuhhhGG0Gjs39kr3IESnnWYV4bBoT8jnne86xT8bzMU8xk0KNdIIKYXiXHeiUv2OsinmnNAZ6wvMZ5cEfjKcmbk2s6vN1NrMtjbTVan4T7pO_gnSy35RuxPlCod7TO9X7VG9AmUgrqs
CitedBy_id crossref_primary_10_3103_S1063457623020053
crossref_primary_10_1016_j_surfcoat_2024_131219
Cites_doi 10.15407/mfint.40.10.1359
10.1149/1.2428700
10.1016/B978-0-12-571814-1.50011-7
10.1007/s11106-020-00135-8
10.1007/BF00793227
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s11106-020-00146-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
EISSN 1573-9066
EndPage 140
ExternalDocumentID 10_1007_s11106_020_00146_5
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
2.D
28-
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
XU3
YLTOR
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c2345-b121eeaa4e2be44a1a53a478d2869c96f27bdabdc7e5fd8678a2257f708d21a93
IEDL.DBID RSV
ISSN 1068-1302
IngestDate Thu Sep 25 00:52:23 EDT 2025
Sat Nov 29 03:56:47 EST 2025
Tue Nov 18 22:25:35 EST 2025
Fri Feb 21 02:35:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords silicon oxide
wetting
metal nanocoatings
annealing
coating dispersion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2345-b121eeaa4e2be44a1a53a478d2869c96f27bdabdc7e5fd8678a2257f708d21a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2442611752
PQPubID 326338
PageCount 7
ParticipantIDs proquest_journals_2442611752
crossref_citationtrail_10_1007_s11106_020_00146_5
crossref_primary_10_1007_s11106_020_00146_5
springer_journals_10_1007_s11106_020_00146_5
PublicationCentury 2000
PublicationDate 20200700
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 7
  year: 2020
  text: 20200700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Powder metallurgy and metal ceramics
PublicationTitleAbbrev Powder Metall Met Ceram
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Naidich, Gab, Stetsyuk, Kostyuk (CR4) 2018; 51
Naidich (CR8) 1981; 14
Shank (CR12) 1970
CR5
CR7
Naidich, Kostyuk, Kolesnichenko, Shaikevich (CR3) 1975
Naidich, Gab, Stetsyuk, Kostyuk (CR10) 2014; 3
Kolesnichenko, Kostyuk, Roshchin (CR6) 1985; 14
Naidich, Gab, Stetsyuk, Kostyuk (CR9) 2018; 40
Naidich, Chuvashov, Ishchuk, Krasovskyy (CR2) 1983; 22
Hansen, Anderko (CR11) 1958
Krasovskyy, Kostyuk, Gab, Krasovskaya, Stetsyuk (CR1) 2020; 59
GA Kolesnichenko (146_CR6) 1985; 14
YV Naidich (146_CR3) 1975
YV Naidich (146_CR4) 2018; 51
F Shank (146_CR12) 1970
YV Naidich (146_CR8) 1981; 14
M Hansen (146_CR11) 1958
146_CR5
YV Naidich (146_CR10) 2014; 3
YV Naidich (146_CR9) 2018; 40
VP Krasovskyy (146_CR1) 2020; 59
146_CR7
YV Naidich (146_CR2) 1983; 22
References_xml – volume: 40
  start-page: 1359
  issue: 10
  year: 2018
  end-page: 1373
  ident: CR9
  article-title: Dispersion kinetics in vacuum annealing of molybdenum nanocoatings deposited on oxide materials
  publication-title: Metallofiz. Noveish. Tekhnol.
  doi: 10.15407/mfint.40.10.1359
– year: 1958
  ident: CR11
  doi: 10.1149/1.2428700
– volume: 14
  start-page: 353
  year: 1981
  end-page: 484
  ident: CR8
  article-title: The wettability of solids by liquid metals
  publication-title: Prog. Surf. Membr. Sci.
  doi: 10.1016/B978-0-12-571814-1.50011-7
– volume: 59
  start-page: 29
  issue: 1–2
  year: 2020
  end-page: 34
  ident: CR1
  article-title: Effect of metallic nanocoatings deposited on silicon oxide on wetting by filler melts. I. Wetting of Ti, Nb, Cr, V, and Mo nanocoatings deposited on SiO with filler melts
  publication-title: Powder Metall. Met. Ceram.
  doi: 10.1007/s11106-020-00135-8
– ident: CR5
– ident: CR7
– year: 1970
  ident: CR12
– volume: 22
  start-page: 481
  issue: 6
  year: 1983
  end-page: 483
  ident: CR2
  article-title: Wetting of some nonmetallic materials by aluminum
  publication-title: Powder Metall. Met. Ceram.
  doi: 10.1007/BF00793227
– volume: 51
  start-page: 54
  year: 2018
  end-page: 61
  ident: CR4
  article-title: Dispersion kinetics for chromium nanofilms deposited onto oxide materials in vacuum annealing
  publication-title: Adhez. Raspl. Paika Mater., Issue
– volume: 14
  start-page: 55
  year: 1985
  end-page: 61
  ident: CR6
  article-title: Interaction of thin Cu, Ge, V, and V–Cu films with quartz and their structure in high-temperature annealing
  publication-title: Adhez. Raspl. Paika Mater., Issue
– start-page: 15
  year: 1975
  end-page: 27
  ident: CR3
  publication-title: “Wettability in the metallic melt–thin metallic coating–nonmetallic substrate system,” in: [in Russian]
– volume: 3
  start-page: 516
  year: 2014
  end-page: 522
  ident: CR10
  article-title: Dispersion kinetics in vacuum annealing of chromium and nickel nanocoatings deposited on oxide materials
  publication-title: Fiz. Khim. Tverd. Tela
– volume: 22
  start-page: 481
  issue: 6
  year: 1983
  ident: 146_CR2
  publication-title: Powder Metall. Met. Ceram.
  doi: 10.1007/BF00793227
– ident: 146_CR5
– volume: 3
  start-page: 516
  year: 2014
  ident: 146_CR10
  publication-title: Fiz. Khim. Tverd. Tela
– ident: 146_CR7
– volume: 40
  start-page: 1359
  issue: 10
  year: 2018
  ident: 146_CR9
  publication-title: Metallofiz. Noveish. Tekhnol.
  doi: 10.15407/mfint.40.10.1359
– volume-title: Constitution of Binary Alloys
  year: 1958
  ident: 146_CR11
  doi: 10.1149/1.2428700
– volume: 14
  start-page: 55
  year: 1985
  ident: 146_CR6
  publication-title: Adhez. Raspl. Paika Mater., Issue
– start-page: 15
  volume-title: “Wettability in the metallic melt–thin metallic coating–nonmetallic substrate system,” in: Physical Chemistry of Condensed Phases, Superhard Materials, and Their Interfaces [in Russian]
  year: 1975
  ident: 146_CR3
– volume: 59
  start-page: 29
  issue: 1–2
  year: 2020
  ident: 146_CR1
  publication-title: Powder Metall. Met. Ceram.
  doi: 10.1007/s11106-020-00135-8
– volume-title: Constitution of Binary Alloys
  year: 1970
  ident: 146_CR12
– volume: 14
  start-page: 353
  year: 1981
  ident: 146_CR8
  publication-title: Prog. Surf. Membr. Sci.
  doi: 10.1016/B978-0-12-571814-1.50011-7
– volume: 51
  start-page: 54
  year: 2018
  ident: 146_CR4
  publication-title: Adhez. Raspl. Paika Mater., Issue
SSID ssj0010041
Score 2.150392
Snippet The sessile drop method using capillary melt cleaning was employed in the experiment to study the effect of metallic nanocoatings (single Ti, Nb, and Mo...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Affinity
Aluminum base alloys
Annealing
Brazing alloys
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromium
Coatings
Composites
Contact angle
Copper
Dispersion
Electron beams
Glass
Integrity
Islands
Materials Science
Metallic Materials
Molybdenum
Nanostructured Materials
Natural Materials
Nickel
Niobium
Sessile drop method
Silicon dioxide
Silicon oxides
Substrates
Surface tension
Thickness
Titanium
Wetting
Title Effect of Metallic Nanocoatings Deposited on Silicon Oxide on Wetting by Filler Melts II. Effect from the Annealing of Nanocoatings Deposited on SiO2 on their Structure and Interaction with the Oxide
URI https://link.springer.com/article/10.1007/s11106-020-00146-5
https://www.proquest.com/docview/2442611752
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-9066
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010041
  issn: 1068-1302
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9UwDI_Y4AAH_k-8MZAP3KCoSdMmPU7AE5NgQzwYu1VJ6idVemqndZvGJ-RrYaftHiBtEjtVbVwnkhPbie1fhHilUhtCaUJSOOMTnXtMrNdFkpVeotMMzxJxZj-Z_X17dFR-GYvC-inbfQpJRk29LnYjS8UJs1wJTes7yTfEbTJ3lpfj18XhZeyAIaRijLOg_VHG-TvbV_P42xytfcx_wqLR2swf3GycD8X90buE3WE6PBK3sH0s7v2BOUhvh01_NtD0T8SvAb0YuiV8RvLDV00AUrhd6BznQ_fwHmNaF9bQtbBoqJ2eBxdNjfzhB8a0afA_YR6LConL6rSHvb23MHLm-hUgLxN2SaM7Ln7nzq7r40DxM0YwYBHhbc9OEFxbQzy-HCoxgA-QI984mKfi-_zDt3cfk_FuhySoTOeJl0oiOqdRedTaSZdnThtbK1uUoSyWyvja-ToYzJe1JZPqSPOYpUmJRLoy2xKbbdfiMwE2NailSZ3VWnvawUlf6oxrmEKKxsuZkJOIqzACn_P9G6tqDdnMIqtIZFUUWZXPxOvLf44H2I9rqXemmVONKqCvyG-i3Sl5Z2om3kwzZd18Nbft_yN_Lu6qONk4hXhHbJJc8IW4E85Pm_7kZVwavwHdhQe6
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9QwDI9gIAEP_B3ixgA_8AZFTZo27eMEnHbidkPcGHurktQnVTq1aN0QfEK-Fnba7gBpk-CpauM6kZzYTmz_IsRLFefeF8ZHmTUu0qnDKHc6i5LCSbSa4VkCzuzcLBb5yUnxcSgK68Zs9zEkGTT1ptiNLBUnzHIlNK3vKL0ubmiyWJzI92l5fBE7YAipEOPMaH-UcP7OzuU8_jRHGx_zr7BosDbTe_83zvvi7uBdwl4_HR6Ia9g8FHd-wxykt-O6O-9pukfiZ49eDO0KDpD88HXtgRRu61vL-dAdvMOQ1oUVtA0sa2qn5-H3ukL-8AVD2jS4HzANRYXEZX3WwWz2BgbOXL8C5GXCHml0y8Xv3NlVfRwqfoYIBiwDvO35KYJtKgjHl30lBvABcuAbBrMtPk_fH73dj4a7HSKvEp1GTiqJaK1G5VBrK22aWG3ySuVZ4YtspYyrrKu8wXRV5WRSLWkeszIxkUhbJI_FVtM2-ERAHhvU0sQ211o72sFJV-iEa5h8jMbJiZCjiEs_AJ_z_RvrcgPZzCIrSWRlEFmZTsSri3--9rAfV1LvjjOnHFRAV5LfRLtT8s7URLweZ8qm-XJuO_9G_kLc2j86mJfz2eLDU3FbhYnH6cS7YotkhM_ETf_trO5On4dl8gs_jwqe
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIASH8irqlhbmwA1CE8eJk2PVdsWKsq20UHqLbGciRVolVbOt4Bfyt5hxst2C1EqIU5TYGVsaP2Y8830W4p0MM-dy7YLUaBuoxGKQWZUGcW4jNIrpWTzP7JGeTrOzs_zkBorfZ7svQ5I9poFZmprF7nlZ7a6Ab7RrcfIso6JprgfJffFA8aVB7K_PTq_jCEwn5eOdKflKMefybN0u48-taWVv_hUi9TvP-On_9_mZWB-sTtjrh8lzcQ-bF-LJDS5Cejutu8u-TvdS_OpZjaGt4AuSfT6vHdBC3LrWcJ50Bwfo072whLaBWU3l9Dz-UZfIH76jT6cG-xPGHmxIUuaLDiaTjzBIZlwLkPUJe7TSGwbFc2N3tXEs-ekjGzDztLeXFwimKcEfa_YIDeCDZS_Xd2ZDfBsfft3_FAx3PgROxioJbCQjRGMUSotKmcgksVE6K2WW5i5PK6ltaWzpNCZVmdFWa2hF0pUOqUpk8viVWGvaBjcFZKFGFenQZEopS55dZHMVM7bJhahtNBLRUt2FGwjR-V6OebGicmaVFaSywqusSEbi_fU_5z0dyJ21t5ejqBiWhq4ge4q8VrLa5Eh8WI6aVfHt0rb-rfpb8ejkYFwcTaafX4vH0o87zjLeFmukItwRD93Vou4u3vgZ8xsY8hOC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Metallic+Nanocoatings+Deposited+on+Silicon+Oxide+on+Wetting+by+Filler+Melts+II.+Effect+from+the+Annealing+of+Nanocoatings+Deposited+on+SiO2+on+their+Structure+and+Interaction+with+the+Oxide&rft.jtitle=Powder+metallurgy+and+metal+ceramics&rft.au=Krasovskyy%2C+V.P.&rft.au=Kostyuk%2C+B.D.&rft.au=Gab%2C+I.I.&rft.au=Krasovskaya%2C+N.A.&rft.date=2020-07-01&rft.pub=Springer+US&rft.issn=1068-1302&rft.eissn=1573-9066&rft.volume=59&rft.issue=3-4&rft.spage=134&rft.epage=140&rft_id=info:doi/10.1007%2Fs11106-020-00146-5&rft.externalDocID=10_1007_s11106_020_00146_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-1302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-1302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-1302&client=summon