ST-LP: self-training and label propagation for semi-supervised classification

Due to the particularly high costs of manual data labeling, especially in the field of medical imaging, and the necessity for specialized knowledge, there is a growing interest in semi-supervised methods. In this paper, a novel framework of Self-Training with Label Propagation (ST-LP) is proposed fo...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications Vol. 83; no. 41; pp. 89335 - 89353
Main Authors: Lin, Chih-Wen, Chiang, Chen-Kuo, Wang, Yu-An, Yang, Yue-Lin, Li, Hao-Ting, Lin, Tzu-Chieh
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2024
Springer Nature B.V
Subjects:
ISSN:1573-7721, 1380-7501, 1573-7721
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the particularly high costs of manual data labeling, especially in the field of medical imaging, and the necessity for specialized knowledge, there is a growing interest in semi-supervised methods. In this paper, a novel framework of Self-Training with Label Propagation (ST-LP) is proposed for semi-supervised classification. It integrates self-training and label propagation to address the challenge of limited labeled data in classification tasks, a concern exacerbated by the especially expensive nature of data labeling in the medical domain. Our method involves leveraging two soft pseudo-labels generated from a pre-training fine-tuned model and label propagation scheme as inputs for a pseudo-label prediction module. Subsequently, confident predictions from this model are selected as pseudo-labeled data. The effectiveness of our approach is demonstrated through experiments conducted on diverse datasets, including the MNIST dataset and two medical classification datasets: ISIC2018 and MURA. Experimental results demonstrate that our method consistently achieved comparable or outstanding results when dealing with large amounts of unlabeled data.
AbstractList Due to the particularly high costs of manual data labeling, especially in the field of medical imaging, and the necessity for specialized knowledge, there is a growing interest in semi-supervised methods. In this paper, a novel framework of Self-Training with Label Propagation (ST-LP) is proposed for semi-supervised classification. It integrates self-training and label propagation to address the challenge of limited labeled data in classification tasks, a concern exacerbated by the especially expensive nature of data labeling in the medical domain. Our method involves leveraging two soft pseudo-labels generated from a pre-training fine-tuned model and label propagation scheme as inputs for a pseudo-label prediction module. Subsequently, confident predictions from this model are selected as pseudo-labeled data. The effectiveness of our approach is demonstrated through experiments conducted on diverse datasets, including the MNIST dataset and two medical classification datasets: ISIC2018 and MURA. Experimental results demonstrate that our method consistently achieved comparable or outstanding results when dealing with large amounts of unlabeled data.
Author Wang, Yu-An
Li, Hao-Ting
Lin, Chih-Wen
Lin, Tzu-Chieh
Yang, Yue-Lin
Chiang, Chen-Kuo
Author_xml – sequence: 1
  givenname: Chih-Wen
  surname: Lin
  fullname: Lin, Chih-Wen
  organization: Department of Medical Imaging, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Department of School of Medicine, Tzu Chi University
– sequence: 2
  givenname: Chen-Kuo
  orcidid: 0000-0001-5276-1109
  surname: Chiang
  fullname: Chiang, Chen-Kuo
  email: ckchiang@cs.ccu.edu.tw
  organization: Computer Science and Information Engineering, Advanced Institute of Manufacturing with High-tech Innovations and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University
– sequence: 3
  givenname: Yu-An
  surname: Wang
  fullname: Wang, Yu-An
  organization: Computer Science and Information Engineering, Advanced Institute of Manufacturing with High-tech Innovations and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University
– sequence: 4
  givenname: Yue-Lin
  surname: Yang
  fullname: Yang, Yue-Lin
  organization: Computer Science and Information Engineering, Advanced Institute of Manufacturing with High-tech Innovations and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University
– sequence: 5
  givenname: Hao-Ting
  surname: Li
  fullname: Li, Hao-Ting
  organization: Computer Science and Information Engineering, Advanced Institute of Manufacturing with High-tech Innovations and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University
– sequence: 6
  givenname: Tzu-Chieh
  surname: Lin
  fullname: Lin, Tzu-Chieh
  organization: Computer Science and Information Engineering, Advanced Institute of Manufacturing with High-tech Innovations and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University
BookMark eNp9kE1LAzEURYNUsFb_gKsB19G8fEym7qT4BRUF6zqkmaSkTDNjMhX896YdQXHR1cvinJf77ikahTZYhC6AXAEh8joBEE4xoRxTwjhgcYTGICTDUlIY_XmfoNOU1oRAKSgfo-e3BZ6_3hTJNg73Ufvgw6rQoS4avbRN0cW20yvd-zYUro2Z23ictp2Nnz7ZujCNTsk7b_bIGTp2ukn2_GdO0Pv93WL2iOcvD0-z2zk2lHGBYWoYA2cpp04K45jkmvNqN7SsK0OMIRwkr-p6umSiplNngbu65EAtc5RN0OWwN8f72NrUq3W7jSF_qRjwqsyrRJmpaqBMbFOK1inj-33O3aGNAqJ25amhPJXLU_vylMgq_ad20W90_DossUFKGQ4rG39THbC-AfmJgrw
CitedBy_id crossref_primary_10_1016_j_jmsy_2025_06_011
Cites_doi 10.1109/ICCV48922.2021.00873
10.1109/ICCC47050.2019.9064268
10.18653/v1/D19-1514
10.1016/j.ins.2018.12.057
10.1007/978-3-319-46493-0_39
10.1109/TMI.2020.2995518
10.1109/CVPR46437.2021.01071
10.3389/fcomp.2023.1114186
10.1109/CVPR.2016.90
10.1109/CVPR42600.2020.01070
10.1109/CVPR.2019.00521
10.1007/978-3-030-58555-6_15
10.1109/ISBI.2018.8363547
10.1109/TMI.2019.2903434
10.1007/978-3-319-66185-8_29
10.1109/CVPR.2018.00353
10.1109/CVPR46437.2021.00685
10.23919/ChiCC.2019.8866590
10.1109/CVPR42600.2020.01059
10.1109/MSP.2012.2211477
10.1007/978-3-030-58601-0_32
10.1109/CVPR.2017.243
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Dec 2024
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-024-20341-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 89353
ExternalDocumentID 10_1007_s11042_024_20341_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c2345-19c331fe242f75cf374a448374aa7d8c0cc041748dd9b35d29fe14fd6412e3f23
IEDL.DBID 7WY
ISSN 1573-7721
1380-7501
IngestDate Tue Dec 02 07:51:28 EST 2025
Tue Nov 18 21:53:50 EST 2025
Sat Nov 29 06:28:27 EST 2025
Fri Feb 21 02:36:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Self-training
Label propagation
Semi-supervised learning
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2345-19c331fe242f75cf374a448374aa7d8c0cc041748dd9b35d29fe14fd6412e3f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5276-1109
PQID 3148683756
PQPubID 54626
PageCount 19
ParticipantIDs proquest_journals_3148683756
crossref_citationtrail_10_1007_s11042_024_20341_5
crossref_primary_10_1007_s11042_024_20341_5
springer_journals_10_1007_s11042_024_20341_5
PublicationCentury 2000
PublicationDate 20241200
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 20341_CR19
20341_CR15
20341_CR16
Y Li (20341_CR20) 2019; 482
20341_CR17
20341_CR18
20341_CR8
20341_CR9
20341_CR4
20341_CR5
K Sohn (20341_CR6) 2020; 33
20341_CR2
20341_CR22
N Srivastava (20341_CR13) 2014; 15
20341_CR23
20341_CR24
20341_CR1
20341_CR25
B Zhang (20341_CR7) 2021; 34
20341_CR26
20341_CR27
20341_CR28
20341_CR29
L Deng (20341_CR3) 2012; 29
A Diaz-Pinto (20341_CR21) 2019; 38
20341_CR11
20341_CR33
20341_CR12
20341_CR34
20341_CR35
20341_CR14
20341_CR36
20341_CR30
20341_CR31
20341_CR10
20341_CR32
References_xml – ident: 20341_CR25
– volume: 33
  start-page: 596
  year: 2020
  ident: 20341_CR6
  publication-title: Adv Neural Inf Process Syst
– ident: 20341_CR9
  doi: 10.1109/ICCV48922.2021.00873
– ident: 20341_CR33
  doi: 10.1109/ICCC47050.2019.9064268
– ident: 20341_CR30
  doi: 10.18653/v1/D19-1514
– ident: 20341_CR2
– volume: 482
  start-page: 73
  year: 2019
  ident: 20341_CR20
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.12.057
– ident: 20341_CR31
– ident: 20341_CR14
  doi: 10.1007/978-3-319-46493-0_39
– ident: 20341_CR19
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 20341_CR13
  publication-title: J Mach Learn Res
– ident: 20341_CR27
  doi: 10.1109/TMI.2020.2995518
– ident: 20341_CR10
  doi: 10.1109/CVPR46437.2021.01071
– ident: 20341_CR18
  doi: 10.3389/fcomp.2023.1114186
– ident: 20341_CR35
  doi: 10.1109/CVPR.2016.90
– ident: 20341_CR1
  doi: 10.1109/CVPR42600.2020.01070
– ident: 20341_CR15
  doi: 10.1109/CVPR.2019.00521
– ident: 20341_CR11
  doi: 10.1007/978-3-030-58555-6_15
– ident: 20341_CR4
  doi: 10.1109/ISBI.2018.8363547
– ident: 20341_CR24
– volume: 38
  start-page: 2211
  issue: 9
  year: 2019
  ident: 20341_CR21
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2903434
– ident: 20341_CR5
– volume: 34
  start-page: 18408
  year: 2021
  ident: 20341_CR7
  publication-title: Adv Neural Inf Process Syst
– ident: 20341_CR16
  doi: 10.1007/978-3-319-66185-8_29
– ident: 20341_CR34
– ident: 20341_CR17
  doi: 10.1109/CVPR.2018.00353
– ident: 20341_CR32
– ident: 20341_CR8
  doi: 10.1109/CVPR46437.2021.00685
– ident: 20341_CR23
  doi: 10.23919/ChiCC.2019.8866590
– ident: 20341_CR29
  doi: 10.1109/CVPR42600.2020.01059
– volume: 29
  start-page: 141
  issue: 6
  year: 2012
  ident: 20341_CR3
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2211477
– ident: 20341_CR12
  doi: 10.1007/978-3-030-58601-0_32
– ident: 20341_CR28
– ident: 20341_CR26
– ident: 20341_CR36
  doi: 10.1109/CVPR.2017.243
– ident: 20341_CR22
SSID ssj0016524
Score 2.367576
Snippet Due to the particularly high costs of manual data labeling, especially in the field of medical imaging, and the necessity for specialized knowledge, there is a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89335
SubjectTerms 1237: Advanced Deep Learning for Computer Vision and Multimedia Applications
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Labeling
Labels
Medical imaging
Multimedia Information Systems
Propagation
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60etCD1apYrZKDNw1sHvvyJmLxoKXQKr0t2zxAqGvptv5-J9vdrooKet2dhGRmMg-S-QbgHD-GjMWW2jAOqBwzQyOpx9QzkkUWXQYXumg2EfZ60WgU98uisLx67V5dSRaWui52Y66UBH0KShZtL_XXYcN3aDMuRx88re4OAp_Lsjzm-3GfXVAdV365Ci08TLf5v7Xtwk4ZUZLrpQrswZrJWtCsujWQ8vC2YPsD9OA-PAyG9L5_RXIzsbTqE0HSTBNUCzMhuF40NYXYCMa1SPfyTPPF1JmW3GiiXNTtnhkVJAfw2L0d3tzRsrUCVVxIn7JYCcGsQQdtQ19ZEcpUOnB5maahjpSnlCcxWYm0jsfC1zy2hkmrAxSeEZaLQ2hkr5k5AsIDbh1qoGZxJNNIpyawIZeRCj0MLQPZBlZxO1El7rjb1iSpEZMd9xLkXlJwL_HbcLEaM12ibvxK3amEmJQnME8E5nkBbsgP2nBZCa3-_fNsx38jP4Et7uRevHDpQGM-W5hT2FRv8-d8dlZo5jumIdvz
  priority: 102
  providerName: Springer Nature
Title ST-LP: self-training and label propagation for semi-supervised classification
URI https://link.springer.com/article/10.1007/s11042-024-20341-5
https://www.proquest.com/docview/3148683756
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5R4NAegNKiLi_50FuxGr9ihwsCBEICtitepb1EWT8kpGVZCPD7GWcdliLBpZeRkjiWk288M37NB_Adb2rGikCDLnIq-8xTI12fZl4yE9BlcOEasgnd7ZrLy6KXJtzqtK2ytYmNoXY3Ns6R_xQYt-c4mlL51uiWRtaouLqaKDQ-wAw6ahUZDPTvP8-rCLlKpLYmo-gZWTo0Mz46x-LBFPRQqCdoyan61zFNos1XC6SN39mf_98WL8BcijjJ9lhFPsOUHy7CfMvmQFLnXoRPL1ITfoHj0zN61NsktR8E2vJIkGroCKqNHxBsC5qiBlaCcS-Wu76i9cMomp7aO2JjVB63ITVFvsL5_t7Z7gFN1AvUciEVZYUVggWPDjxoZYPQspIx-bysKu2MzazNJA5mjHNFXyjHi-CZDC5HcL0IXCzB9PBm6L8B4TkPMaugY4WRlXGVz4Pm0lidYeiZyw6w9r-XNuUlj581KCcZlSNWJWJVNliVqgM_nt8ZjbNyvFt6tQWoTD20LifodGCjhXjy-O3alt-vbQU-8qhVzY6XVZi-v3vwazBrH--v6rv1Rj_XYWZnr9s7watDTVEeZ7tR8l8oe-ovypPTiyeM4-6T
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hQKIceLUVSyn1AU6t1fgR20FCVVVAoF1WSN1K3NKsHxLSdlnILqh_qr-x42zCAlK5ceg1caw4_uabceyZD2AXL2rGskCDzhSVfeapka5PEy-ZCegyuHCV2ITuds3FRXY-B3-aXJh4rLLhxIqo3ZWN_8g_C4zbFa6mUvVldE2jalTcXW0kNKawaPvfd7hkKw9OD3F-9zg_Pup9O6G1qgC1XMiUsswKwYJH3xR0aoPQspCxrrosCu2MTaxNJMbpxrmsL1LHs-CZDE7he3sRYqEDpPwFKYyKFtXW9H7XQqW1iK5JKHpiVifpTFP1WEyEQY-IuETPQdPHjnAW3T7ZkK383PHq__aF1mCljqjJ16kJrMOcH27AaqNWQWry2oDlB6UXX8PZ9x7tnO-T0g8CbXQySDF0BM3CDwiOHam2gi3BuB7b_bqk5WQUqbX0jti46ojHrKomb-DHiwzxLcwPr4Z-EwhXPMSqiY5lRhbGFV4FzaWxOsHQWskWsGaec1vXXY_DGuSzitERGzliI6-wkact-Hj_zGhadeTZ1tsNIPKagcp8hoYWfGogNbv97962nu_tAyyd9M46eee0234Hr3hEdHW6ZxvmxzcT_x4W7e34srzZqWyDwM-XhtpfZN9DLg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH5CQ1XBAVqgYlhaH9oTtYiXxA5SVZXCqAgYjShI3NKMFwlpGAbCIv4av67PGYcplcqNQ6-JY8n257fkLR_AR3yoGMs99SrPqOwzR7W0fZo4ybRHlcGFrckmVLerT0_z3hQ8NLUwIa2ykYm1oLYXJvwj3xRot2foTaXZpo9pEb2dztfRJQ0MUiHS2tBpjCGy7-7v0H2rvuzt4Fl_4ryze_z9B40MA9RwIVPKciME8w71lFep8ULJUoYe67IsldUmMSaRaLNra_O-SC3PvWPS2wzX4IQPTQ9Q_E8rgU5PC6a3d7u9o8cYRpZGSl2dUNTLLJbsjAv3WCiLQf2IKEU9QtOnanFi6_4Vnq21Xmf-f96vNzAXbW3ybXw53sKUGy7AfMNjQaJYW4DZP5oyLsLhz2N60NsilRt42jBokHJoCV4YNyC4DyiEa0ATtPhx3PkZrW5GQehWzhIT_JGQgFUPWYKTF1niO2gNL4ZuGQjPuA_9FC3LtSy1LV3mFZfaqASN7ky2gTVnXpjYkT0sa1BMekkHnBSIk6LGSZG2YePxm9G4H8mzo9cacBRRNlXFBBlt-NzAa_L637OtPD_bB3iNCCsO9rr7qzDDA7jrtJ81aF1f3bh1eGVur8-qq_fxohD49dJY-w2lBU2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ST-LP%3A+self-training+and+label+propagation+for+semi-supervised+classification&rft.jtitle=Multimedia+tools+and+applications&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=41&rft.spage=89335&rft.epage=89353&rft_id=info:doi/10.1007%2Fs11042-024-20341-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon