ST-LP: self-training and label propagation for semi-supervised classification

Due to the particularly high costs of manual data labeling, especially in the field of medical imaging, and the necessity for specialized knowledge, there is a growing interest in semi-supervised methods. In this paper, a novel framework of Self-Training with Label Propagation (ST-LP) is proposed fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications Jg. 83; H. 41; S. 89335 - 89353
Hauptverfasser: Lin, Chih-Wen, Chiang, Chen-Kuo, Wang, Yu-An, Yang, Yue-Lin, Li, Hao-Ting, Lin, Tzu-Chieh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2024
Springer Nature B.V
Schlagworte:
ISSN:1573-7721, 1380-7501, 1573-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the particularly high costs of manual data labeling, especially in the field of medical imaging, and the necessity for specialized knowledge, there is a growing interest in semi-supervised methods. In this paper, a novel framework of Self-Training with Label Propagation (ST-LP) is proposed for semi-supervised classification. It integrates self-training and label propagation to address the challenge of limited labeled data in classification tasks, a concern exacerbated by the especially expensive nature of data labeling in the medical domain. Our method involves leveraging two soft pseudo-labels generated from a pre-training fine-tuned model and label propagation scheme as inputs for a pseudo-label prediction module. Subsequently, confident predictions from this model are selected as pseudo-labeled data. The effectiveness of our approach is demonstrated through experiments conducted on diverse datasets, including the MNIST dataset and two medical classification datasets: ISIC2018 and MURA. Experimental results demonstrate that our method consistently achieved comparable or outstanding results when dealing with large amounts of unlabeled data.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1573-7721
1380-7501
1573-7721
DOI:10.1007/s11042-024-20341-5