An intelligent speech enhancement model using enhanced heuristic-based residual convolutional neural network with encoder-decoder architecture

As the listening capacity exists in humans, they are facing the critical issues of understanding the speeches even in the presence of some background or other noises in the world. To diminish the noises, Speech Enhancement (SE) is the process of improving the quality of the speech signal by applying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of speech technology Jg. 27; H. 3; S. 637 - 656
Hauptverfasser: Balasubrahmanyam, M., Valarmathi, R. S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2024
Springer Nature B.V
Schlagworte:
ISSN:1381-2416, 1572-8110
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As the listening capacity exists in humans, they are facing the critical issues of understanding the speeches even in the presence of some background or other noises in the world. To diminish the noises, Speech Enhancement (SE) is the process of improving the quality of the speech signal by applying some techniques without degrading any such information. Hence, it is used for hearing-aid people, speech recognition, etc. Recent researchers have developed some works to increase speech intelligibility. Substantial success has been achieved by executing the supervised learning methods. Nevertheless, the existing process incurs such shortcomings as attaining maximum error, computation burden, and so on. To overcome that, certain deep learning methodologies are immensely involved in SE for determining the spectrogram magnitude when reconstructing the signal source by removing the noise. Thus, it also becomes a more challenging task to acquire a clean speech signal. Though these methods aim to present the speech as more clear and intelligible, it may arise such intricacies that degrade the quality and efficiency. As it contains beneficial structure and resources, still it is in the scope of developing the novel SE model. To conquer these complexities, a successful SE task is offered utilizing deep learning in this paper. This recommended work performs the SE which employs deep learning to denoise a noisy speech to generate a quality speech. At first, the speech signal that contains noises such as cooler noise or fan noise, restaurant noise, railway station noise, factory noise, traffic in the journey, bus-stand noise, cinema theater noise, and clouding areas noise are gathered from the standard online sources. After that, this noisy speech signal is forwarded to Adaptive Residual Convolutional Neural Networks with Encoder-Decoder (ARCNNetED) architecture, where the parameters involved in this framework are optimized with the support of Random Revised Drawer Algorithm (RRDA). Thus, the noise presented in the input speech signal is completely removed by the suggested ARCNNetED and the quality of the speech also is enhanced. Finally, the performance of the suggested speech enhancement approach is evaluated over various traditional tasks with the support of several metrics. The findings of the developed model show better performance in terms of MAE, RMSE, and PSNR showing the value of 0.03, 0.19, and 62.26. This analysis significantly handles the error rate to offer accurate outcomes in the speech recognition framework.
AbstractList As the listening capacity exists in humans, they are facing the critical issues of understanding the speeches even in the presence of some background or other noises in the world. To diminish the noises, Speech Enhancement (SE) is the process of improving the quality of the speech signal by applying some techniques without degrading any such information. Hence, it is used for hearing-aid people, speech recognition, etc. Recent researchers have developed some works to increase speech intelligibility. Substantial success has been achieved by executing the supervised learning methods. Nevertheless, the existing process incurs such shortcomings as attaining maximum error, computation burden, and so on. To overcome that, certain deep learning methodologies are immensely involved in SE for determining the spectrogram magnitude when reconstructing the signal source by removing the noise. Thus, it also becomes a more challenging task to acquire a clean speech signal. Though these methods aim to present the speech as more clear and intelligible, it may arise such intricacies that degrade the quality and efficiency. As it contains beneficial structure and resources, still it is in the scope of developing the novel SE model. To conquer these complexities, a successful SE task is offered utilizing deep learning in this paper. This recommended work performs the SE which employs deep learning to denoise a noisy speech to generate a quality speech. At first, the speech signal that contains noises such as cooler noise or fan noise, restaurant noise, railway station noise, factory noise, traffic in the journey, bus-stand noise, cinema theater noise, and clouding areas noise are gathered from the standard online sources. After that, this noisy speech signal is forwarded to Adaptive Residual Convolutional Neural Networks with Encoder-Decoder (ARCNNetED) architecture, where the parameters involved in this framework are optimized with the support of Random Revised Drawer Algorithm (RRDA). Thus, the noise presented in the input speech signal is completely removed by the suggested ARCNNetED and the quality of the speech also is enhanced. Finally, the performance of the suggested speech enhancement approach is evaluated over various traditional tasks with the support of several metrics. The findings of the developed model show better performance in terms of MAE, RMSE, and PSNR showing the value of 0.03, 0.19, and 62.26. This analysis significantly handles the error rate to offer accurate outcomes in the speech recognition framework.
Author Balasubrahmanyam, M.
Valarmathi, R. S.
Author_xml – sequence: 1
  givenname: M.
  surname: Balasubrahmanyam
  fullname: Balasubrahmanyam, M.
  email: mbalu.422@gmail.com
  organization: Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology
– sequence: 2
  givenname: R. S.
  surname: Valarmathi
  fullname: Valarmathi, R. S.
  organization: Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology
BookMark eNp9UMtOwzAQtFCRKIUf4BSJs8GOkzg5VhUvqRIXOFuOs2ldUrvYDhU_wTfjNCAkDj2Ndzwz2p1zNDHWAEJXlNxQQvitp4TzFJM0w5TQlGN2gqY0j1RJKZnENyspTjNanKFz7zeEkIpX6RR9zU2iTYCu0yswIfE7ALVOwKylUbAdqK1toEt6r83ql2-SNfRO-6AVrqWPswOvm152ibLmw3Z90NbEyUTZAcLeurdkr8OQrWKiww0cMJFOrXUAFXoHF-i0lZ2Hyx-codf7u5fFI14-Pzwt5kusUpYxDDVVFZdQ8yqri7IpMyglL4o6U5WqmqyocyIbBjVTtM1prlpWQ960vMyqVFHCZuh6zN05-96DD2Jjexc39oLF76pgrGRRVY4q5az3DlqhdJDDacFJ3QlKxNC-GNsXsX1xaF8M1vSfdef0VrrP4yY2mnwUmxW4v62OuL4B18ydyw
CitedBy_id crossref_primary_10_1109_TIM_2025_3551848
Cites_doi 10.1109/ACCESS.2020.2982212
10.1109/TASLP.2019.2933698
10.1007/s10489-023-04571-y
10.1109/TASLP.2020.2991537
10.1109/TASLP.2018.2870725
10.1109/TASLP.2021.3092838
10.1109/TASLP.2019.2910638
10.1109/TASLP.2020.2998279
10.1109/TASLP.2020.3036611
10.1109/ICSSIT46314.2019.8987950
10.1109/TASLP.2018.2876171
10.1109/TASLP.2015.2498101
10.1007/s00500-021-06291-2
10.1109/TASLP.2021.3082282
10.1109/LWC.2021.3095383
10.1109/TASLP.2020.3025638
10.1016/j.inffus.2019.08.008
10.1109/ACCESS.2021.3056711
10.1016/j.cie.2021.107250
10.1016/j.knosys.2022.109215
10.1109/TASLP.2022.3231700
10.1016/j.tcs.2022.08.017
10.3390/biomimetics8020239
10.1109/TASLP.2019.2940662
10.1109/ACCESS.2023.3253719
10.1109/LSP.2021.3128374
10.1109/LSP.2019.2951950
10.1109/LSP.2022.3200581
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7T9
DOI 10.1007/s10772-024-10127-3
DatabaseName CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
DatabaseTitle CrossRef
Linguistics and Language Behavior Abstracts (LLBA)
DatabaseTitleList
Linguistics and Language Behavior Abstracts (LLBA)
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Engineering
Anatomy & Physiology
EISSN 1572-8110
EndPage 656
ExternalDocumentID 10_1007_s10772_024_10127_3
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AERSA
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
ECE
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IN-
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z83
Z88
Z8M
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7T9
ID FETCH-LOGICAL-c2343-eb1c97aeb794b68d84e8a766b4c9c9d46b50ad3eb3c1f515cf3be5df78492c103
IEDL.DBID RSV
ISSN 1381-2416
IngestDate Sat Nov 08 00:06:34 EST 2025
Sat Nov 29 02:56:09 EST 2025
Tue Nov 18 21:13:15 EST 2025
Fri Feb 21 02:38:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Speech enhancement
Divergent noise signals
Speech signal
Adaptive residual convolutional neural networks with encoder-decoder
Random revised drawer algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2343-eb1c97aeb794b68d84e8a766b4c9c9d46b50ad3eb3c1f515cf3be5df78492c103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3103963383
PQPubID 2043857
PageCount 20
ParticipantIDs proquest_journals_3103963383
crossref_citationtrail_10_1007_s10772_024_10127_3
crossref_primary_10_1007_s10772_024_10127_3
springer_journals_10_1007_s10772_024_10127_3
PublicationCentury 2000
PublicationDate 20240900
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle International journal of speech technology
PublicationTitleAbbrev Int J Speech Technol
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Lee, Kang (CR14) 2019; 27
Trojovská, Dehghani, Leiva (CR21) 2023; 8
Kantamaneni, Charles, Babu (CR12) 2023; 941
Barhoush, Hallawa, Peine, Martin, Schmeink (CR4) 2023; 31
Hepsiba, Justin (CR11) 2021
Xie, Han, Zhou, Zhang, Han, Tang (CR26) 2021; 22
Tan, Wang (CR20) 2021; 29
Cheng, Liang, Liang, Zhao, Huang, Schuller (CR6) 2021; 29
Chiluveru, Gyanendra, Chunarkar, Kaushik (CR7) 2021; 68
Kim, Kang, Shin (CR13) 2022; 29
Adeel, Gogate, Hussain (CR3) 2020; 59
Abualigah, Yousri, Elaziz, Ewees, Al-qaness, Gandomi (CR2) 2021
Elshamy, Fingscheidt (CR9) 2019; 27
Li, Chen, Sun, Ji, Jia, Wang (CR15) 2020; 8
Sun, Zhang, Van Hamme, Zheng (CR18) 2016; 24
Tu, Du, Lee (CR22) 2019; 27
Wang, Wang, Wang (CR23) 2020; 28
Du, Zhang, Han (CR8) 2020; 28
Zacarias-Morales, Hernández-Nolasco, Pancardo (CR28) 2023
Zhong, Li, Meng (CR30) 2022
Chen, Dong, Zhang, Gao, Li (CR5) 2021; 10
Wu, Yu, Fu, Liu, Chien, Tsao (CR24) 2019; 26
Mukhutdinov, Alex, Cavallaro, Wang (CR17) 2023; 11
Yu, Zezario, Wang, Sherman, Hsieh, Lu, Wang, Tsao (CR27) 2020; 28
Zhao, Wang, Wang (CR29) 2019; 27
Abdullah, Zamani, Demosthenous (CR1) 2021; 9
Furnon, Serizel, Essid, Illina (CR10) 2021; 29
Tan, Chen, Wang (CR19) 2019; 27
Mashiana, Salaria, Kaur (CR16) 2019
Xiang, Zhang, Chen (CR25) 2022; 29
L Xie (10127_CR26) 2021; 22
Z-Q Wang (10127_CR23) 2020; 28
Y Chen (10127_CR5) 2021; 10
N Zacarias-Morales (10127_CR28) 2023
C Zhong (10127_CR30) 2022
SR Chiluveru (10127_CR7) 2021; 68
K Tan (10127_CR19) 2019; 27
S Elshamy (10127_CR9) 2019; 27
J Cheng (10127_CR6) 2021; 29
J-Y Wu (10127_CR24) 2019; 26
M Sun (10127_CR18) 2016; 24
M Barhoush (10127_CR4) 2023; 31
E Trojovská (10127_CR21) 2023; 8
S Kantamaneni (10127_CR12) 2023; 941
X Xiang (10127_CR25) 2022; 29
H Kim (10127_CR13) 2022; 29
S Abdullah (10127_CR1) 2021; 9
D Hepsiba (10127_CR11) 2021
Z Du (10127_CR8) 2020; 28
N Furnon (10127_CR10) 2021; 29
J Lee (10127_CR14) 2019; 27
Y-H Tu (10127_CR22) 2019; 27
A Adeel (10127_CR3) 2020; 59
D Mukhutdinov (10127_CR17) 2023; 11
C Yu (10127_CR27) 2020; 28
K Tan (10127_CR20) 2021; 29
Y Zhao (10127_CR29) 2019; 27
Y Li (10127_CR15) 2020; 8
L Abualigah (10127_CR2) 2021
HS Mashiana (10127_CR16) 2019
References_xml – volume: 8
  start-page: 56798
  year: 2020
  end-page: 56810
  ident: CR15
  article-title: A smart binaural hearing aid architecture leveraging a smartphone APP with deep-learning speech enhancement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982212
– volume: 27
  start-page: 1803
  issue: 11
  year: 2019
  end-page: 1814
  ident: CR9
  article-title: DNN-based cepstral excitation manipulation for speech enhancement
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2019.2933698
– year: 2023
  ident: CR28
  article-title: Full single-type deep learning models with multihead attention for speech enhancement
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-023-04571-y
– volume: 28
  start-page: 1493
  year: 2020
  end-page: 1505
  ident: CR8
  article-title: A joint framework of denoising autoencoder and generative vocoder for monaural speech enhancement
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2020.2991537
– volume: 27
  start-page: 53
  issue: 1
  year: 2019
  end-page: 62
  ident: CR29
  article-title: Two-stage deep learning for noisy-reverberant speech enhancement
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2018.2870725
– volume: 29
  start-page: 2310
  year: 2021
  end-page: 2323
  ident: CR10
  article-title: DNN-Based mask estimation for distributed speech enhancement in spatially unconstrained microphone arrays
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2021.3092838
– volume: 68
  start-page: 3461
  issue: 11
  year: 2021
  end-page: 3465
  ident: CR7
  article-title: Efficient hardware implementation of DNN-based speech enhancement algorithm with precise sigmoid activation function
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 27
  start-page: 1098
  issue: 6
  year: 2019
  end-page: 1108
  ident: CR14
  article-title: A joint learning algorithm for complex-valued T-F masks in deep learning-based single-channel speech enhancement systems
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2019.2910638
– volume: 28
  start-page: 1778
  year: 2020
  end-page: 1787
  ident: CR23
  article-title: Complex spectral mapping for single- and multi-channel speech enhancement and robust ASR
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2020.2998279
– volume: 29
  start-page: 41
  year: 2021
  end-page: 53
  ident: CR6
  article-title: A deep adaptation network for speech enhancement: combining a relativistic discriminator with multi-kernel maximum mean discrepancy
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2020.3036611
– year: 2019
  ident: CR16
  article-title: Speech enhancement using residual convolutional neural network
  publication-title: 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)
  doi: 10.1109/ICSSIT46314.2019.8987950
– volume: 27
  start-page: 189
  issue: 1
  year: 2019
  end-page: 198
  ident: CR19
  article-title: Gated residual networks with dilated convolutions for monaural speech enhancement
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2018.2876171
– volume: 24
  start-page: 93
  issue: 1
  year: 2016
  end-page: 104
  ident: CR18
  article-title: Unseen noise estimation using separable deep auto encoder for speech enhancement
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2015.2498101
– year: 2021
  ident: CR11
  article-title: Enhancement of single channel speech quality and intelligibility in multiple noise conditions using wiener filter and deep CNN
  publication-title: Soft Computing
  doi: 10.1007/s00500-021-06291-2
– volume: 29
  start-page: 1785
  year: 2021
  end-page: 1794
  ident: CR20
  article-title: Towards model compression for deep learning based speech enhancement
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2021.3082282
– volume: 10
  start-page: 2165
  issue: 10
  year: 2021
  end-page: 2169
  ident: CR5
  article-title: A Hybrid deep-learning approach for single channel HF-SSB speech enhancement
  publication-title: IEEE Wireless Communications Letters
  doi: 10.1109/LWC.2021.3095383
– volume: 28
  start-page: 2756
  year: 2020
  end-page: 2769
  ident: CR27
  article-title: Speech enhancement based on denoising autoencoder with multi-branched encoders
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2020.3025638
– volume: 59
  start-page: 163
  year: 2020
  end-page: 170
  ident: CR3
  article-title: Contextual deep learning-based audio-visual switching for speech enhancement in real-world environments
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2019.08.008
– volume: 9
  start-page: 24350
  year: 2021
  end-page: 24362
  ident: CR1
  article-title: Towards more efficient DNN-based speech enhancement using quantized correlation mask
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056711
– year: 2021
  ident: CR2
  article-title: Aquila optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107250
– year: 2022
  ident: CR30
  article-title: Beluga whale optimization: A novel nature-inspired metaheuristic algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109215
– volume: 22
  start-page: 2021
  year: 2021
  ident: CR26
  article-title: Tuna swarm optimization: A novel swarm-based metaheuristic algorithm for global optimization
  publication-title: Computational Intelligence and Neuroscience
– volume: 31
  start-page: 670
  year: 2023
  end-page: 683
  ident: CR4
  article-title: Localization-driven speech enhancement in noisy multi-speaker hospital environments using deep learning and meta learning
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2022.3231700
– volume: 941
  start-page: 14
  year: 2023
  end-page: 28
  ident: CR12
  article-title: Speech enhancement with noise estimation and filtration using deep learning models
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2022.08.017
– volume: 8
  start-page: 239
  issue: 2
  year: 2023
  ident: CR21
  article-title: Drawer algorithm: A new metaheuristic approach for solving optimization problems in engineering
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8020239
– volume: 27
  start-page: 2080
  issue: 12
  year: 2019
  end-page: 2091
  ident: CR22
  article-title: Speech enhancement based on teacher-student deep learning using improved speech presence probability for noise-robust speech recognition
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2019.2940662
– volume: 11
  start-page: 22993
  year: 2023
  end-page: 23007
  ident: CR17
  article-title: Deep learning models for single-channel speech enhancement on drones
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3253719
– volume: 29
  start-page: 105
  year: 2022
  end-page: 109
  ident: CR25
  article-title: A nested U-Net with self-attention and dense connectivity for monaural speech enhancement
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2021.3128374
– volume: 26
  start-page: 1887
  issue: 12
  year: 2019
  end-page: 1891
  ident: CR24
  article-title: Increasing compactness of deep learning based speech enhancement models with parameter pruning and quantization techniques
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2019.2951950
– volume: 29
  start-page: 1898
  year: 2022
  end-page: 1902
  ident: CR13
  article-title: Factorized MVDR deep beamforming for multi-channel speech enhancement
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2022.3200581
– volume: 11
  start-page: 22993
  year: 2023
  ident: 10127_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3253719
– volume: 8
  start-page: 56798
  year: 2020
  ident: 10127_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982212
– volume: 28
  start-page: 1493
  year: 2020
  ident: 10127_CR8
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2020.2991537
– year: 2022
  ident: 10127_CR30
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109215
– volume: 27
  start-page: 1098
  issue: 6
  year: 2019
  ident: 10127_CR14
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2019.2910638
– volume: 8
  start-page: 239
  issue: 2
  year: 2023
  ident: 10127_CR21
  publication-title: Biomimetics
  doi: 10.3390/biomimetics8020239
– year: 2019
  ident: 10127_CR16
  publication-title: 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)
  doi: 10.1109/ICSSIT46314.2019.8987950
– volume: 28
  start-page: 2756
  year: 2020
  ident: 10127_CR27
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2020.3025638
– volume: 24
  start-page: 93
  issue: 1
  year: 2016
  ident: 10127_CR18
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2015.2498101
– volume: 31
  start-page: 670
  year: 2023
  ident: 10127_CR4
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2022.3231700
– volume: 10
  start-page: 2165
  issue: 10
  year: 2021
  ident: 10127_CR5
  publication-title: IEEE Wireless Communications Letters
  doi: 10.1109/LWC.2021.3095383
– volume: 22
  start-page: 2021
  year: 2021
  ident: 10127_CR26
  publication-title: Computational Intelligence and Neuroscience
– volume: 59
  start-page: 163
  year: 2020
  ident: 10127_CR3
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2019.08.008
– volume: 27
  start-page: 53
  issue: 1
  year: 2019
  ident: 10127_CR29
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2018.2870725
– year: 2021
  ident: 10127_CR11
  publication-title: Soft Computing
  doi: 10.1007/s00500-021-06291-2
– volume: 27
  start-page: 189
  issue: 1
  year: 2019
  ident: 10127_CR19
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2018.2876171
– volume: 27
  start-page: 1803
  issue: 11
  year: 2019
  ident: 10127_CR9
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2019.2933698
– volume: 941
  start-page: 14
  year: 2023
  ident: 10127_CR12
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2022.08.017
– volume: 29
  start-page: 41
  year: 2021
  ident: 10127_CR6
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2020.3036611
– volume: 29
  start-page: 1785
  year: 2021
  ident: 10127_CR20
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2021.3082282
– volume: 29
  start-page: 1898
  year: 2022
  ident: 10127_CR13
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2022.3200581
– volume: 27
  start-page: 2080
  issue: 12
  year: 2019
  ident: 10127_CR22
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2019.2940662
– volume: 29
  start-page: 105
  year: 2022
  ident: 10127_CR25
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2021.3128374
– volume: 29
  start-page: 2310
  year: 2021
  ident: 10127_CR10
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2021.3092838
– volume: 28
  start-page: 1778
  year: 2020
  ident: 10127_CR23
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2020.2998279
– volume: 26
  start-page: 1887
  issue: 12
  year: 2019
  ident: 10127_CR24
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2019.2951950
– volume: 68
  start-page: 3461
  issue: 11
  year: 2021
  ident: 10127_CR7
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 9
  start-page: 24350
  year: 2021
  ident: 10127_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056711
– year: 2021
  ident: 10127_CR2
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107250
– year: 2023
  ident: 10127_CR28
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-023-04571-y
SSID ssj0009792
Score 2.3281915
Snippet As the listening capacity exists in humans, they are facing the critical issues of understanding the speeches even in the presence of some background or other...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 637
SubjectTerms Acknowledgment
Algorithms
Artificial Intelligence
Artificial neural networks
Background noise
Computation
Deep learning
Encoders-Decoders
Engineering
Error analysis
Hearing aids
Heuristic
Intelligence
Intelligibility
Learning
Machine learning
Neural networks
Noise
Performance evaluation
Railway stations
Restaurants
Root-mean-square errors
Signal quality
Signal,Image and Speech Processing
Social Sciences
Speech
Speech enhancement
Speech processing
Speech recognition
Speeches
Supervised learning
Voice recognition
Work
Title An intelligent speech enhancement model using enhanced heuristic-based residual convolutional neural network with encoder-decoder architecture
URI https://link.springer.com/article/10.1007/s10772-024-10127-3
https://www.proquest.com/docview/3103963383
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009792
  issn: 1381-2416
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADj43HeCkHxAUirW2WNscJMXFAE-Kl3ao0SRkSFLRuSPwJfjNO1q4DARKcorZJVMl2_Ij9GeDQ8JQJv6Wo4J6hzPcNjZgnqce1ZRidilC7ZhNhrxf1--KyKArLy2z38krSndQzxW5oCVLUKdRiUqFozMMCqrvINmy4ur6roHZD1wrZQ11EUT_xolTm-z0-q6PKxvxyLeq0TXf1f_-5BiuFdUk6E3ZYhzmT1aHRydCzfnojR8Tle7pAeh2WZ6AI67B1UQQuc5x2McVazhvw3snIwxS4c0TyF2PUgJhsYBnGBheJa6dDbAr9fflek4EZT1CgqdWUmuBmrvCL2ET3guHxyQJqusGloxMbFyYWXFObIdXGjWT2tmMDbrtnN6fntOjiQJUfsICiMlAilCZByU94pCNmIhlynjAllNCMJ-2W1AE69cpL0bpSaZCYtk7DCJlIea1gE2rZc2a2gTCtuEg1T0L04gKZSMlwvS9ZW0UJE7IJXknMWBUQ57bTxmNcgTNb4sRInNgRJw6acDxd8zIB-Ph19l7JI3Eh7HlsW7XhOYa-fhNOSp6oPv-8287fpu_Ckm_ZymW47UFtNBybfVhUr6OHfHjghOADqYADxw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QH3wWK_1zIP4ooFtm02bx0UUxXURL3wraZK6C1pluwr-CX-zk2y7u4oK-hTaJqEwM5kjM98A7BqeMuHXFBXcM5T5vqER8yT1uLYMo1MRatdsImy1ors7cVEUheVltnt5JelO6pFiN7QEKeoUajGpUDTGYZKhxrKI-ZdXt0Oo3dC1QvZQF1HUT7wolfl-j8_qaGhjfrkWddrmeP5__7kAc4V1SRp9dliEMZNVYKmRoWf9-Eb2iMv3dIH0CsyOQBFWYLVZBC5znNYcYC3nS_DeyEhnANzZI_mzMapNTNa2DGODi8S10yE2hf6-fK9J27z0UaCp1ZSa4Gau8IvYRPeC4fHJAmq6waWjExsXJhZcU5su1caNZPS2Yxlujo-uD09o0cWBKj9gAUVloEQoTYKSn_BIR8xEMuQ8YUoooRlP6jWpA3TqlZeidaXSIDF1nYYRMpHyasEKTGRPmVkDwrTiItU8CdGLC2QiJcP1vmR1FSVMyCp4JTFjVUCc204bD_EQnNkSJ0bixI44cVCF_cGa5z7Ax6-zN0seiQthz2Pbqg3PMfT1q3BQ8sTw88-7rf9t-g5Mn1yfN-PmaetsA2Z8y2Iu220TJnrdF7MFU-q118m7204gPgDcUwar
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xJcQeBhTG2Bj4Ae0FLJrEdeLHaqMaoqqQgIm3yLEdisRC1RSk_RP7m3fnJm1BgIR4shJ_yNKdfR---x3AvpO5UGHTcCUDx0UYOp6IQPNAWmIYm6vY-mITca-XXF2ps5ksfh_tXj9JjnMaCKWpGB0NbH40k_iGWiFH-cIJnwqPyTwsCgqkJ3v9_PcUdjf2ZZEDlEscZZWs0maeX-OxaJrqm0-eSL3k6ay-f89r8LHSOll7zCbrMOeKBmy0C7S4__xl35mPA_UO9gZ8mIEobMBWt3JoljisO8FgLjfgX7tgNxNAzxErB86ZPnNFnxiJnI7Ml9lhFFp_Xf-3rO_ux-jQnCSoZbiYTwhjFABfHQT8IqBN3_gwdUb-Ykagm9YNuXW-ZbOvIJtw2Tm--PGLV9UduAkjEXEUEkbF2mV4I2QysYlwiY6lzIRRRlkhs1ZT2wiNfRPkqHWZPMpcy-Zxgsxlgmb0CRaKu8J9BiaskSq3MovRuot0prXA-aEWLZNkQultCGrCpqaCPqcKHLfpFLSZiJMicVJPnDTahoPJnMEY-OPV0Ts1v6TVJVCmVMIN77cowe7Dmj-m3S-v9uVtw_dg-exnJ-2e9E6_wkpIHOaD4HZgYTS8d99gyTyMbsrhrj8b_wHrvA-P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+speech+enhancement+model+using+enhanced+heuristic-based+residual+convolutional+neural+network+with+encoder-decoder+architecture&rft.jtitle=International+journal+of+speech+technology&rft.au=Balasubrahmanyam%2C+M&rft.au=Valarmathi%2C+R+S&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1381-2416&rft.eissn=1572-8110&rft.volume=27&rft.issue=3&rft.spage=637&rft.epage=656&rft_id=info:doi/10.1007%2Fs10772-024-10127-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2416&client=summon