Fuzzy validation of Taguchi-based convolutional fuzzy neural classifier for lung cancer imaging

While deep learning technology is widely used in the field of image classification and recognition, parameter setting for convolutional neural networks is complex, and a high number of parameters make the technology difficult to apply in practice. Therefore, this study proposes a Taguchi-based convo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 83; číslo 41; s. 89415 - 89437
Hlavní autoři: Chang, Tsang-Chuan, Lin, Cheng-Jian, Yang, Tang-Yun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2024
Springer Nature B.V
Témata:
ISSN:1573-7721, 1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:While deep learning technology is widely used in the field of image classification and recognition, parameter setting for convolutional neural networks is complex, and a high number of parameters make the technology difficult to apply in practice. Therefore, this study proposes a Taguchi-based convolutional fuzzy neural classifier (T-CFNC) to classify computed tomography (CT) images. Two layers of convolution and pooling are used to extract features of the input images, and a fuzzy neural network is used to replace fully-connected neural networks to reduce the number of model parameters. To reduce cost and time, the Taguchi experimental design method determines the optimal combination of model parameters with the minimal number of experiments. The SPIE-AAPM lung CT challenge dataset was used to validate the proposed T-CFNC model. Experimental results indicate accuracy of 99.95%, a true positive rate of 99.97%, and a true negative rate of 99.94%. While the confusion matrix is commonly applied to evaluate model performance, its accuracy varies with the quality of model training, and it is easily affected by extreme values. Single and average values also incur the possibility of misjudgment. We therefore further propose fuzzy validation for performance evaluation. Results confirm the superiority of the proposed T-CFNC model in terms of lung cancer image classification over the traditional CFNC model.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1573-7721
1380-7501
1573-7721
DOI:10.1007/s11042-024-20351-3