Optimized convolutional neural network for identification of maize leaf diseases with adaptive ageist spider monkey optimization model

In recent years, the number of maize disease species has increased, which obviously increases the level of damages in leaves. The reason for maize leaf disease is due to variations in agriculture systems, the variants of pathogen, and it also occurs due to the scarcity of plant conservation measures...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of information technology (Singapore. Online) Ročník 15; číslo 2; s. 877 - 891
Hlavní autoři: Arjunagi, Shravankumar, Patil, Nagaraj B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.02.2023
Springer Nature B.V
Témata:
ISSN:2511-2104, 2511-2112
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, the number of maize disease species has increased, which obviously increases the level of damages in leaves. The reason for maize leaf disease is due to variations in agriculture systems, the variants of pathogen, and it also occurs due to the scarcity of plant conservation measures. The disease in maize leaves can be exhibited by varied symptoms; however, it might be complex for farmers to identify the disease in naked eye. Therefore, this paper intends to present a new automatic system for identifying and diagnosing maize leaf diseases. The proposed model includes two major phases: Proposed Feature Extraction and Classification. The first phase is feature extraction, where the proposed 4D-Local Binary Pattern (4D-LBP) based texture features will be extracted. More particularly, Dimension 1 insists pixel intensity, dimension 2 insists angle, dimension 3 insists local frequency from intensity patch and dimension 4 insists global frequency as well. Once the features get extracted, they are subjected for classification process, where the optimized Convolutional Neural Network (CNN) is used, where the count of convolutional layers is optimally tuned. For this optimal selection, a new Adaptive Opposition based Spider Monkey optimization (AOSMO), which is the enhanced version of SMO algorithm. At last, the performance of proposed work is evaluated over other traditional models with respect to accuracy.
AbstractList In recent years, the number of maize disease species has increased, which obviously increases the level of damages in leaves. The reason for maize leaf disease is due to variations in agriculture systems, the variants of pathogen, and it also occurs due to the scarcity of plant conservation measures. The disease in maize leaves can be exhibited by varied symptoms; however, it might be complex for farmers to identify the disease in naked eye. Therefore, this paper intends to present a new automatic system for identifying and diagnosing maize leaf diseases. The proposed model includes two major phases: Proposed Feature Extraction and Classification. The first phase is feature extraction, where the proposed 4D-Local Binary Pattern (4D-LBP) based texture features will be extracted. More particularly, Dimension 1 insists pixel intensity, dimension 2 insists angle, dimension 3 insists local frequency from intensity patch and dimension 4 insists global frequency as well. Once the features get extracted, they are subjected for classification process, where the optimized Convolutional Neural Network (CNN) is used, where the count of convolutional layers is optimally tuned. For this optimal selection, a new Adaptive Opposition based Spider Monkey optimization (AOSMO), which is the enhanced version of SMO algorithm. At last, the performance of proposed work is evaluated over other traditional models with respect to accuracy.
Author Arjunagi, Shravankumar
Patil, Nagaraj B.
Author_xml – sequence: 1
  givenname: Shravankumar
  surname: Arjunagi
  fullname: Arjunagi, Shravankumar
  email: sarjunagi@gmail.com
  organization: APPA Institute of Engineering and Technology
– sequence: 2
  givenname: Nagaraj B.
  surname: Patil
  fullname: Patil, Nagaraj B.
  organization: Govt College of Engineering
BookMark eNp9kLtOxDAQRS0EEsvjB6gsUQf8iJ1siRAvaaVtoLaceAyGJA62l9XyAXw3ZoNAoqAYzRT33Jm5B2h38AMgdELJGSWkOo8lrStSEEYLQqSoCr6DZkxQWjBK2e7PTMp9dByjawinTHJR0Rn6WI7J9e4dDG798Oa7VXJ-0B0eYBW2La19eMHWB-wMDMlZ1-ovDfYW9zqTuANtsXERdISI1y49YW109n0DrB_BxYTjmOGAez-8wAb7aedk03sD3RHas7qLcPzdD9HD9dX95W2xWN7cXV4sipbxkhd1W3IpZc3n1kjNACrDpGVG0LnVljYSbG0lo9KYppJSEypa0Za2MZBLAj9Ep5PvGPzrCmJSz34V8r9RcSYEo1zMZVaxSdUGH2MAq8bgeh02ihL1FbmaIlc5crWNXPEM1X-g1qXtiylo1_2P8gmNec_wCOH3qn-oT8wRm_s
CitedBy_id crossref_primary_10_1007_s12008_023_01671_4
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1007_s41870_023_01536_9
crossref_primary_10_1007_s41870_025_02522_z
crossref_primary_10_3389_fenrg_2024_1264157
crossref_primary_10_1016_j_eswa_2023_122099
Cites_doi 10.1016/j.pmpp.2016.07.001
10.1016/j.aoas.2018.05.006
10.1016/j.agee.2016.06.029
10.1080/10106049.2017.1343391
10.1016/j.pmpp.2019.101441
10.1016/S2095-3119(18)62087-8
10.1016/j.suscom.2019.100353
10.1016/j.fcr.2011.09.023
10.1016/j.compag.2019.03.017
10.1007/s10658-017-1229-2
10.1109/ACCESS.2018.2844405
10.1016/j.molp.2017.02.004
10.1016/S2095-3119(19)62603-1
10.1007/s10658-018-1456-1
10.1109/ISCAS.2010.5537907
10.1016/j.cropro.2015.10.009
10.1016/j.knosys.2019.105088
10.1016/j.agsy.2018.01.016
10.1016/j.biosystemseng.2019.05.002
10.1016/S1671-2927(08)60002-4
10.1109/TIP.2014.2321495
10.1016/j.aninu.2017.07.003
ContentType Journal Article
Copyright Bharati Vidyapeeth's Institute of Computer Applications and Management 2021
Bharati Vidyapeeth's Institute of Computer Applications and Management 2021.
Copyright_xml – notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2021
– notice: Bharati Vidyapeeth's Institute of Computer Applications and Management 2021.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s41870-021-00657-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2511-2112
EndPage 891
ExternalDocumentID 10_1007_s41870_021_00657_3
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z7Z
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
JQ2
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2343-8c43666839fd6a2ee7d26f2d519faf1b6ef8f6216ddb766a015c5c4fbdefbd6e3
IEDL.DBID RSV
ISSN 2511-2104
IngestDate Sun Nov 30 04:22:21 EST 2025
Sat Nov 29 03:11:45 EST 2025
Tue Nov 18 22:40:13 EST 2025
Fri Feb 21 02:45:01 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords AOSMO model
CNN
Performance measures
Maize leaf detection
4D-LBP features
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2343-8c43666839fd6a2ee7d26f2d519faf1b6ef8f6216ddb766a015c5c4fbdefbd6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255213596
PQPubID 2034493
PageCount 15
ParticipantIDs proquest_journals_3255213596
crossref_primary_10_1007_s41870_021_00657_3
crossref_citationtrail_10_1007_s41870_021_00657_3
springer_journals_10_1007_s41870_021_00657_3
PublicationCentury 2000
PublicationDate 20230200
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationSubtitle An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management
PublicationTitle International journal of information technology (Singapore. Online)
PublicationTitleAbbrev Int. j. inf. tecnol
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Gensheng H, Xiaowei Y, Yan Z, Mingzhu W (2019) Identification of tea leaf diseases by using an improved deep convolutional neural network. Sustain Comput Inform Syst 24
Shao-qingWANGJiaMAMengWANGXin-huaWANGChenJGCombined application of Trichoderma harzianum SH2303 and difenoconazole-propiconazolein controlling Southern corn leaf blight disease caused by Cochliobolus heterostrophus in maizeJ Integr Agric20191892063207110.1016/S2095-3119(19)62603-1
ZhangXQiaoYMengFFanCZhangMIdentification of maize leaf diseases using improved deep convolutional neural networksIEEE Access20186303703037710.1109/ACCESS.2018.2844405
TillessenAMenkhausJJoseph-AlexanderVDevelopment of specific PCR primers for diagnosis and quantitative detection of the fungal maize pathogen Kabatiella zeaeEur J Plant Pathol2018152250350610.1007/s10658-018-1456-1
LeCun Y, Kavukvuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In: Circuits and Systems, International Symposium on, 253–256
PaswelPMOlafEBoddupalliPDanMYosephBMaize lethal necrosis disease: evaluating agronomic and genetic control strategies for Ethiopia and KenyaAgric Syst201816222022810.1016/j.agsy.2018.01.016
Malusi S, Mbuyu S (2019) A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. AgriEngineering
MubeenSRafiqueMMunisMFHChaudharyHJStudy of southern corn leaf blight (SCLB) on maize genotypes and its effect on yield”J Saudi Soc Agric Sci2017163210217
Janse van RensburgBMc LarenNWSchoemanAFlettBCThe effects of cultivar and prophylactic fungicide spray for leaf diseases on colonisation of maize ears by fumonisin producing Fusarium spp. and fumonisin synthesis in South AfricaCrop Protect201679566310.1016/j.cropro.2015.10.009
Avinash S, Akshay S, Panigrahi BK, Deep K, Rajesh K (2015) Ageist spider monkey optimization algorithm. Swarm Evol Comput
FentahunMFeyissaTAbrahamAHaeRKDetection and characterization of Maize chlorotic mottle virus and Sugarcanemosaic virus associated with maize lethal necrosis disease in Ethiopia: an emerging threat to maize production in the regionEur J Plant Pathol201714941011101710.1007/s10658-017-1229-2
Cueto-GinzoASerranoLSinERodríguezRAchonMAExogenous salicylic acid treatment delays initial infection and counteracts alterations induced by Maize dwarf mosaic virus in the maize proteomePhysiol Mol Plant Pathol201696475910.1016/j.pmpp.2016.07.001
Ramar AP, Selvaraj A, Madakannu A, Annamalai M (2019) Maize leaf disease classification using deep convolutional neural networks. Neural Comput Appl, 1–9, 17 May 2019
FanK-CHungT-YA novel local pattern descriptor—local vector pattern in high-order derivative space for face recognitionIEEE Trans Image Process201423728772889322646810.1109/TIP.2014.23214951374.94102
QinYPeterB-KMingliangXQuantitative disease resistance: dissection and adoption in maizeMol Plant201710340241310.1016/j.molp.2017.02.004
Li-yuSHIXin-haiLIZhuan-fangHAOChuan-xiaoXIEGuang-tangPANComparative QTL mapping of resistance to gray leaf spot in maize based on bioinformaticsAgric Sci China20076121411141910.1016/S1671-2927(08)60002-4
NishaSSamirRNishchalKSRicardaMEInfluence of feeding crimped kernel maize silage on the course of subclinical necrotic enteritis in a broiler disease modelAnimal Nutr20173439239810.1016/j.aninu.2017.07.003
QuanLFengHLvYWangQiZongyangYMaize seedling detection under different growth stages and complex field environments based on an improved Faster R-CNNBiosys Eng201918412310.1016/j.biosystemseng.2019.05.002
WangLWangPLiangSQiXLianxiangXMonitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area indexComput Electron Agric2019160829010.1016/j.compag.2019.03.017
InosDElhadiAOnisimoMKwabenaAElfatihMA-RJohnOMhosisiMTesting the capability of spectral resolution of the new multispectral sensors on detecting the severity of grey leaf spot disease in maize cropGeocarto Int201833111223123610.1080/10106049.2017.1343391
Pashupat V, Kamaljit K, Pannu PPS, Gurjit K, Harleen K (2019) Unraveling the metabolite signatures of maize genotypes showing differential response towards southern corn leaf blight by 1H-NMR and FTIR spectroscopy. Physiol Mol Plant Pathol 108
Li-liZXiang-liZYeFJunFHuaQPost-silking nitrogen accumulation and remobilization are associated with green leaf persistence and plant density in maizeJ Integr Agric20191881882189210.1016/S2095-3119(18)62087-8
RamKUshaMRobinGArtiBHaritRCEffect of elevated temperature and carbon dioxide levels on maydis leaf blight disease tolerance attributes in maizeAgric Ecosyst Environ20162319810410.1016/j.agee.2016.06.029
Yiwei P, Zhibin P, Yikun Wg, Wei W (2019) A new fast search algorithm for exact k-nearest neighbors based on optimal triangle-inequality-based check strategy. Knowl-Based Syst, Available online 9 October 2019, Article 105088 (in press)
LyimoHJFPrattRCMnyukuRSOWComposted cattle and poultry manures provide excellent fertility and improved management of gray leaf spot in maizeField Crops Res20121269710310.1016/j.fcr.2011.09.023
ArjunagiSPatilNBTexture based leaf disease classification using machine learning techniquesInt J Eng Adv Technol (IJEAT)20199122498958
ShravankumarANagarajBPComputing amount of disease in crop using artificial intelligenceInt J Innov Technol Explor Eng (IJITEE)201981222783075
LadejobiOSalaudeenMTLava KumarPMenkirAGedilMMapping of QTLs associated with recovery resistance to streak virus disease in maizeAnn Agric Sci201863111512110.1016/j.aoas.2018.05.006
Zhi-YongZLinYShu-FengZHan-GuangWFeng-LingFImprovement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interferenceJ Biotechnol20111533–4181187
Enquhone A (2017) Maize leaf diseases recognition and classification based on imaging and machine learning techniques. Int J Innov Res Comput Commun Eng 5(12)
Ramesh S, Vydeki D (2019) Recognition and classification of paddy leaf diseases using Optimized Deep Neural network with Jaya algorithm. Inf Process Agric, Available online 6 September 2019 (in press)
K-C Fan (657_CR28) 2014; 23
D Inos (657_CR8) 2018; 33
S Nisha (657_CR11) 2017; 3
657_CR3
657_CR4
B Janse van Rensburg (657_CR20) 2016; 79
657_CR31
657_CR1
O Ladejobi (657_CR9) 2018; 63
A Cueto-Ginzo (657_CR13) 2016; 96
M Fentahun (657_CR5) 2017; 149
Y Qin (657_CR12) 2017; 10
SHI Li-yu (657_CR16) 2007; 6
X Zhang (657_CR2) 2018; 6
PM Paswel (657_CR10) 2018; 162
S Mubeen (657_CR18) 2017; 16
657_CR26
657_CR27
L Wang (657_CR24) 2019; 160
657_CR25
657_CR23
Z Zhi-Yong (657_CR14) 2011; 153
WANG Shao-qing (657_CR19) 2019; 18
Z Li-li (657_CR21) 2019; 18
657_CR6
A Tillessen (657_CR7) 2018; 152
HJF Lyimo (657_CR15) 2012; 126
A Shravankumar (657_CR29) 2019; 8
K Ram (657_CR17) 2016; 231
L Quan (657_CR22) 2019; 184
S Arjunagi (657_CR30) 2019; 9
References_xml – reference: Malusi S, Mbuyu S (2019) A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. AgriEngineering
– reference: TillessenAMenkhausJJoseph-AlexanderVDevelopment of specific PCR primers for diagnosis and quantitative detection of the fungal maize pathogen Kabatiella zeaeEur J Plant Pathol2018152250350610.1007/s10658-018-1456-1
– reference: LeCun Y, Kavukvuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In: Circuits and Systems, International Symposium on, 253–256
– reference: Zhi-YongZLinYShu-FengZHan-GuangWFeng-LingFImprovement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interferenceJ Biotechnol20111533–4181187
– reference: FentahunMFeyissaTAbrahamAHaeRKDetection and characterization of Maize chlorotic mottle virus and Sugarcanemosaic virus associated with maize lethal necrosis disease in Ethiopia: an emerging threat to maize production in the regionEur J Plant Pathol201714941011101710.1007/s10658-017-1229-2
– reference: Cueto-GinzoASerranoLSinERodríguezRAchonMAExogenous salicylic acid treatment delays initial infection and counteracts alterations induced by Maize dwarf mosaic virus in the maize proteomePhysiol Mol Plant Pathol201696475910.1016/j.pmpp.2016.07.001
– reference: QinYPeterB-KMingliangXQuantitative disease resistance: dissection and adoption in maizeMol Plant201710340241310.1016/j.molp.2017.02.004
– reference: ShravankumarANagarajBPComputing amount of disease in crop using artificial intelligenceInt J Innov Technol Explor Eng (IJITEE)201981222783075
– reference: Avinash S, Akshay S, Panigrahi BK, Deep K, Rajesh K (2015) Ageist spider monkey optimization algorithm. Swarm Evol Comput
– reference: InosDElhadiAOnisimoMKwabenaAElfatihMA-RJohnOMhosisiMTesting the capability of spectral resolution of the new multispectral sensors on detecting the severity of grey leaf spot disease in maize cropGeocarto Int201833111223123610.1080/10106049.2017.1343391
– reference: Janse van RensburgBMc LarenNWSchoemanAFlettBCThe effects of cultivar and prophylactic fungicide spray for leaf diseases on colonisation of maize ears by fumonisin producing Fusarium spp. and fumonisin synthesis in South AfricaCrop Protect201679566310.1016/j.cropro.2015.10.009
– reference: LyimoHJFPrattRCMnyukuRSOWComposted cattle and poultry manures provide excellent fertility and improved management of gray leaf spot in maizeField Crops Res20121269710310.1016/j.fcr.2011.09.023
– reference: RamKUshaMRobinGArtiBHaritRCEffect of elevated temperature and carbon dioxide levels on maydis leaf blight disease tolerance attributes in maizeAgric Ecosyst Environ20162319810410.1016/j.agee.2016.06.029
– reference: MubeenSRafiqueMMunisMFHChaudharyHJStudy of southern corn leaf blight (SCLB) on maize genotypes and its effect on yield”J Saudi Soc Agric Sci2017163210217
– reference: Yiwei P, Zhibin P, Yikun Wg, Wei W (2019) A new fast search algorithm for exact k-nearest neighbors based on optimal triangle-inequality-based check strategy. Knowl-Based Syst, Available online 9 October 2019, Article 105088 (in press)
– reference: Shao-qingWANGJiaMAMengWANGXin-huaWANGChenJGCombined application of Trichoderma harzianum SH2303 and difenoconazole-propiconazolein controlling Southern corn leaf blight disease caused by Cochliobolus heterostrophus in maizeJ Integr Agric20191892063207110.1016/S2095-3119(19)62603-1
– reference: Ramar AP, Selvaraj A, Madakannu A, Annamalai M (2019) Maize leaf disease classification using deep convolutional neural networks. Neural Comput Appl, 1–9, 17 May 2019
– reference: QuanLFengHLvYWangQiZongyangYMaize seedling detection under different growth stages and complex field environments based on an improved Faster R-CNNBiosys Eng201918412310.1016/j.biosystemseng.2019.05.002
– reference: WangLWangPLiangSQiXLianxiangXMonitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area indexComput Electron Agric2019160829010.1016/j.compag.2019.03.017
– reference: Ramesh S, Vydeki D (2019) Recognition and classification of paddy leaf diseases using Optimized Deep Neural network with Jaya algorithm. Inf Process Agric, Available online 6 September 2019 (in press)
– reference: FanK-CHungT-YA novel local pattern descriptor—local vector pattern in high-order derivative space for face recognitionIEEE Trans Image Process201423728772889322646810.1109/TIP.2014.23214951374.94102
– reference: Enquhone A (2017) Maize leaf diseases recognition and classification based on imaging and machine learning techniques. Int J Innov Res Comput Commun Eng 5(12)
– reference: Pashupat V, Kamaljit K, Pannu PPS, Gurjit K, Harleen K (2019) Unraveling the metabolite signatures of maize genotypes showing differential response towards southern corn leaf blight by 1H-NMR and FTIR spectroscopy. Physiol Mol Plant Pathol 108
– reference: PaswelPMOlafEBoddupalliPDanMYosephBMaize lethal necrosis disease: evaluating agronomic and genetic control strategies for Ethiopia and KenyaAgric Syst201816222022810.1016/j.agsy.2018.01.016
– reference: Li-liZXiang-liZYeFJunFHuaQPost-silking nitrogen accumulation and remobilization are associated with green leaf persistence and plant density in maizeJ Integr Agric20191881882189210.1016/S2095-3119(18)62087-8
– reference: ZhangXQiaoYMengFFanCZhangMIdentification of maize leaf diseases using improved deep convolutional neural networksIEEE Access20186303703037710.1109/ACCESS.2018.2844405
– reference: Li-yuSHIXin-haiLIZhuan-fangHAOChuan-xiaoXIEGuang-tangPANComparative QTL mapping of resistance to gray leaf spot in maize based on bioinformaticsAgric Sci China20076121411141910.1016/S1671-2927(08)60002-4
– reference: LadejobiOSalaudeenMTLava KumarPMenkirAGedilMMapping of QTLs associated with recovery resistance to streak virus disease in maizeAnn Agric Sci201863111512110.1016/j.aoas.2018.05.006
– reference: NishaSSamirRNishchalKSRicardaMEInfluence of feeding crimped kernel maize silage on the course of subclinical necrotic enteritis in a broiler disease modelAnimal Nutr20173439239810.1016/j.aninu.2017.07.003
– reference: Gensheng H, Xiaowei Y, Yan Z, Mingzhu W (2019) Identification of tea leaf diseases by using an improved deep convolutional neural network. Sustain Comput Inform Syst 24
– reference: ArjunagiSPatilNBTexture based leaf disease classification using machine learning techniquesInt J Eng Adv Technol (IJEAT)20199122498958
– volume: 96
  start-page: 47
  year: 2016
  ident: 657_CR13
  publication-title: Physiol Mol Plant Pathol
  doi: 10.1016/j.pmpp.2016.07.001
– volume: 153
  start-page: 181
  issue: 3–4
  year: 2011
  ident: 657_CR14
  publication-title: J Biotechnol
– volume: 63
  start-page: 115
  issue: 1
  year: 2018
  ident: 657_CR9
  publication-title: Ann Agric Sci
  doi: 10.1016/j.aoas.2018.05.006
– volume: 231
  start-page: 98
  year: 2016
  ident: 657_CR17
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2016.06.029
– volume: 8
  start-page: 2278
  issue: 12
  year: 2019
  ident: 657_CR29
  publication-title: Int J Innov Technol Explor Eng (IJITEE)
– volume: 9
  start-page: 2249
  issue: 1
  year: 2019
  ident: 657_CR30
  publication-title: Int J Eng Adv Technol (IJEAT)
– volume: 33
  start-page: 1223
  issue: 11
  year: 2018
  ident: 657_CR8
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2017.1343391
– ident: 657_CR4
  doi: 10.1016/j.pmpp.2019.101441
– ident: 657_CR3
– volume: 18
  start-page: 1882
  issue: 8
  year: 2019
  ident: 657_CR21
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(18)62087-8
– ident: 657_CR1
– ident: 657_CR23
  doi: 10.1016/j.suscom.2019.100353
– ident: 657_CR25
– volume: 126
  start-page: 97
  year: 2012
  ident: 657_CR15
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2011.09.023
– volume: 16
  start-page: 210
  issue: 3
  year: 2017
  ident: 657_CR18
  publication-title: J Saudi Soc Agric Sci
– volume: 160
  start-page: 82
  year: 2019
  ident: 657_CR24
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.03.017
– volume: 149
  start-page: 1011
  issue: 4
  year: 2017
  ident: 657_CR5
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-017-1229-2
– ident: 657_CR6
– volume: 6
  start-page: 30370
  year: 2018
  ident: 657_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2844405
– volume: 10
  start-page: 402
  issue: 3
  year: 2017
  ident: 657_CR12
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2017.02.004
– volume: 18
  start-page: 2063
  issue: 9
  year: 2019
  ident: 657_CR19
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(19)62603-1
– volume: 152
  start-page: 503
  issue: 2
  year: 2018
  ident: 657_CR7
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-018-1456-1
– ident: 657_CR27
  doi: 10.1109/ISCAS.2010.5537907
– volume: 79
  start-page: 56
  year: 2016
  ident: 657_CR20
  publication-title: Crop Protect
  doi: 10.1016/j.cropro.2015.10.009
– ident: 657_CR31
  doi: 10.1016/j.knosys.2019.105088
– volume: 162
  start-page: 220
  year: 2018
  ident: 657_CR10
  publication-title: Agric Syst
  doi: 10.1016/j.agsy.2018.01.016
– volume: 184
  start-page: 1
  year: 2019
  ident: 657_CR22
  publication-title: Biosys Eng
  doi: 10.1016/j.biosystemseng.2019.05.002
– ident: 657_CR26
– volume: 6
  start-page: 1411
  issue: 12
  year: 2007
  ident: 657_CR16
  publication-title: Agric Sci China
  doi: 10.1016/S1671-2927(08)60002-4
– volume: 23
  start-page: 2877
  issue: 7
  year: 2014
  ident: 657_CR28
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2014.2321495
– volume: 3
  start-page: 392
  issue: 4
  year: 2017
  ident: 657_CR11
  publication-title: Animal Nutr
  doi: 10.1016/j.aninu.2017.07.003
SSID ssib031263571
ssj0002710285
Score 2.2084363
Snippet In recent years, the number of maize disease species has increased, which obviously increases the level of damages in leaves. The reason for maize leaf disease...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 877
SubjectTerms Accuracy
Agricultural production
Algorithms
Artificial Intelligence
Artificial neural networks
Classification
Computer Imaging
Computer Science
Corn
Crop diseases
Crops
Deep learning
Feature extraction
Identification
Image Processing and Computer Vision
Leaves
Machine Learning
Monkeys
Optimization
Optimization models
Original Research
Pathogens
Pattern Recognition and Graphics
Plant diseases
Software Engineering
Spectrum analysis
Vision
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8QwDI54DTDwRhwvZWCDCtKkSTshhEAM6LgBJMRS5fKQDnEPrsDAD-B3Y6cpB0iwMFQd2qSt7NqfY8cfIftpwTItCpUwV0CAIpVIdJbbRCtbCKe84yawllypdju_uys6ccGtimWVjU0MhtoODa6RH3HAvinjWSFPRk8JskZhdjVSaEyTWeySgNQNney-0SfOsNNKhDsPIcmG7hSrGhFYJxDtiLiPJuymEyxHFpYU4mtwzPDvffdVEwD6I2caXNHF0n8_YpksRhBKT2utWSFTbrBKFr60Jlwj79dgS_q9N2cpFqZHBYVB2AAznEL5OAXMS3s2lhwFKdOhp30NI-mj057GDFBFccWXaqtHaGApmDFQMFohQe2YwnuBMaHD-pn1NIGjZ53cXpzfnF0mkbMhMSkXPMmN4BARAezyVurUOWVT6VMLQNFrz7rS-dzLlElru0pKDWjEZEb4rnVwSMc3yMxgOHCbhCqAStx4b3Pc_yq5NoJ5lx1bpnKtpWsR1kinNLGhOfJqPJafrZiDREuQaBkkWvIWOfgcM6rbefx5904jxjL-2lU5kWGLHDaKMLn8-2xbf8-2TeaRyr6uCN8hM8_jF7dL5szrc68a7wXF_gCQgv7b
  priority: 102
  providerName: ProQuest
Title Optimized convolutional neural network for identification of maize leaf diseases with adaptive ageist spider monkey optimization model
URI https://link.springer.com/article/10.1007/s41870-021-00657-3
https://www.proquest.com/docview/3255213596
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: RSV
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6VxwEO3fIS29KVD9wgEo4dOzkCAlVqtV1tW4S4RF4_pEX70gY48AP43YwdZykIkNpDkkMcJ7I9M99kxvMB7KcFzRQvZEJtgQ6KkDxRWW4SJU3BrXSW6cBa8kN2u_nlZdGLm8KqJtu9CUkGTb3Y7MZp7klSUnR_0W6iaCzBCpq73BM29H9dNKuIUV9fJYKc6xBa80bU5zJ6OJ2gj8Pj7pnXu31uoZ5g54tIaTBA563_-_RP8DECTnJcr5AN-GAnm9BqyBxIlO1NWP-rMuEWPPxEVTIe3ltDfF56XJ_Yj69_GS4he5wg5CVDEzOOwiSTqSNjhU-SkVWOxABQRfwPX6KMmnn9SlCL4foileennRMUBdQlZFq_s-4mUPRsw5_zs9-n35JI2ZDolHGW5JozdIgQdTkjVGqtNKlwqUGc6JSjA2Fd7kRKhTEDKYRCMKIzzd3AWDyEZTuwPJlO7C4QiUiJaedM7re_CqY0p85mR4bKXClh20CbaSp1rGfuaTVG5aIScxj2Eoe9DMNesjYcLJ6Z1dU83m2918x-GSW7Khn6YCllWSHacNjM9tPtt3v7_G_Nv8CaZ7avE8T3YPlmfmu_wqq-uxlW8w6snJx1e_0OLH2XCZ572VUnSMEjA8P-ew
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgk4UB5FbGnBBziBBX7ETg4IIdqq1S4LhyL1Frx-SFu1u8umgNof0J_Db2TsOF1Aam89cIhySDyRnG9mvrHHMwDPecUKIytNma8wQFFaUlOUjhrtKul18MKmriUDPRyWBwfV5yX41Z2FiWmVnU1MhtpNbVwjfy2Q-3Imikq9m32jsWtU3F3tWmi0sOj7058YsjVv97bw_77gfGd7_8MuzV0FqOVCClpaKZCzIzEIThnuvXZcBe6QygQT2Ej5UAbFmXJupJUy6C9tYWUYOY-X8gLl3oAVKUod9aqvaYdfwWJll0yvDtOmXnTfMYsyEnmK0ZXM53bS6T3Jytj1hWM8j0QAdf1v37ggvP_s0SbXt7P6v03aPbibSTZ532rFfVjykwdw54_Siw_h_BPayuPxmXckJt5nBcRBscBnuqX0eIKcnoxdTqlKKCbTQI4NjiRH3gSSd7gaEle0iXFmFh0IQTONCkSa2IB3TnAe0FiSafvNVkzqQbQGX65lIh7B8mQ68Y-BaKSCwobgyni-VwljJQu-eOOYLo1RvgesQ0Ntc8H22DfkqL4oNZ0QVCOC6oSgWvTg5cWYWVuu5Mq3NzrY1Nl0NfUCMz141QFv8fhyaetXS3sGt3b3Pw7qwd6w_wRucySLbfb7BiyfzL_7Tbhpf5yMm_nTpFQEvl43IH8DsSJeDA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceKMuFPABThC1fsRODgghyoqq1bIHkCouweuHtKjd3W4KCH4AP4pfx4zjdAGJ3nrgEOWQ2JGcb2a-8YxnAB6LmpdW1abgoUYHRRtV2LLyhTW-VsHEIF3qWrJvRqPq4KAer8HP_iwMpVX2OjEpaj93tEe-JZH7Ci7LWm_FnBYx3hm-WBwX1EGKIq19O40OInvh21d039rnuzv4r58IMXz97tWbIncYKJyQShaVUxL5O5KE6LUVIRgvdBQeaU20kU90iFXUgmvvJ0Zri7bTlU7FiQ946SBx3gtw0aCPSemE4_JDj2XJqcpLplqfUoCPTDllVBKpL9DTUvkMTzrJp3hFHWAE-vZIClDu_7STK_L7V7w2mcHh9f95AW_AtUy-2ctOWm7CWpjdgqu_lWS8DT_eog49mn4PnlFCfhZMHESFP9Mtpc0z5Pps6nOqVUI3m0d2ZHEkOww2shz5ahntdDPr7YIMC0P1jYLFWmrMu2S4DqhE2bz7ZjdN6k10B96fy0LchfXZfBY2gBmkiNLF6Cs696uldYrHUG57biprdRgA75HRuFzInfqJHDanJagTmhpEU5PQ1MgBPD0ds-jKmJz59mYPoSartLZZ4WcAz3oQrh7_e7Z7Z8_2CC4jDpv93dHefbgikEN2SfGbsH6y_BwewCX35WTaLh8m-WLw8bzx-AuMpGcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+convolutional+neural+network+for+identification+of+maize+leaf+diseases+with+adaptive+ageist+spider+monkey+optimization+model&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Arjunagi%2C+Shravankumar&rft.au=Patil%2C+Nagaraj+B.&rft.date=2023-02-01&rft.pub=Springer+Nature+Singapore&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=15&rft.issue=2&rft.spage=877&rft.epage=891&rft_id=info:doi/10.1007%2Fs41870-021-00657-3&rft.externalDocID=10_1007_s41870_021_00657_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon