Proximal point algorithms based on S-iterative technique for nearly asymptotically quasi-nonexpansive mappings and applications
In this paper, we combine the S -iteration process introduced by Agarwal et al. ( J. Nonlinear Convex Anal. , 8 (1), 61–79 2007 ) with the proximal point algorithm introduced by Rockafellar ( SIAM J. Control Optim. , 14 , 877–898 1976 ) to propose a new modified proximal point algorithm based on the...
Gespeichert in:
| Veröffentlicht in: | Numerical algorithms Jg. 86; H. 4; S. 1561 - 1590 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we combine the
S
-iteration process introduced by Agarwal et al. (
J. Nonlinear Convex Anal.
,
8
(1), 61–79
2007
) with the proximal point algorithm introduced by Rockafellar (
SIAM J. Control Optim.
,
14
, 877–898
1976
) to propose a new modified proximal point algorithm based on the
S
-type iteration process for approximating a common element of the set of solutions of convex minimization problems and the set of fixed points of nearly asymptotically quasi-nonexpansive mappings in the framework of CAT(0) spaces and prove the △-convergence of the proposed algorithm for solving common minimization problem and common fixed point problem. Our result generalizes, extends and unifies the corresponding results of Dhompongsa and Panyanak (
Comput. Math. Appl.
,
56
, 2572–2579
2008
), Khan and Abbas (
Comput. Math. Appl.
,
61
, 109–116
2011
), Abbas et al. (
Math. Comput. Modelling
,
55
, 1418–1427
2012
) and many more. |
|---|---|
| AbstractList | In this paper, we combine the S-iteration process introduced by Agarwal et al. (J. Nonlinear Convex Anal., 8(1), 61–79 2007) with the proximal point algorithm introduced by Rockafellar (SIAM J. Control Optim., 14, 877–898 1976) to propose a new modified proximal point algorithm based on the S-type iteration process for approximating a common element of the set of solutions of convex minimization problems and the set of fixed points of nearly asymptotically quasi-nonexpansive mappings in the framework of CAT(0) spaces and prove the △-convergence of the proposed algorithm for solving common minimization problem and common fixed point problem. Our result generalizes, extends and unifies the corresponding results of Dhompongsa and Panyanak (Comput. Math. Appl., 56, 2572–2579 2008), Khan and Abbas (Comput. Math. Appl., 61, 109–116 2011), Abbas et al. (Math. Comput. Modelling, 55, 1418–1427 2012) and many more. In this paper, we combine the S -iteration process introduced by Agarwal et al. ( J. Nonlinear Convex Anal. , 8 (1), 61–79 2007 ) with the proximal point algorithm introduced by Rockafellar ( SIAM J. Control Optim. , 14 , 877–898 1976 ) to propose a new modified proximal point algorithm based on the S -type iteration process for approximating a common element of the set of solutions of convex minimization problems and the set of fixed points of nearly asymptotically quasi-nonexpansive mappings in the framework of CAT(0) spaces and prove the △-convergence of the proposed algorithm for solving common minimization problem and common fixed point problem. Our result generalizes, extends and unifies the corresponding results of Dhompongsa and Panyanak ( Comput. Math. Appl. , 56 , 2572–2579 2008 ), Khan and Abbas ( Comput. Math. Appl. , 61 , 109–116 2011 ), Abbas et al. ( Math. Comput. Modelling , 55 , 1418–1427 2012 ) and many more. |
| Author | Kang, Shin Min Sahu, D. R. Kumar, Ajeet |
| Author_xml | – sequence: 1 givenname: D. R. surname: Sahu fullname: Sahu, D. R. organization: Department of Mathematics, Institute of Science, Banaras Hindu University – sequence: 2 givenname: Ajeet surname: Kumar fullname: Kumar, Ajeet organization: Department of Mathematics, Institute of Science, Banaras Hindu University – sequence: 3 givenname: Shin Min surname: Kang fullname: Kang, Shin Min email: smkang@gnu.ac.kr organization: Department of Mathematics, Gyeongsang National University, Center for General Education, China Medical University |
| BookMark | eNp9kE1LRCEUhiUK-vwDrYTW1tH74Z1lRF8QFFRrOVe9k3FHb-pEs-qv5zRB0KKVR3gfz-uzT7Z98JaQYw6nHECeJc5BNgwEMIBZ3TCxRfZ4IwWbibbZLjNwyXg163bJfkqvAAUTco98PsTw4RY40ik4nymO8xBdflkk2mOyhgZPH5nLNmJ275Zmq1-8e1taOoRIvcU4riim1WLKITuNY7m-LTE5tm74MaFPa2yB0-T8PFH0hpZ5LNHsgk-HZGfAMdmjn_OAPF9dPl3csLv769uL8zumRVULpjkaMBW0pu9lrVG0hqOtpdaiaUEao23PW5Sy65vBih6GRhagH2pjJR-gOiAnm3enGEr7lNVrWEZfViox413LZdfUJSU2KR1DStEOaopFTlwpDmotWm1EqyJafYtWokDdH0i7_P27HNGN_6PVBk1lj5_b-NvqH-oLvNiY3Q |
| CitedBy_id | crossref_primary_10_1080_02331934_2024_2399807 crossref_primary_10_1007_s11075_023_01542_9 crossref_primary_10_1007_s40314_021_01646_9 crossref_primary_10_1080_00036811_2023_2256357 crossref_primary_10_1080_02331934_2023_2231957 crossref_primary_10_1016_j_cnsns_2024_108192 crossref_primary_10_1186_s13660_021_02618_7 |
| Cites_doi | 10.1090/S0002-9939-1974-0336469-5 10.1007/BF02566027 10.1080/01630563.2016.1276075 10.1090/S0002-9939-1964-0165498-3 10.1155/S1687182004406081 10.1080/01630563.2016.1206566 10.1016/j.na.2005.09.044 10.3934/cpaa.2004.3.791 10.1007/978-1-4419-9467-7 10.1016/j.mcm.2011.10.019 10.4134/CKMS.c150199 10.1016/S0895-7177(00)00199-0 10.1016/j.na.2007.04.011 10.4310/CAG.1998.v6.n2.a1 10.22436/jnsa.008.06.07 10.1137/100798648 10.1016/j.camwa.2008.05.036 10.1006/jmaa.2000.6980 10.1080/01630563.2015.1060614 10.1090/S0002-9939-1953-0054846-3 10.1007/s10115-017-1047-z 10.1016/j.camwa.2010.10.037 10.1137/0314056 10.1007/s10898-011-9647-8 10.1090/S0002-9939-1972-0298500-3 10.1007/BF02715544 10.1007/s11856-012-0091-3 10.1090/S0002-9947-2014-05968-0 10.1007/978-3-662-12494-9 10.1090/S0002-9939-1976-0423139-X 10.1007/s10957-016-1031-x 10.1007/s11075-017-0324-y |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s11075-020-00945-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 1590 |
| ExternalDocumentID | 10_1007_s11075_020_00945_2 |
| GrantInformation_xml | – fundername: Council of Scientific and Industrial Research (CSIR), New Delhi, India grantid: 09/013(0584)/2015-EMR-I |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c2342-c1ad0d306dbb74ca26d1ae47cc25607ddceb16a778b5fe2b0f57d0dbf4de71f03 |
| IEDL.DBID | M7S |
| ISSN | 1017-1398 |
| IngestDate | Wed Nov 05 01:38:34 EST 2025 Tue Nov 18 22:07:00 EST 2025 Sat Nov 29 01:34:51 EST 2025 Fri Feb 21 02:48:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | iteration process Fixed point problem 47H10 convergence Convex minimization problem Mean nonexpansive mapping CAT space 47H09 49M05 Proximal point algorithm Nearly asymptotically quasi-nonexpansive mapping |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2342-c1ad0d306dbb74ca26d1ae47cc25607ddceb16a778b5fe2b0f57d0dbf4de71f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918617854 |
| PQPubID | 2043837 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_2918617854 crossref_primary_10_1007_s11075_020_00945_2 crossref_citationtrail_10_1007_s11075_020_00945_2 springer_journals_10_1007_s11075_020_00945_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20210400 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 4 year: 2021 text: 20210400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | AgarwalRPO’ReganDSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.200781617923146661134.47047 SahuDRYaoJCSinghVKKumarSSemilocal convergence analysis of S-iteration process of Newton-Kantorovich like in Banach spacesJ. Optim. Theory Appl.2016172110212735968621359.65089 ChangSSYaoJCWangLQinLJSome convergence theorems involving proximal point and common fixed points for asymptotically nonexpansive mappings in CAT(0) spacesFixed Point Theory Appl.2016681135100451393.47027 OsilikeMOAniagbosorSCWeak and strong convergence theorems for fixed points of asymptotically nonexpansive mappingsMath. Comput. Modelling2000321181119117917540971.47038 MarinoGXuHKConvergence of generalized proximal point algorithmCommun. Pure Appl. Anal.2004379180821063001095.90115 WuHCChengCZQuDNStrong convergence theorems for quasi-nonexpansive mappings and maximal monotone operators in Hilbert spacesJ. Inequal. Appl.20143181233486131337.47102 DhompongsaSKirkWAPanyanakBNonexpansive set-valued mappings in metric and Banach spacesJ. Nonlinear Convex Anal.20078354523146641120.47043 GoebelKReichSUniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings1984New YorkMarcel Dekker0537.46001 DhompongsaSPanyanakBOn △-convergence theorems in CAT(0) spacesComput. Math. Appl.2008562572257924600661165.65351 KirkWAPanyanakBA concept of convergence in geodesic spacesNonlinear Anal.200868123689369624160761145.54041 PantRShuklaRApproximating fixed points of generalized α-nonexpansive mappings in Banach spacesNumer. Funct. Anal. Optim.201738224826636066111367.47069 SahuDRYaoJCA generalized hybrid steepest descent method and applicationsJ. Nonlinear Var. Anal.2017111111261443.47075 JostJConvex functionals and generalized harmonic maps into spaces of nonpositive curvatureComment. Math Helv.19957065967313606080852.58022 Kirk, W.A.: Geodesic geometry and fixed point theory II. In: International Conference on Fixed Point Theory and Applications, pp 113–142. Yokohama Publ., Yokohama (2004) GoebelKKirkWAA fixed point theorem for asymptotically nonexpansive mappingsProc. Amer. Math. Soc.1972351711742985000256.47045 BačákMThe proximal point algorithm in metric spacesIsrael J. Math.201319468970130470871278.49039 SuparatulatornRCholamjiakWSuantaiSA modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphsNumer Algor.201877479490374838006836924https://doi.org/10.1007/s11075-017-0324-y SaiparaPChaipunyaPChoYJKumamPOn strong and △-convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in CAT(k) spacesJ. Nonlinear Sci. Appl.20158196597533657121443.47081 EdelsteinMOn nonexpansive mappingsProc. Amer. Math. Soc.1964156896951654980124.16004 ShahzadNZegeyeHStrong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive mapsAppl. Math. Comput.20071891058106523317791126.65054 QihouLIterative sequences for asymptotically quasi-nonexpansive mappingsJ. Math. Anal. Appl.20012591718364391033.47047 CholamjiakPAbdouAAChoYJProximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spacesFixed Point Theory Appl.20152271334333571428.47022 SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory Appl.201112118720427970801281.47053 RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control Optim.1976148778984104830358.90053 MannWRMean value methods in iterationProc. Amer. Math. Soc.19534506610548460050.11603 SahuDRFixed points of demicontinuous nearly Lipschitzian mappings in Banach spacesComment Math. Univ. Carolin.200546465366622594971123.47041 PicardÉMémoire sur la théorie des é quations aux dérivées partielles et la méthode des approximations successivesJ. Math. Pures Appl.1890614521022.0357.02 ZhangSAbout fixed point theory for mean nonexpansive mapping in Banach spacesJ. Sichuan Univ.197526768 SahuDRWongNCYaoJCA unified hybrid iterative method for solving variational inequalities involving generalized pseudocontractive mappingsSIAM J. Control Optim.2012502335235429747411262.47091 BruhatFTitsJGroups réductifs sur un corps local., I. Données radicielles valuéesInst. Hautes Etudes Sci., Publ. Math.19724152510254.14017 SahuDRYaoJCThe prox-Tikhonov regularization method for the proximal point algorithm in Banach spacesJ Glob. Optim.201151641655286099310.1007/s10898-011-9647-81247.47048 DhompongsaSKirkWASimsBFixed points of uniformly Lipschitzian mappingsNonlinear Anal.200665476277222326801105.47050 MartinetBRéularisation d’inéquations variationnelles par approximations successives (French) Rev. Française InformatRecherche Opérationnelle197041541580215.21103 BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011BerlinSpringer1218.47001 AbbasMKadelburgZSahuDRFixed point theorems for Lipschitzian type mappings in CAT(0) spacesMath. Comput. Modelling2012551418142728875251262.47077 SahuDRAnsariQHYaoJCConvergence of inexact mann iterations generated by nearly nonexpansive sequences and applicationsNumer. Funct. Anal. Optim.201637101312133835530091367.47071 AgarwalRPO’ReganDSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications2009New YorkSpringer1176.47037 ChangSSWangLJoseph LeeHWChanCKYangLDemiclosed principle and △-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spacesAppl. Math. Comput.20122192611261729881401308.47060 TricomiFUn teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile realeGiorn. Mat. Battaglini1916541946.0439.03 BridsonMHaefligerAMetric Spaces of Non-Positive Curvature1999BerlinSpringer3193190988.53001 AnsariQHBalooeeJYaoJCExtended general nonlinear quasi-variational inequalities and projection dynamical systemsTaiwanese J. Math.201371321135230855141275.49013 ZhouJCuiYFixed point theorems for mean nonexpansive mappings in CAT(0) spacesNumer. Funct. Anal Optim.201536912241238339024610.1080/01630563.2015.10606141330.54074 MayerUFGradient flows on nonpositively curved metric spaces and harmonic mapsCommun. Anal. Geom.1998619925316514160914.58008 LimTCRemarks on some fixed point theoremsProc. Amer. Math. Soc.1976601791824231390346.47046 Sahu, D.R., Shi, L., Wong, N.C., Yao, Y.C.: Perturbed iterative methods for a general family of operators: convergence theory and applications. Optimization, 1–37 (2020) IshikawaSFixed points by a new iteration methodProc. Amer. Math. Soc.1974441471503364690286.47036 KhanSHAbbasMStrong and △-convergence of some iterative schemes in CAT(0) spacesComput. Math. Appl.20116110911627394401207.65069 Ariza-RuizDLeusteanLLópezGFirmly nonexpansive mappings in classes of geodesic spacesTrans. Amer. Math Soc.201436642994322320646006345421 KirkWAGeodesic Geometry and Fixed Point Theory, Seminar of Mathematical Analysis, Malaga, Seville, 2002–2003, Colec. Abierta, vol. 642003SevilleUniv. Sevilla Seer. Publ.195225 AtsathiTCholamjiakPKesornpromSPrasongAS-iteration process for asymptotic pointwise nonexpansive mappings in complete hyperbolic metric spacesCommun. Korean Math. Soc.201631357558335343311350.47041 AmbrosioLGigliNSavareGGradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich20082nd edn.BirkhauserBasel1145.35001 VermaMShuklaKKA new accelerated proximal technique for regression with high-dimensional datasetsKnowl. Inf Syst.201753423438https://doi.org/10.1007/s10115-017-1047-z M Bačák (945_CR24) 2013; 194 J Zhou (945_CR36) 2015; 36 K Goebel (945_CR7) 1984 DR Sahu (945_CR42) 2011; 12 SH Khan (945_CR18) 2011; 61 HC Wu (945_CR44) 2014; 318 UF Mayer (945_CR50) 1998; 6 RP Agarwal (945_CR37) 2009 S Dhompongsa (945_CR47) 2007; 8 M Bridson (945_CR46) 1999 D Ariza-Ruiz (945_CR26) 2014; 366 F Tricomi (945_CR30) 1916; 54 S Zhang (945_CR29) 1975; 2 L Ambrosio (945_CR51) 2008 S Dhompongsa (945_CR3) 2006; 65 P Cholamjiak (945_CR27) 2015; 227 WA Kirk (945_CR9) 2008; 68 L Qihou (945_CR32) 2001; 259 N Shahzad (945_CR41) 2007; 189 R Pant (945_CR15) 2017; 38 G Marino (945_CR22) 2004; 3 S Ishikawa (945_CR12) 1974; 44 WA Kirk (945_CR1) 2003 F Bruhat (945_CR45) 1972; 41 K Goebel (945_CR31) 1972; 35 P Saipara (945_CR19) 2015; 8 945_CR2 SS Chang (945_CR6) 2012; 219 R Suparatulatorn (945_CR16) 2018; 77 J Jost (945_CR49) 1995; 70 É Picard (945_CR10) 1890; 6 DR Sahu (945_CR39) 2012; 50 M Verma (945_CR17) 2017; 53 S Dhompongsa (945_CR4) 2008; 56 DR Sahu (945_CR40) 2016; 37 DR Sahu (945_CR25) 2011; 51 SS Chang (945_CR35) 2016; 68 DR Sahu (945_CR34) 2017; 1 DR Sahu (945_CR14) 2016; 172 DR Sahu (945_CR33) 2005; 46 RP Agarwal (945_CR13) 2007; 8 M Edelstein (945_CR28) 1964; 15 QH Ansari (945_CR38) 2013; 7 945_CR48 T Atsathi (945_CR20) 2016; 31 M Abbas (945_CR5) 2012; 55 TC Lim (945_CR8) 1976; 60 RT Rockafellar (945_CR23) 1976; 14 B Martinet (945_CR21) 1970; 4 HH Bauschke (945_CR52) 2011 MO Osilike (945_CR43) 2000; 32 WR Mann (945_CR11) 1953; 4 |
| References_xml | – reference: TricomiFUn teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile realeGiorn. Mat. Battaglini1916541946.0439.03 – reference: VermaMShuklaKKA new accelerated proximal technique for regression with high-dimensional datasetsKnowl. Inf Syst.201753423438https://doi.org/10.1007/s10115-017-1047-z – reference: KhanSHAbbasMStrong and △-convergence of some iterative schemes in CAT(0) spacesComput. Math. Appl.20116110911627394401207.65069 – reference: Kirk, W.A.: Geodesic geometry and fixed point theory II. In: International Conference on Fixed Point Theory and Applications, pp 113–142. Yokohama Publ., Yokohama (2004) – reference: SahuDRYaoJCSinghVKKumarSSemilocal convergence analysis of S-iteration process of Newton-Kantorovich like in Banach spacesJ. Optim. Theory Appl.2016172110212735968621359.65089 – reference: KirkWAPanyanakBA concept of convergence in geodesic spacesNonlinear Anal.200868123689369624160761145.54041 – reference: MannWRMean value methods in iterationProc. Amer. Math. Soc.19534506610548460050.11603 – reference: JostJConvex functionals and generalized harmonic maps into spaces of nonpositive curvatureComment. Math Helv.19957065967313606080852.58022 – reference: DhompongsaSKirkWASimsBFixed points of uniformly Lipschitzian mappingsNonlinear Anal.200665476277222326801105.47050 – reference: ChangSSWangLJoseph LeeHWChanCKYangLDemiclosed principle and △-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spacesAppl. Math. Comput.20122192611261729881401308.47060 – reference: MayerUFGradient flows on nonpositively curved metric spaces and harmonic mapsCommun. Anal. Geom.1998619925316514160914.58008 – reference: GoebelKReichSUniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings1984New YorkMarcel Dekker0537.46001 – reference: AnsariQHBalooeeJYaoJCExtended general nonlinear quasi-variational inequalities and projection dynamical systemsTaiwanese J. Math.201371321135230855141275.49013 – reference: PantRShuklaRApproximating fixed points of generalized α-nonexpansive mappings in Banach spacesNumer. Funct. Anal. Optim.201738224826636066111367.47069 – reference: RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control Optim.1976148778984104830358.90053 – reference: MartinetBRéularisation d’inéquations variationnelles par approximations successives (French) Rev. Française InformatRecherche Opérationnelle197041541580215.21103 – reference: SahuDRAnsariQHYaoJCConvergence of inexact mann iterations generated by nearly nonexpansive sequences and applicationsNumer. Funct. Anal. Optim.201637101312133835530091367.47071 – reference: SaiparaPChaipunyaPChoYJKumamPOn strong and △-convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in CAT(k) spacesJ. Nonlinear Sci. Appl.20158196597533657121443.47081 – reference: SahuDRYaoJCA generalized hybrid steepest descent method and applicationsJ. Nonlinear Var. Anal.2017111111261443.47075 – reference: SahuDRYaoJCThe prox-Tikhonov regularization method for the proximal point algorithm in Banach spacesJ Glob. Optim.201151641655286099310.1007/s10898-011-9647-81247.47048 – reference: QihouLIterative sequences for asymptotically quasi-nonexpansive mappingsJ. Math. Anal. Appl.20012591718364391033.47047 – reference: BridsonMHaefligerAMetric Spaces of Non-Positive Curvature1999BerlinSpringer3193190988.53001 – reference: PicardÉMémoire sur la théorie des é quations aux dérivées partielles et la méthode des approximations successivesJ. Math. Pures Appl.1890614521022.0357.02 – reference: SuparatulatornRCholamjiakWSuantaiSA modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphsNumer Algor.201877479490374838006836924https://doi.org/10.1007/s11075-017-0324-y – reference: WuHCChengCZQuDNStrong convergence theorems for quasi-nonexpansive mappings and maximal monotone operators in Hilbert spacesJ. Inequal. Appl.20143181233486131337.47102 – reference: BačákMThe proximal point algorithm in metric spacesIsrael J. Math.201319468970130470871278.49039 – reference: ChangSSYaoJCWangLQinLJSome convergence theorems involving proximal point and common fixed points for asymptotically nonexpansive mappings in CAT(0) spacesFixed Point Theory Appl.2016681135100451393.47027 – reference: Sahu, D.R., Shi, L., Wong, N.C., Yao, Y.C.: Perturbed iterative methods for a general family of operators: convergence theory and applications. Optimization, 1–37 (2020) – reference: AgarwalRPO’ReganDSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.200781617923146661134.47047 – reference: Ariza-RuizDLeusteanLLópezGFirmly nonexpansive mappings in classes of geodesic spacesTrans. Amer. Math Soc.201436642994322320646006345421 – reference: OsilikeMOAniagbosorSCWeak and strong convergence theorems for fixed points of asymptotically nonexpansive mappingsMath. Comput. Modelling2000321181119117917540971.47038 – reference: AmbrosioLGigliNSavareGGradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich20082nd edn.BirkhauserBasel1145.35001 – reference: SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory Appl.201112118720427970801281.47053 – reference: GoebelKKirkWAA fixed point theorem for asymptotically nonexpansive mappingsProc. Amer. Math. Soc.1972351711742985000256.47045 – reference: SahuDRFixed points of demicontinuous nearly Lipschitzian mappings in Banach spacesComment Math. Univ. Carolin.200546465366622594971123.47041 – reference: EdelsteinMOn nonexpansive mappingsProc. Amer. Math. Soc.1964156896951654980124.16004 – reference: AgarwalRPO’ReganDSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications2009New YorkSpringer1176.47037 – reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011BerlinSpringer1218.47001 – reference: BruhatFTitsJGroups réductifs sur un corps local., I. Données radicielles valuéesInst. Hautes Etudes Sci., Publ. Math.19724152510254.14017 – reference: MarinoGXuHKConvergence of generalized proximal point algorithmCommun. Pure Appl. Anal.2004379180821063001095.90115 – reference: DhompongsaSPanyanakBOn △-convergence theorems in CAT(0) spacesComput. Math. Appl.2008562572257924600661165.65351 – reference: IshikawaSFixed points by a new iteration methodProc. Amer. Math. Soc.1974441471503364690286.47036 – reference: KirkWAGeodesic Geometry and Fixed Point Theory, Seminar of Mathematical Analysis, Malaga, Seville, 2002–2003, Colec. Abierta, vol. 642003SevilleUniv. Sevilla Seer. Publ.195225 – reference: ShahzadNZegeyeHStrong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive mapsAppl. Math. Comput.20071891058106523317791126.65054 – reference: AtsathiTCholamjiakPKesornpromSPrasongAS-iteration process for asymptotic pointwise nonexpansive mappings in complete hyperbolic metric spacesCommun. Korean Math. Soc.201631357558335343311350.47041 – reference: ZhouJCuiYFixed point theorems for mean nonexpansive mappings in CAT(0) spacesNumer. Funct. Anal Optim.201536912241238339024610.1080/01630563.2015.10606141330.54074 – reference: ZhangSAbout fixed point theory for mean nonexpansive mapping in Banach spacesJ. Sichuan Univ.197526768 – reference: CholamjiakPAbdouAAChoYJProximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spacesFixed Point Theory Appl.20152271334333571428.47022 – reference: SahuDRWongNCYaoJCA unified hybrid iterative method for solving variational inequalities involving generalized pseudocontractive mappingsSIAM J. Control Optim.2012502335235429747411262.47091 – reference: DhompongsaSKirkWAPanyanakBNonexpansive set-valued mappings in metric and Banach spacesJ. Nonlinear Convex Anal.20078354523146641120.47043 – reference: LimTCRemarks on some fixed point theoremsProc. Amer. Math. Soc.1976601791824231390346.47046 – reference: AbbasMKadelburgZSahuDRFixed point theorems for Lipschitzian type mappings in CAT(0) spacesMath. Comput. Modelling2012551418142728875251262.47077 – volume: 44 start-page: 147 year: 1974 ident: 945_CR12 publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1974-0336469-5 – volume: 46 start-page: 653 issue: 4 year: 2005 ident: 945_CR33 publication-title: Comment Math. Univ. Carolin. – volume-title: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings year: 1984 ident: 945_CR7 – volume: 227 start-page: 13 year: 2015 ident: 945_CR27 publication-title: Fixed Point Theory Appl. – volume: 70 start-page: 659 year: 1995 ident: 945_CR49 publication-title: Comment. Math Helv. doi: 10.1007/BF02566027 – volume: 38 start-page: 248 issue: 2 year: 2017 ident: 945_CR15 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2016.1276075 – volume: 15 start-page: 689 year: 1964 ident: 945_CR28 publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1964-0165498-3 – volume: 7 start-page: 1321 year: 2013 ident: 945_CR38 publication-title: Taiwanese J. Math. – volume: 189 start-page: 1058 year: 2007 ident: 945_CR41 publication-title: Appl. Math. Comput. – ident: 945_CR2 doi: 10.1155/S1687182004406081 – volume: 37 start-page: 1312 issue: 10 year: 2016 ident: 945_CR40 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2016.1206566 – volume: 65 start-page: 762 issue: 4 year: 2006 ident: 945_CR3 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2005.09.044 – volume: 3 start-page: 791 year: 2004 ident: 945_CR22 publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2004.3.791 – volume: 6 start-page: 145 year: 1890 ident: 945_CR10 publication-title: J. Math. Pures Appl. – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2011 ident: 945_CR52 doi: 10.1007/978-1-4419-9467-7 – volume: 55 start-page: 1418 year: 2012 ident: 945_CR5 publication-title: Math. Comput. Modelling doi: 10.1016/j.mcm.2011.10.019 – volume-title: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich year: 2008 ident: 945_CR51 – volume: 54 start-page: 1 year: 1916 ident: 945_CR30 publication-title: Giorn. Mat. Battaglini – volume: 31 start-page: 575 issue: 3 year: 2016 ident: 945_CR20 publication-title: Commun. Korean Math. Soc. doi: 10.4134/CKMS.c150199 – volume: 32 start-page: 1181 year: 2000 ident: 945_CR43 publication-title: Math. Comput. Modelling doi: 10.1016/S0895-7177(00)00199-0 – volume: 68 start-page: 3689 issue: 12 year: 2008 ident: 945_CR9 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2007.04.011 – volume: 8 start-page: 61 issue: 1 year: 2007 ident: 945_CR13 publication-title: J. Nonlinear Convex Anal. – volume: 68 start-page: 11 year: 2016 ident: 945_CR35 publication-title: Fixed Point Theory Appl. – volume: 6 start-page: 199 year: 1998 ident: 945_CR50 publication-title: Commun. Anal. Geom. doi: 10.4310/CAG.1998.v6.n2.a1 – volume: 8 start-page: 965 issue: 1 year: 2015 ident: 945_CR19 publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.008.06.07 – volume: 50 start-page: 2335 year: 2012 ident: 945_CR39 publication-title: SIAM J. Control Optim. doi: 10.1137/100798648 – volume: 56 start-page: 2572 year: 2008 ident: 945_CR4 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.05.036 – volume: 4 start-page: 154 year: 1970 ident: 945_CR21 publication-title: Recherche Opérationnelle – volume: 259 start-page: 1 year: 2001 ident: 945_CR32 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2000.6980 – volume: 12 start-page: 187 issue: 1 year: 2011 ident: 945_CR42 publication-title: Fixed Point Theory Appl. – volume: 36 start-page: 1224 issue: 9 year: 2015 ident: 945_CR36 publication-title: Numer. Funct. Anal Optim. doi: 10.1080/01630563.2015.1060614 – volume: 4 start-page: 506 year: 1953 ident: 945_CR11 publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1953-0054846-3 – volume: 53 start-page: 423 year: 2017 ident: 945_CR17 publication-title: Knowl. Inf Syst. doi: 10.1007/s10115-017-1047-z – volume: 61 start-page: 109 year: 2011 ident: 945_CR18 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.10.037 – volume: 14 start-page: 877 year: 1976 ident: 945_CR23 publication-title: SIAM J. Control Optim. doi: 10.1137/0314056 – volume: 1 start-page: 111 issue: 1 year: 2017 ident: 945_CR34 publication-title: J. Nonlinear Var. Anal. – ident: 945_CR48 – volume: 51 start-page: 641 year: 2011 ident: 945_CR25 publication-title: J Glob. Optim. doi: 10.1007/s10898-011-9647-8 – volume: 219 start-page: 2611 year: 2012 ident: 945_CR6 publication-title: Appl. Math. Comput. – volume: 318 start-page: 12 year: 2014 ident: 945_CR44 publication-title: J. Inequal. Appl. – volume: 35 start-page: 171 year: 1972 ident: 945_CR31 publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1972-0298500-3 – volume-title: Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications year: 2009 ident: 945_CR37 – volume: 41 start-page: 5 year: 1972 ident: 945_CR45 publication-title: Inst. Hautes Etudes Sci., Publ. Math. doi: 10.1007/BF02715544 – volume: 2 start-page: 67 year: 1975 ident: 945_CR29 publication-title: J. Sichuan Univ. – volume: 194 start-page: 689 year: 2013 ident: 945_CR24 publication-title: Israel J. Math. doi: 10.1007/s11856-012-0091-3 – volume: 366 start-page: 4299 year: 2014 ident: 945_CR26 publication-title: Trans. Amer. Math Soc. doi: 10.1090/S0002-9947-2014-05968-0 – start-page: 195 volume-title: Geodesic Geometry and Fixed Point Theory, Seminar of Mathematical Analysis, Malaga, Seville, 2002–2003, Colec. Abierta, vol. 64 year: 2003 ident: 945_CR1 – start-page: 319 volume-title: Metric Spaces of Non-Positive Curvature year: 1999 ident: 945_CR46 doi: 10.1007/978-3-662-12494-9 – volume: 60 start-page: 179 year: 1976 ident: 945_CR8 publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-1976-0423139-X – volume: 172 start-page: 102 issue: 1 year: 2016 ident: 945_CR14 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-1031-x – volume: 77 start-page: 479 year: 2018 ident: 945_CR16 publication-title: Numer Algor. doi: 10.1007/s11075-017-0324-y – volume: 8 start-page: 35 year: 2007 ident: 945_CR47 publication-title: J. Nonlinear Convex Anal. |
| SSID | ssj0010027 |
| Score | 2.2767408 |
| Snippet | In this paper, we combine the
S
-iteration process introduced by Agarwal et al. (
J. Nonlinear Convex Anal.
,
8
(1), 61–79
2007
) with the proximal point... In this paper, we combine the S-iteration process introduced by Agarwal et al. (J. Nonlinear Convex Anal., 8(1), 61–79 2007) with the proximal point algorithm... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1561 |
| SubjectTerms | Algebra Algorithms Asymptotic properties Banach spaces Computer Science Iterative methods Numeric Computing Numerical Analysis Optimization Original Paper Regularization methods Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTgW1xf5OBNA0233aRHEcWLi-ADbyWvrgXbrpuurCf_upNuu1VRQY9NkxCYyTwyM98gdJQICmpZdkkCPjIBptAE1IIiwMpK8shnkQyqZhOs3-cPD9F1XRRmm2z3JiRZSeq22A08FVdN7CqhoyAkIHgXQoc243z0m_tZ7MB5WlWME-Qv2De8LpX5fo_P6qi1Mb-ERSttc7H6v3OuoZXausSnU3ZYR3Mm30CrtaWJ63tsYahp5tCMbaDlqxmAq91Eb9ejYpJmsNewSPMSi6dBMUrLx8xip_c0LnJ8Q6aQzCAv8QwKFoMRjHPjYJOxsK_ZsCyq13L4fB4Lm5K8yM0ERJBLm8eZcPAQA4tFrvHHWPoWurs4vz27JHWvBqL8buATRYX2NPgfWkoWKOH3NBUmYEo5m4pprUAp9ARjXIaJ8aWXhAwWuDRBw2jidbfRvDvADsKSg4tFOQNRYwKqe0Iarr0ooVpRzwS8g2hDsljVQOaun8ZT3EIwOxLEQIK4IkHsd9DxbM1wCuPx6-z9hhPi-krb2I8od_WUYdBBJw3l298_77b7t-l7aMl3eTNVdtA-mi9HY3OAFtVLmdrRYcXq74Rz-ik priority: 102 providerName: Springer Nature |
| Title | Proximal point algorithms based on S-iterative technique for nearly asymptotically quasi-nonexpansive mappings and applications |
| URI | https://link.springer.com/article/10.1007/s11075-020-00945-2 https://www.proquest.com/docview/2918617854 |
| Volume | 86 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlgMcKBQQgRLtgRus8G6c7PqEALVCQkRRA6g3a18ukRo7jd2qPfHXmdlsEkCiFy6WLHtWK83sPHZmvgF4VRmBZtkOeIUxMkeh8BzNguMoys7qQqrC5nHYhBqP9elpMUkXbm0qq1zrxKiofePojvytLISmdrZh_m5xwWlqFGVX0wiNHdgjlAQRS_emmywCxVwx24maGD0dnZpmVq1zGPdQbzL1VRf5kMs_DdPW2_wrQRrtzvH-_-74ITxIHid7vxKRR3An1Aewn7xPls52ewD3v2wQXNvH8HOybK5ncyRcNLO6Y-b8DNfufsxbRobPs6ZmU77CZEaFyTZYsAy9YFYHwk1mpr2ZL7omXpfj68WlaWe8bupwjTqI6ubZ3BA-xFnLTO3Z78n0J_Dt-Ojrx088DWvgTg5yyZ0wPvMYgHhrVe6MHHlhQq6cI6dKee_QKoyMUtoOqyBtVg0VElCdYFCiygZPYZc28AyY1RhjCa1Q14Rc-JGxQfusqIR3Igu57oFYc6p0CcmcBmqcl1sMZuJuidwtI3dL2YPXG5rFCsfj1r8P1ywt05luyy0_e_BmLRTbz_9e7fntq72Ae5IKZWI50CHsdsvL8BLuuqtu1i77sPfhaDw56cPOZ8X7Ub7xeTL9_gsmPwGt |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFAk4UCggAgV8gBNYrB1v7D0gxEerVm2jCIrU29Zre0ukZjeNt9Ce-Ef8Rsb7kQASvfXAcZW1lThv38zszLwBeJ5rhmY5G9AcY2SKoLAUzYKhCGWTqYTLJBP1sAk5GqnDw2S8Aj-7XphQVtlxYk3UtjThHflrnjAV2tli8XZ2SsPUqJBd7UZoNLDYdRffMWTzb3Y-4v_7gvOtzYMP27SdKkANHwhODdM2sugp2yyTwmg-tEw7IY0J1l9aa5C-hlpKlcW541mUxxIXhII2J1keDXDfa7AqBmIY92D1_eZo_GmRtwhRXp1fRe5H30q1bTpNsx5GWqEbOnRyJyKm_E9TuPRv_0rJ1pZua-1_O6M7cLv1qcm75iG4CyuuWIe11r8mLXv5dbi1v9Co9ffgx3henk-muHBWToqK6JNj_C3V16knwbRbUhbkM21Up9EkkIXaLUE_nxQuKEMT7S-ms6qsEwJ4eXqm_YQWZeHOkWVDZwCZ6qCAceyJLiz5vVzgPny5kkN5AL3wBR4CyRRGkUxJZFMnmB3qzCkbJTmzhkVOqD6wDhmpabXaw8iQk3SpMh3QlCKa0hpNKe_Dy8WaWaNUcundGx2E0pa1fLrETx9edSBcfvzv3R5dvtszuLF9sL-X7u2Mdh_DTR7Kguripw3oVfMz9wSum2_VxM-fts8TgaOrhucvbXxfag |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NME3jgQ7YtAIbfuANLOLUrZ3Hia3aNKgqPibeIn-lRKJJaQLqnvav75wmLUMDadpjHNuydOf78N39DmA_UQzVsu7QBH1kikxhKaoFQ5GVjZZRKCLNq2YTYjCQV1fR8EEVf5Xt3oQk5zUNHqUpK48mNjlaFr6h1-Iri31VdMS7FIXwKscxn9R1dv5jEUfwXlcV70RZjLaOrMtm_r7Hn6ppaW8-CpFWmqff-v8zv4H12uokn-ZssgEvXLYJrdoCJfX9LnCoafLQjG3C2ukC2LXYgl_DaT5Lx7jXJE-zkqibUT5Ny-txQbw-tCTPyDmdQzWjHCULiFiCxjHJnIdTJqr4OZ6UefWKjp-3d6pIaZZnboaiyafTk7HysBGjgqjMkocx9rdw2f9ycfyV1j0cqAk7PKSGKRtY9Eus1oIbFfYsU44LY7ytJaw1qCx6Sgipu4kLdZB0BS7w6YNOsCTovIMVf4D3QLRE14tJgSLIcWZ7Sjtpgyhh1rDAcdkG1pAvNjXAue-zcRMvoZk9CWIkQVyRIA7bcLBYM5nDezw7e7fhiri-6kUcRkz6Ossub8NhwwXL30_vtv1v0_fg1fBzPz75Nvi-A69Dn1pTJRDtwko5vXMf4KW5L9Ni-rG6Ab8BaasGAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+point+algorithms+based+on+S-iterative+technique+for+nearly+asymptotically+quasi-nonexpansive+mappings+and+applications&rft.jtitle=Numerical+algorithms&rft.au=Sahu%2C+D.+R.&rft.au=Kumar%2C+Ajeet&rft.au=Kang%2C+Shin+Min&rft.date=2021-04-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=86&rft.issue=4&rft.spage=1561&rft.epage=1590&rft_id=info:doi/10.1007%2Fs11075-020-00945-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11075_020_00945_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |