Proximal point algorithms based on S-iterative technique for nearly asymptotically quasi-nonexpansive mappings and applications

In this paper, we combine the S -iteration process introduced by Agarwal et al. ( J. Nonlinear Convex Anal. , 8 (1), 61–79 2007 ) with the proximal point algorithm introduced by Rockafellar ( SIAM J. Control Optim. , 14 , 877–898 1976 ) to propose a new modified proximal point algorithm based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 86; H. 4; S. 1561 - 1590
Hauptverfasser: Sahu, D. R., Kumar, Ajeet, Kang, Shin Min
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2021
Springer Nature B.V
Schlagworte:
ISSN:1017-1398, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we combine the S -iteration process introduced by Agarwal et al. ( J. Nonlinear Convex Anal. , 8 (1), 61–79 2007 ) with the proximal point algorithm introduced by Rockafellar ( SIAM J. Control Optim. , 14 , 877–898 1976 ) to propose a new modified proximal point algorithm based on the S -type iteration process for approximating a common element of the set of solutions of convex minimization problems and the set of fixed points of nearly asymptotically quasi-nonexpansive mappings in the framework of CAT(0) spaces and prove the △-convergence of the proposed algorithm for solving common minimization problem and common fixed point problem. Our result generalizes, extends and unifies the corresponding results of Dhompongsa and Panyanak ( Comput. Math. Appl. , 56 , 2572–2579 2008 ), Khan and Abbas ( Comput. Math. Appl. , 61 , 109–116 2011 ), Abbas et al. ( Math. Comput. Modelling , 55 , 1418–1427 2012 ) and many more.
AbstractList In this paper, we combine the S-iteration process introduced by Agarwal et al. (J. Nonlinear Convex Anal., 8(1), 61–79 2007) with the proximal point algorithm introduced by Rockafellar (SIAM J. Control Optim., 14, 877–898 1976) to propose a new modified proximal point algorithm based on the S-type iteration process for approximating a common element of the set of solutions of convex minimization problems and the set of fixed points of nearly asymptotically quasi-nonexpansive mappings in the framework of CAT(0) spaces and prove the △-convergence of the proposed algorithm for solving common minimization problem and common fixed point problem. Our result generalizes, extends and unifies the corresponding results of Dhompongsa and Panyanak (Comput. Math. Appl., 56, 2572–2579 2008), Khan and Abbas (Comput. Math. Appl., 61, 109–116 2011), Abbas et al. (Math. Comput. Modelling, 55, 1418–1427 2012) and many more.
In this paper, we combine the S -iteration process introduced by Agarwal et al. ( J. Nonlinear Convex Anal. , 8 (1), 61–79 2007 ) with the proximal point algorithm introduced by Rockafellar ( SIAM J. Control Optim. , 14 , 877–898 1976 ) to propose a new modified proximal point algorithm based on the S -type iteration process for approximating a common element of the set of solutions of convex minimization problems and the set of fixed points of nearly asymptotically quasi-nonexpansive mappings in the framework of CAT(0) spaces and prove the △-convergence of the proposed algorithm for solving common minimization problem and common fixed point problem. Our result generalizes, extends and unifies the corresponding results of Dhompongsa and Panyanak ( Comput. Math. Appl. , 56 , 2572–2579 2008 ), Khan and Abbas ( Comput. Math. Appl. , 61 , 109–116 2011 ), Abbas et al. ( Math. Comput. Modelling , 55 , 1418–1427 2012 ) and many more.
Author Kang, Shin Min
Sahu, D. R.
Kumar, Ajeet
Author_xml – sequence: 1
  givenname: D. R.
  surname: Sahu
  fullname: Sahu, D. R.
  organization: Department of Mathematics, Institute of Science, Banaras Hindu University
– sequence: 2
  givenname: Ajeet
  surname: Kumar
  fullname: Kumar, Ajeet
  organization: Department of Mathematics, Institute of Science, Banaras Hindu University
– sequence: 3
  givenname: Shin Min
  surname: Kang
  fullname: Kang, Shin Min
  email: smkang@gnu.ac.kr
  organization: Department of Mathematics, Gyeongsang National University, Center for General Education, China Medical University
BookMark eNp9kE1LRCEUhiUK-vwDrYTW1tH74Z1lRF8QFFRrOVe9k3FHb-pEs-qv5zRB0KKVR3gfz-uzT7Z98JaQYw6nHECeJc5BNgwEMIBZ3TCxRfZ4IwWbibbZLjNwyXg163bJfkqvAAUTco98PsTw4RY40ik4nymO8xBdflkk2mOyhgZPH5nLNmJ275Zmq1-8e1taOoRIvcU4riim1WLKITuNY7m-LTE5tm74MaFPa2yB0-T8PFH0hpZ5LNHsgk-HZGfAMdmjn_OAPF9dPl3csLv769uL8zumRVULpjkaMBW0pu9lrVG0hqOtpdaiaUEao23PW5Sy65vBih6GRhagH2pjJR-gOiAnm3enGEr7lNVrWEZfViox413LZdfUJSU2KR1DStEOaopFTlwpDmotWm1EqyJafYtWokDdH0i7_P27HNGN_6PVBk1lj5_b-NvqH-oLvNiY3Q
CitedBy_id crossref_primary_10_1080_02331934_2024_2399807
crossref_primary_10_1007_s11075_023_01542_9
crossref_primary_10_1007_s40314_021_01646_9
crossref_primary_10_1080_00036811_2023_2256357
crossref_primary_10_1080_02331934_2023_2231957
crossref_primary_10_1016_j_cnsns_2024_108192
crossref_primary_10_1186_s13660_021_02618_7
Cites_doi 10.1090/S0002-9939-1974-0336469-5
10.1007/BF02566027
10.1080/01630563.2016.1276075
10.1090/S0002-9939-1964-0165498-3
10.1155/S1687182004406081
10.1080/01630563.2016.1206566
10.1016/j.na.2005.09.044
10.3934/cpaa.2004.3.791
10.1007/978-1-4419-9467-7
10.1016/j.mcm.2011.10.019
10.4134/CKMS.c150199
10.1016/S0895-7177(00)00199-0
10.1016/j.na.2007.04.011
10.4310/CAG.1998.v6.n2.a1
10.22436/jnsa.008.06.07
10.1137/100798648
10.1016/j.camwa.2008.05.036
10.1006/jmaa.2000.6980
10.1080/01630563.2015.1060614
10.1090/S0002-9939-1953-0054846-3
10.1007/s10115-017-1047-z
10.1016/j.camwa.2010.10.037
10.1137/0314056
10.1007/s10898-011-9647-8
10.1090/S0002-9939-1972-0298500-3
10.1007/BF02715544
10.1007/s11856-012-0091-3
10.1090/S0002-9947-2014-05968-0
10.1007/978-3-662-12494-9
10.1090/S0002-9939-1976-0423139-X
10.1007/s10957-016-1031-x
10.1007/s11075-017-0324-y
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s11075-020-00945-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1590
ExternalDocumentID 10_1007_s11075_020_00945_2
GrantInformation_xml – fundername: Council of Scientific and Industrial Research (CSIR), New Delhi, India
  grantid: 09/013(0584)/2015-EMR-I
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2342-c1ad0d306dbb74ca26d1ae47cc25607ddceb16a778b5fe2b0f57d0dbf4de71f03
IEDL.DBID M7S
ISSN 1017-1398
IngestDate Wed Nov 05 01:38:34 EST 2025
Tue Nov 18 22:07:00 EST 2025
Sat Nov 29 01:34:51 EST 2025
Fri Feb 21 02:48:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords iteration process
Fixed point problem
47H10
convergence
Convex minimization problem
Mean nonexpansive mapping
CAT space
47H09
49M05
Proximal point algorithm
Nearly asymptotically quasi-nonexpansive mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2342-c1ad0d306dbb74ca26d1ae47cc25607ddceb16a778b5fe2b0f57d0dbf4de71f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918617854
PQPubID 2043837
PageCount 30
ParticipantIDs proquest_journals_2918617854
crossref_primary_10_1007_s11075_020_00945_2
crossref_citationtrail_10_1007_s11075_020_00945_2
springer_journals_10_1007_s11075_020_00945_2
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References AgarwalRPO’ReganDSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.200781617923146661134.47047
SahuDRYaoJCSinghVKKumarSSemilocal convergence analysis of S-iteration process of Newton-Kantorovich like in Banach spacesJ. Optim. Theory Appl.2016172110212735968621359.65089
ChangSSYaoJCWangLQinLJSome convergence theorems involving proximal point and common fixed points for asymptotically nonexpansive mappings in CAT(0) spacesFixed Point Theory Appl.2016681135100451393.47027
OsilikeMOAniagbosorSCWeak and strong convergence theorems for fixed points of asymptotically nonexpansive mappingsMath. Comput. Modelling2000321181119117917540971.47038
MarinoGXuHKConvergence of generalized proximal point algorithmCommun. Pure Appl. Anal.2004379180821063001095.90115
WuHCChengCZQuDNStrong convergence theorems for quasi-nonexpansive mappings and maximal monotone operators in Hilbert spacesJ. Inequal. Appl.20143181233486131337.47102
DhompongsaSKirkWAPanyanakBNonexpansive set-valued mappings in metric and Banach spacesJ. Nonlinear Convex Anal.20078354523146641120.47043
GoebelKReichSUniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings1984New YorkMarcel Dekker0537.46001
DhompongsaSPanyanakBOn △-convergence theorems in CAT(0) spacesComput. Math. Appl.2008562572257924600661165.65351
KirkWAPanyanakBA concept of convergence in geodesic spacesNonlinear Anal.200868123689369624160761145.54041
PantRShuklaRApproximating fixed points of generalized α-nonexpansive mappings in Banach spacesNumer. Funct. Anal. Optim.201738224826636066111367.47069
SahuDRYaoJCA generalized hybrid steepest descent method and applicationsJ. Nonlinear Var. Anal.2017111111261443.47075
JostJConvex functionals and generalized harmonic maps into spaces of nonpositive curvatureComment. Math Helv.19957065967313606080852.58022
Kirk, W.A.: Geodesic geometry and fixed point theory II. In: International Conference on Fixed Point Theory and Applications, pp 113–142. Yokohama Publ., Yokohama (2004)
GoebelKKirkWAA fixed point theorem for asymptotically nonexpansive mappingsProc. Amer. Math. Soc.1972351711742985000256.47045
BačákMThe proximal point algorithm in metric spacesIsrael J. Math.201319468970130470871278.49039
SuparatulatornRCholamjiakWSuantaiSA modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphsNumer Algor.201877479490374838006836924https://doi.org/10.1007/s11075-017-0324-y
SaiparaPChaipunyaPChoYJKumamPOn strong and △-convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in CAT(k) spacesJ. Nonlinear Sci. Appl.20158196597533657121443.47081
EdelsteinMOn nonexpansive mappingsProc. Amer. Math. Soc.1964156896951654980124.16004
ShahzadNZegeyeHStrong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive mapsAppl. Math. Comput.20071891058106523317791126.65054
QihouLIterative sequences for asymptotically quasi-nonexpansive mappingsJ. Math. Anal. Appl.20012591718364391033.47047
CholamjiakPAbdouAAChoYJProximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spacesFixed Point Theory Appl.20152271334333571428.47022
SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory Appl.201112118720427970801281.47053
RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control Optim.1976148778984104830358.90053
MannWRMean value methods in iterationProc. Amer. Math. Soc.19534506610548460050.11603
SahuDRFixed points of demicontinuous nearly Lipschitzian mappings in Banach spacesComment Math. Univ. Carolin.200546465366622594971123.47041
PicardÉMémoire sur la théorie des é quations aux dérivées partielles et la méthode des approximations successivesJ. Math. Pures Appl.1890614521022.0357.02
ZhangSAbout fixed point theory for mean nonexpansive mapping in Banach spacesJ. Sichuan Univ.197526768
SahuDRWongNCYaoJCA unified hybrid iterative method for solving variational inequalities involving generalized pseudocontractive mappingsSIAM J. Control Optim.2012502335235429747411262.47091
BruhatFTitsJGroups réductifs sur un corps local., I. Données radicielles valuéesInst. Hautes Etudes Sci., Publ. Math.19724152510254.14017
SahuDRYaoJCThe prox-Tikhonov regularization method for the proximal point algorithm in Banach spacesJ Glob. Optim.201151641655286099310.1007/s10898-011-9647-81247.47048
DhompongsaSKirkWASimsBFixed points of uniformly Lipschitzian mappingsNonlinear Anal.200665476277222326801105.47050
MartinetBRéularisation d’inéquations variationnelles par approximations successives (French) Rev. Française InformatRecherche Opérationnelle197041541580215.21103
BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011BerlinSpringer1218.47001
AbbasMKadelburgZSahuDRFixed point theorems for Lipschitzian type mappings in CAT(0) spacesMath. Comput. Modelling2012551418142728875251262.47077
SahuDRAnsariQHYaoJCConvergence of inexact mann iterations generated by nearly nonexpansive sequences and applicationsNumer. Funct. Anal. Optim.201637101312133835530091367.47071
AgarwalRPO’ReganDSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications2009New YorkSpringer1176.47037
ChangSSWangLJoseph LeeHWChanCKYangLDemiclosed principle and △-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spacesAppl. Math. Comput.20122192611261729881401308.47060
TricomiFUn teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile realeGiorn. Mat. Battaglini1916541946.0439.03
BridsonMHaefligerAMetric Spaces of Non-Positive Curvature1999BerlinSpringer3193190988.53001
AnsariQHBalooeeJYaoJCExtended general nonlinear quasi-variational inequalities and projection dynamical systemsTaiwanese J. Math.201371321135230855141275.49013
ZhouJCuiYFixed point theorems for mean nonexpansive mappings in CAT(0) spacesNumer. Funct. Anal Optim.201536912241238339024610.1080/01630563.2015.10606141330.54074
MayerUFGradient flows on nonpositively curved metric spaces and harmonic mapsCommun. Anal. Geom.1998619925316514160914.58008
LimTCRemarks on some fixed point theoremsProc. Amer. Math. Soc.1976601791824231390346.47046
Sahu, D.R., Shi, L., Wong, N.C., Yao, Y.C.: Perturbed iterative methods for a general family of operators: convergence theory and applications. Optimization, 1–37 (2020)
IshikawaSFixed points by a new iteration methodProc. Amer. Math. Soc.1974441471503364690286.47036
KhanSHAbbasMStrong and △-convergence of some iterative schemes in CAT(0) spacesComput. Math. Appl.20116110911627394401207.65069
Ariza-RuizDLeusteanLLópezGFirmly nonexpansive mappings in classes of geodesic spacesTrans. Amer. Math Soc.201436642994322320646006345421
KirkWAGeodesic Geometry and Fixed Point Theory, Seminar of Mathematical Analysis, Malaga, Seville, 2002–2003, Colec. Abierta, vol. 642003SevilleUniv. Sevilla Seer. Publ.195225
AtsathiTCholamjiakPKesornpromSPrasongAS-iteration process for asymptotic pointwise nonexpansive mappings in complete hyperbolic metric spacesCommun. Korean Math. Soc.201631357558335343311350.47041
AmbrosioLGigliNSavareGGradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich20082nd edn.BirkhauserBasel1145.35001
VermaMShuklaKKA new accelerated proximal technique for regression with high-dimensional datasetsKnowl. Inf Syst.201753423438https://doi.org/10.1007/s10115-017-1047-z
M Bačák (945_CR24) 2013; 194
J Zhou (945_CR36) 2015; 36
K Goebel (945_CR7) 1984
DR Sahu (945_CR42) 2011; 12
SH Khan (945_CR18) 2011; 61
HC Wu (945_CR44) 2014; 318
UF Mayer (945_CR50) 1998; 6
RP Agarwal (945_CR37) 2009
S Dhompongsa (945_CR47) 2007; 8
M Bridson (945_CR46) 1999
D Ariza-Ruiz (945_CR26) 2014; 366
F Tricomi (945_CR30) 1916; 54
S Zhang (945_CR29) 1975; 2
L Ambrosio (945_CR51) 2008
S Dhompongsa (945_CR3) 2006; 65
P Cholamjiak (945_CR27) 2015; 227
WA Kirk (945_CR9) 2008; 68
L Qihou (945_CR32) 2001; 259
N Shahzad (945_CR41) 2007; 189
R Pant (945_CR15) 2017; 38
G Marino (945_CR22) 2004; 3
S Ishikawa (945_CR12) 1974; 44
WA Kirk (945_CR1) 2003
F Bruhat (945_CR45) 1972; 41
K Goebel (945_CR31) 1972; 35
P Saipara (945_CR19) 2015; 8
945_CR2
SS Chang (945_CR6) 2012; 219
R Suparatulatorn (945_CR16) 2018; 77
J Jost (945_CR49) 1995; 70
É Picard (945_CR10) 1890; 6
DR Sahu (945_CR39) 2012; 50
M Verma (945_CR17) 2017; 53
S Dhompongsa (945_CR4) 2008; 56
DR Sahu (945_CR40) 2016; 37
DR Sahu (945_CR25) 2011; 51
SS Chang (945_CR35) 2016; 68
DR Sahu (945_CR34) 2017; 1
DR Sahu (945_CR14) 2016; 172
DR Sahu (945_CR33) 2005; 46
RP Agarwal (945_CR13) 2007; 8
M Edelstein (945_CR28) 1964; 15
QH Ansari (945_CR38) 2013; 7
945_CR48
T Atsathi (945_CR20) 2016; 31
M Abbas (945_CR5) 2012; 55
TC Lim (945_CR8) 1976; 60
RT Rockafellar (945_CR23) 1976; 14
B Martinet (945_CR21) 1970; 4
HH Bauschke (945_CR52) 2011
MO Osilike (945_CR43) 2000; 32
WR Mann (945_CR11) 1953; 4
References_xml – reference: TricomiFUn teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile realeGiorn. Mat. Battaglini1916541946.0439.03
– reference: VermaMShuklaKKA new accelerated proximal technique for regression with high-dimensional datasetsKnowl. Inf Syst.201753423438https://doi.org/10.1007/s10115-017-1047-z
– reference: KhanSHAbbasMStrong and △-convergence of some iterative schemes in CAT(0) spacesComput. Math. Appl.20116110911627394401207.65069
– reference: Kirk, W.A.: Geodesic geometry and fixed point theory II. In: International Conference on Fixed Point Theory and Applications, pp 113–142. Yokohama Publ., Yokohama (2004)
– reference: SahuDRYaoJCSinghVKKumarSSemilocal convergence analysis of S-iteration process of Newton-Kantorovich like in Banach spacesJ. Optim. Theory Appl.2016172110212735968621359.65089
– reference: KirkWAPanyanakBA concept of convergence in geodesic spacesNonlinear Anal.200868123689369624160761145.54041
– reference: MannWRMean value methods in iterationProc. Amer. Math. Soc.19534506610548460050.11603
– reference: JostJConvex functionals and generalized harmonic maps into spaces of nonpositive curvatureComment. Math Helv.19957065967313606080852.58022
– reference: DhompongsaSKirkWASimsBFixed points of uniformly Lipschitzian mappingsNonlinear Anal.200665476277222326801105.47050
– reference: ChangSSWangLJoseph LeeHWChanCKYangLDemiclosed principle and △-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spacesAppl. Math. Comput.20122192611261729881401308.47060
– reference: MayerUFGradient flows on nonpositively curved metric spaces and harmonic mapsCommun. Anal. Geom.1998619925316514160914.58008
– reference: GoebelKReichSUniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings1984New YorkMarcel Dekker0537.46001
– reference: AnsariQHBalooeeJYaoJCExtended general nonlinear quasi-variational inequalities and projection dynamical systemsTaiwanese J. Math.201371321135230855141275.49013
– reference: PantRShuklaRApproximating fixed points of generalized α-nonexpansive mappings in Banach spacesNumer. Funct. Anal. Optim.201738224826636066111367.47069
– reference: RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control Optim.1976148778984104830358.90053
– reference: MartinetBRéularisation d’inéquations variationnelles par approximations successives (French) Rev. Française InformatRecherche Opérationnelle197041541580215.21103
– reference: SahuDRAnsariQHYaoJCConvergence of inexact mann iterations generated by nearly nonexpansive sequences and applicationsNumer. Funct. Anal. Optim.201637101312133835530091367.47071
– reference: SaiparaPChaipunyaPChoYJKumamPOn strong and △-convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in CAT(k) spacesJ. Nonlinear Sci. Appl.20158196597533657121443.47081
– reference: SahuDRYaoJCA generalized hybrid steepest descent method and applicationsJ. Nonlinear Var. Anal.2017111111261443.47075
– reference: SahuDRYaoJCThe prox-Tikhonov regularization method for the proximal point algorithm in Banach spacesJ Glob. Optim.201151641655286099310.1007/s10898-011-9647-81247.47048
– reference: QihouLIterative sequences for asymptotically quasi-nonexpansive mappingsJ. Math. Anal. Appl.20012591718364391033.47047
– reference: BridsonMHaefligerAMetric Spaces of Non-Positive Curvature1999BerlinSpringer3193190988.53001
– reference: PicardÉMémoire sur la théorie des é quations aux dérivées partielles et la méthode des approximations successivesJ. Math. Pures Appl.1890614521022.0357.02
– reference: SuparatulatornRCholamjiakWSuantaiSA modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphsNumer Algor.201877479490374838006836924https://doi.org/10.1007/s11075-017-0324-y
– reference: WuHCChengCZQuDNStrong convergence theorems for quasi-nonexpansive mappings and maximal monotone operators in Hilbert spacesJ. Inequal. Appl.20143181233486131337.47102
– reference: BačákMThe proximal point algorithm in metric spacesIsrael J. Math.201319468970130470871278.49039
– reference: ChangSSYaoJCWangLQinLJSome convergence theorems involving proximal point and common fixed points for asymptotically nonexpansive mappings in CAT(0) spacesFixed Point Theory Appl.2016681135100451393.47027
– reference: Sahu, D.R., Shi, L., Wong, N.C., Yao, Y.C.: Perturbed iterative methods for a general family of operators: convergence theory and applications. Optimization, 1–37 (2020)
– reference: AgarwalRPO’ReganDSahuDRIterative construction of fixed points of nearly asymptotically nonexpansive mappingsJ. Nonlinear Convex Anal.200781617923146661134.47047
– reference: Ariza-RuizDLeusteanLLópezGFirmly nonexpansive mappings in classes of geodesic spacesTrans. Amer. Math Soc.201436642994322320646006345421
– reference: OsilikeMOAniagbosorSCWeak and strong convergence theorems for fixed points of asymptotically nonexpansive mappingsMath. Comput. Modelling2000321181119117917540971.47038
– reference: AmbrosioLGigliNSavareGGradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich20082nd edn.BirkhauserBasel1145.35001
– reference: SahuDRApplications of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory Appl.201112118720427970801281.47053
– reference: GoebelKKirkWAA fixed point theorem for asymptotically nonexpansive mappingsProc. Amer. Math. Soc.1972351711742985000256.47045
– reference: SahuDRFixed points of demicontinuous nearly Lipschitzian mappings in Banach spacesComment Math. Univ. Carolin.200546465366622594971123.47041
– reference: EdelsteinMOn nonexpansive mappingsProc. Amer. Math. Soc.1964156896951654980124.16004
– reference: AgarwalRPO’ReganDSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications2009New YorkSpringer1176.47037
– reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011BerlinSpringer1218.47001
– reference: BruhatFTitsJGroups réductifs sur un corps local., I. Données radicielles valuéesInst. Hautes Etudes Sci., Publ. Math.19724152510254.14017
– reference: MarinoGXuHKConvergence of generalized proximal point algorithmCommun. Pure Appl. Anal.2004379180821063001095.90115
– reference: DhompongsaSPanyanakBOn △-convergence theorems in CAT(0) spacesComput. Math. Appl.2008562572257924600661165.65351
– reference: IshikawaSFixed points by a new iteration methodProc. Amer. Math. Soc.1974441471503364690286.47036
– reference: KirkWAGeodesic Geometry and Fixed Point Theory, Seminar of Mathematical Analysis, Malaga, Seville, 2002–2003, Colec. Abierta, vol. 642003SevilleUniv. Sevilla Seer. Publ.195225
– reference: ShahzadNZegeyeHStrong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive mapsAppl. Math. Comput.20071891058106523317791126.65054
– reference: AtsathiTCholamjiakPKesornpromSPrasongAS-iteration process for asymptotic pointwise nonexpansive mappings in complete hyperbolic metric spacesCommun. Korean Math. Soc.201631357558335343311350.47041
– reference: ZhouJCuiYFixed point theorems for mean nonexpansive mappings in CAT(0) spacesNumer. Funct. Anal Optim.201536912241238339024610.1080/01630563.2015.10606141330.54074
– reference: ZhangSAbout fixed point theory for mean nonexpansive mapping in Banach spacesJ. Sichuan Univ.197526768
– reference: CholamjiakPAbdouAAChoYJProximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spacesFixed Point Theory Appl.20152271334333571428.47022
– reference: SahuDRWongNCYaoJCA unified hybrid iterative method for solving variational inequalities involving generalized pseudocontractive mappingsSIAM J. Control Optim.2012502335235429747411262.47091
– reference: DhompongsaSKirkWAPanyanakBNonexpansive set-valued mappings in metric and Banach spacesJ. Nonlinear Convex Anal.20078354523146641120.47043
– reference: LimTCRemarks on some fixed point theoremsProc. Amer. Math. Soc.1976601791824231390346.47046
– reference: AbbasMKadelburgZSahuDRFixed point theorems for Lipschitzian type mappings in CAT(0) spacesMath. Comput. Modelling2012551418142728875251262.47077
– volume: 44
  start-page: 147
  year: 1974
  ident: 945_CR12
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1974-0336469-5
– volume: 46
  start-page: 653
  issue: 4
  year: 2005
  ident: 945_CR33
  publication-title: Comment Math. Univ. Carolin.
– volume-title: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings
  year: 1984
  ident: 945_CR7
– volume: 227
  start-page: 13
  year: 2015
  ident: 945_CR27
  publication-title: Fixed Point Theory Appl.
– volume: 70
  start-page: 659
  year: 1995
  ident: 945_CR49
  publication-title: Comment. Math Helv.
  doi: 10.1007/BF02566027
– volume: 38
  start-page: 248
  issue: 2
  year: 2017
  ident: 945_CR15
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2016.1276075
– volume: 15
  start-page: 689
  year: 1964
  ident: 945_CR28
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1964-0165498-3
– volume: 7
  start-page: 1321
  year: 2013
  ident: 945_CR38
  publication-title: Taiwanese J. Math.
– volume: 189
  start-page: 1058
  year: 2007
  ident: 945_CR41
  publication-title: Appl. Math. Comput.
– ident: 945_CR2
  doi: 10.1155/S1687182004406081
– volume: 37
  start-page: 1312
  issue: 10
  year: 2016
  ident: 945_CR40
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2016.1206566
– volume: 65
  start-page: 762
  issue: 4
  year: 2006
  ident: 945_CR3
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2005.09.044
– volume: 3
  start-page: 791
  year: 2004
  ident: 945_CR22
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2004.3.791
– volume: 6
  start-page: 145
  year: 1890
  ident: 945_CR10
  publication-title: J. Math. Pures Appl.
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2011
  ident: 945_CR52
  doi: 10.1007/978-1-4419-9467-7
– volume: 55
  start-page: 1418
  year: 2012
  ident: 945_CR5
  publication-title: Math. Comput. Modelling
  doi: 10.1016/j.mcm.2011.10.019
– volume-title: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zurich
  year: 2008
  ident: 945_CR51
– volume: 54
  start-page: 1
  year: 1916
  ident: 945_CR30
  publication-title: Giorn. Mat. Battaglini
– volume: 31
  start-page: 575
  issue: 3
  year: 2016
  ident: 945_CR20
  publication-title: Commun. Korean Math. Soc.
  doi: 10.4134/CKMS.c150199
– volume: 32
  start-page: 1181
  year: 2000
  ident: 945_CR43
  publication-title: Math. Comput. Modelling
  doi: 10.1016/S0895-7177(00)00199-0
– volume: 68
  start-page: 3689
  issue: 12
  year: 2008
  ident: 945_CR9
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2007.04.011
– volume: 8
  start-page: 61
  issue: 1
  year: 2007
  ident: 945_CR13
  publication-title: J. Nonlinear Convex Anal.
– volume: 68
  start-page: 11
  year: 2016
  ident: 945_CR35
  publication-title: Fixed Point Theory Appl.
– volume: 6
  start-page: 199
  year: 1998
  ident: 945_CR50
  publication-title: Commun. Anal. Geom.
  doi: 10.4310/CAG.1998.v6.n2.a1
– volume: 8
  start-page: 965
  issue: 1
  year: 2015
  ident: 945_CR19
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.008.06.07
– volume: 50
  start-page: 2335
  year: 2012
  ident: 945_CR39
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/100798648
– volume: 56
  start-page: 2572
  year: 2008
  ident: 945_CR4
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.05.036
– volume: 4
  start-page: 154
  year: 1970
  ident: 945_CR21
  publication-title: Recherche Opérationnelle
– volume: 259
  start-page: 1
  year: 2001
  ident: 945_CR32
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2000.6980
– volume: 12
  start-page: 187
  issue: 1
  year: 2011
  ident: 945_CR42
  publication-title: Fixed Point Theory Appl.
– volume: 36
  start-page: 1224
  issue: 9
  year: 2015
  ident: 945_CR36
  publication-title: Numer. Funct. Anal Optim.
  doi: 10.1080/01630563.2015.1060614
– volume: 4
  start-page: 506
  year: 1953
  ident: 945_CR11
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1953-0054846-3
– volume: 53
  start-page: 423
  year: 2017
  ident: 945_CR17
  publication-title: Knowl. Inf Syst.
  doi: 10.1007/s10115-017-1047-z
– volume: 61
  start-page: 109
  year: 2011
  ident: 945_CR18
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.10.037
– volume: 14
  start-page: 877
  year: 1976
  ident: 945_CR23
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314056
– volume: 1
  start-page: 111
  issue: 1
  year: 2017
  ident: 945_CR34
  publication-title: J. Nonlinear Var. Anal.
– ident: 945_CR48
– volume: 51
  start-page: 641
  year: 2011
  ident: 945_CR25
  publication-title: J Glob. Optim.
  doi: 10.1007/s10898-011-9647-8
– volume: 219
  start-page: 2611
  year: 2012
  ident: 945_CR6
  publication-title: Appl. Math. Comput.
– volume: 318
  start-page: 12
  year: 2014
  ident: 945_CR44
  publication-title: J. Inequal. Appl.
– volume: 35
  start-page: 171
  year: 1972
  ident: 945_CR31
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1972-0298500-3
– volume-title: Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications
  year: 2009
  ident: 945_CR37
– volume: 41
  start-page: 5
  year: 1972
  ident: 945_CR45
  publication-title: Inst. Hautes Etudes Sci., Publ. Math.
  doi: 10.1007/BF02715544
– volume: 2
  start-page: 67
  year: 1975
  ident: 945_CR29
  publication-title: J. Sichuan Univ.
– volume: 194
  start-page: 689
  year: 2013
  ident: 945_CR24
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-012-0091-3
– volume: 366
  start-page: 4299
  year: 2014
  ident: 945_CR26
  publication-title: Trans. Amer. Math Soc.
  doi: 10.1090/S0002-9947-2014-05968-0
– start-page: 195
  volume-title: Geodesic Geometry and Fixed Point Theory, Seminar of Mathematical Analysis, Malaga, Seville, 2002–2003, Colec. Abierta, vol. 64
  year: 2003
  ident: 945_CR1
– start-page: 319
  volume-title: Metric Spaces of Non-Positive Curvature
  year: 1999
  ident: 945_CR46
  doi: 10.1007/978-3-662-12494-9
– volume: 60
  start-page: 179
  year: 1976
  ident: 945_CR8
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1976-0423139-X
– volume: 172
  start-page: 102
  issue: 1
  year: 2016
  ident: 945_CR14
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-1031-x
– volume: 77
  start-page: 479
  year: 2018
  ident: 945_CR16
  publication-title: Numer Algor.
  doi: 10.1007/s11075-017-0324-y
– volume: 8
  start-page: 35
  year: 2007
  ident: 945_CR47
  publication-title: J. Nonlinear Convex Anal.
SSID ssj0010027
Score 2.2767408
Snippet In this paper, we combine the S -iteration process introduced by Agarwal et al. ( J. Nonlinear Convex Anal. , 8 (1), 61–79 2007 ) with the proximal point...
In this paper, we combine the S-iteration process introduced by Agarwal et al. (J. Nonlinear Convex Anal., 8(1), 61–79 2007) with the proximal point algorithm...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1561
SubjectTerms Algebra
Algorithms
Asymptotic properties
Banach spaces
Computer Science
Iterative methods
Numeric Computing
Numerical Analysis
Optimization
Original Paper
Regularization methods
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iHvTgW1xf5OBNA0233aRHEcWLi-ADbyWvrgXbrpuurCf_upNuu1VRQY9NkxCYyTwyM98gdJQICmpZdkkCPjIBptAE1IIiwMpK8shnkQyqZhOs3-cPD9F1XRRmm2z3JiRZSeq22A08FVdN7CqhoyAkIHgXQoc243z0m_tZ7MB5WlWME-Qv2De8LpX5fo_P6qi1Mb-ERSttc7H6v3OuoZXausSnU3ZYR3Mm30CrtaWJ63tsYahp5tCMbaDlqxmAq91Eb9ejYpJmsNewSPMSi6dBMUrLx8xip_c0LnJ8Q6aQzCAv8QwKFoMRjHPjYJOxsK_ZsCyq13L4fB4Lm5K8yM0ERJBLm8eZcPAQA4tFrvHHWPoWurs4vz27JHWvBqL8buATRYX2NPgfWkoWKOH3NBUmYEo5m4pprUAp9ARjXIaJ8aWXhAwWuDRBw2jidbfRvDvADsKSg4tFOQNRYwKqe0Iarr0ooVpRzwS8g2hDsljVQOaun8ZT3EIwOxLEQIK4IkHsd9DxbM1wCuPx6-z9hhPi-krb2I8od_WUYdBBJw3l298_77b7t-l7aMl3eTNVdtA-mi9HY3OAFtVLmdrRYcXq74Rz-ik
  priority: 102
  providerName: Springer Nature
Title Proximal point algorithms based on S-iterative technique for nearly asymptotically quasi-nonexpansive mappings and applications
URI https://link.springer.com/article/10.1007/s11075-020-00945-2
https://www.proquest.com/docview/2918617854
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlgMcKBQQgRLtgRus8G6c7PqEALVCQkRRA6g3a18ukRo7jd2qPfHXmdlsEkCiFy6WLHtWK83sPHZmvgF4VRmBZtkOeIUxMkeh8BzNguMoys7qQqrC5nHYhBqP9elpMUkXbm0qq1zrxKiofePojvytLISmdrZh_m5xwWlqFGVX0wiNHdgjlAQRS_emmywCxVwx24maGD0dnZpmVq1zGPdQbzL1VRf5kMs_DdPW2_wrQRrtzvH-_-74ITxIHid7vxKRR3An1Aewn7xPls52ewD3v2wQXNvH8HOybK5ncyRcNLO6Y-b8DNfufsxbRobPs6ZmU77CZEaFyTZYsAy9YFYHwk1mpr2ZL7omXpfj68WlaWe8bupwjTqI6ubZ3BA-xFnLTO3Z78n0J_Dt-Ojrx088DWvgTg5yyZ0wPvMYgHhrVe6MHHlhQq6cI6dKee_QKoyMUtoOqyBtVg0VElCdYFCiygZPYZc28AyY1RhjCa1Q14Rc-JGxQfusqIR3Igu57oFYc6p0CcmcBmqcl1sMZuJuidwtI3dL2YPXG5rFCsfj1r8P1ywt05luyy0_e_BmLRTbz_9e7fntq72Ae5IKZWI50CHsdsvL8BLuuqtu1i77sPfhaDw56cPOZ8X7Ub7xeTL9_gsmPwGt
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFAk4UCggAgV8gBNYrB1v7D0gxEerVm2jCIrU29Zre0ukZjeNt9Ce-Ef8Rsb7kQASvfXAcZW1lThv38zszLwBeJ5rhmY5G9AcY2SKoLAUzYKhCGWTqYTLJBP1sAk5GqnDw2S8Aj-7XphQVtlxYk3UtjThHflrnjAV2tli8XZ2SsPUqJBd7UZoNLDYdRffMWTzb3Y-4v_7gvOtzYMP27SdKkANHwhODdM2sugp2yyTwmg-tEw7IY0J1l9aa5C-hlpKlcW541mUxxIXhII2J1keDXDfa7AqBmIY92D1_eZo_GmRtwhRXp1fRe5H30q1bTpNsx5GWqEbOnRyJyKm_E9TuPRv_0rJ1pZua-1_O6M7cLv1qcm75iG4CyuuWIe11r8mLXv5dbi1v9Co9ffgx3henk-muHBWToqK6JNj_C3V16knwbRbUhbkM21Up9EkkIXaLUE_nxQuKEMT7S-ms6qsEwJ4eXqm_YQWZeHOkWVDZwCZ6qCAceyJLiz5vVzgPny5kkN5AL3wBR4CyRRGkUxJZFMnmB3qzCkbJTmzhkVOqD6wDhmpabXaw8iQk3SpMh3QlCKa0hpNKe_Dy8WaWaNUcundGx2E0pa1fLrETx9edSBcfvzv3R5dvtszuLF9sL-X7u2Mdh_DTR7Kguripw3oVfMz9wSum2_VxM-fts8TgaOrhucvbXxfag
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9NME3jgQ7YtAIbfuANLOLUrZ3Hia3aNKgqPibeIn-lRKJJaQLqnvav75wmLUMDadpjHNuydOf78N39DmA_UQzVsu7QBH1kikxhKaoFQ5GVjZZRKCLNq2YTYjCQV1fR8EEVf5Xt3oQk5zUNHqUpK48mNjlaFr6h1-Iri31VdMS7FIXwKscxn9R1dv5jEUfwXlcV70RZjLaOrMtm_r7Hn6ppaW8-CpFWmqff-v8zv4H12uokn-ZssgEvXLYJrdoCJfX9LnCoafLQjG3C2ukC2LXYgl_DaT5Lx7jXJE-zkqibUT5Ny-txQbw-tCTPyDmdQzWjHCULiFiCxjHJnIdTJqr4OZ6UefWKjp-3d6pIaZZnboaiyafTk7HysBGjgqjMkocx9rdw2f9ycfyV1j0cqAk7PKSGKRtY9Eus1oIbFfYsU44LY7ytJaw1qCx6Sgipu4kLdZB0BS7w6YNOsCTovIMVf4D3QLRE14tJgSLIcWZ7Sjtpgyhh1rDAcdkG1pAvNjXAue-zcRMvoZk9CWIkQVyRIA7bcLBYM5nDezw7e7fhiri-6kUcRkz6Ossub8NhwwXL30_vtv1v0_fg1fBzPz75Nvi-A69Dn1pTJRDtwko5vXMf4KW5L9Ni-rG6Ab8BaasGAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+point+algorithms+based+on+S-iterative+technique+for+nearly+asymptotically+quasi-nonexpansive+mappings+and+applications&rft.jtitle=Numerical+algorithms&rft.au=Sahu%2C+D.+R.&rft.au=Kumar%2C+Ajeet&rft.au=Kang%2C+Shin+Min&rft.date=2021-04-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=86&rft.issue=4&rft.spage=1561&rft.epage=1590&rft_id=info:doi/10.1007%2Fs11075-020-00945-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11075_020_00945_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon