Public Social Distance Monitoring System Using Object Detection YOLO Deep Learning Algorithm
Computer vision and deep learning are emerging technologies as the backbone system to maintain the public healthcare sector to detect the object and surrounding, especially during the COVID-19 pandemic. Generally, in a single stage, you only look once version 3 (YOLOv3) algorithms promising the best...
Uložené v:
| Vydané v: | SN computer science Ročník 4; číslo 6; s. 718 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
Springer Nature Singapore
01.11.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2661-8907, 2662-995X, 2661-8907 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Computer vision and deep learning are emerging technologies as the backbone system to maintain the public healthcare sector to detect the object and surrounding, especially during the COVID-19 pandemic. Generally, in a single stage, you only look once version 3 (YOLOv3) algorithms promising the best results to detect the object in images, live feeds, or videos by learning features at a faster rate than two-stage algorithms such as R-CNN, fast CNN, and faster CNN. Deep sort methods were employed to track identified people by supporting bounding boxes and calculating the Euclidian distances between the people to maintain social distance. Moreover, the YOLOV3 model requires more computational cost to detect the object at best with a lower detection time. Hence, it motivates us to practice a single graphics processing unit (GPU) with the multithreaded approach to increase the frames per second at detection. The proposed model uses a background modeling method grounded on frame variance accumulation which is used to define the number of frames and weight updating. This approach uses two steps, localization of the object and then the classification of localized objects. Distances between people are calculated and compared with threshold values to facilitate comparison. The threshold limit triggers the alert system which is accessible to people, monitoring many video streams at a time. The model is tested based on processors, threads consumed, and various types of inputs ranging from static images to moving videos. Tiny-YOLOv3 performs with the best frames per second and the least processing time, followed by SPP-YOLOv3 and YOLOv3. The model proves its evidence on various parameters and metrics to work robustly. As well as the reason to adopt YOLOv3 over other YOLOv4 and YOLOV5 is tabulated. This model initiates the curiosity to develop a mobile application with security systems based on IoT and CCTV to monitor crowded places.
Graphical Abstract |
|---|---|
| AbstractList | Computer vision and deep learning are emerging technologies as the backbone system to maintain the public healthcare sector to detect the object and surrounding, especially during the COVID-19 pandemic. Generally, in a single stage, you only look once version 3 (YOLOv3) algorithms promising the best results to detect the object in images, live feeds, or videos by learning features at a faster rate than two-stage algorithms such as R-CNN, fast CNN, and faster CNN. Deep sort methods were employed to track identified people by supporting bounding boxes and calculating the Euclidian distances between the people to maintain social distance. Moreover, the YOLOV3 model requires more computational cost to detect the object at best with a lower detection time. Hence, it motivates us to practice a single graphics processing unit (GPU) with the multithreaded approach to increase the frames per second at detection. The proposed model uses a background modeling method grounded on frame variance accumulation which is used to define the number of frames and weight updating. This approach uses two steps, localization of the object and then the classification of localized objects. Distances between people are calculated and compared with threshold values to facilitate comparison. The threshold limit triggers the alert system which is accessible to people, monitoring many video streams at a time. The model is tested based on processors, threads consumed, and various types of inputs ranging from static images to moving videos. Tiny-YOLOv3 performs with the best frames per second and the least processing time, followed by SPP-YOLOv3 and YOLOv3. The model proves its evidence on various parameters and metrics to work robustly. As well as the reason to adopt YOLOv3 over other YOLOv4 and YOLOV5 is tabulated. This model initiates the curiosity to develop a mobile application with security systems based on IoT and CCTV to monitor crowded places. Computer vision and deep learning are emerging technologies as the backbone system to maintain the public healthcare sector to detect the object and surrounding, especially during the COVID-19 pandemic. Generally, in a single stage, you only look once version 3 (YOLOv3) algorithms promising the best results to detect the object in images, live feeds, or videos by learning features at a faster rate than two-stage algorithms such as R-CNN, fast CNN, and faster CNN. Deep sort methods were employed to track identified people by supporting bounding boxes and calculating the Euclidian distances between the people to maintain social distance. Moreover, the YOLOV3 model requires more computational cost to detect the object at best with a lower detection time. Hence, it motivates us to practice a single graphics processing unit (GPU) with the multithreaded approach to increase the frames per second at detection. The proposed model uses a background modeling method grounded on frame variance accumulation which is used to define the number of frames and weight updating. This approach uses two steps, localization of the object and then the classification of localized objects. Distances between people are calculated and compared with threshold values to facilitate comparison. The threshold limit triggers the alert system which is accessible to people, monitoring many video streams at a time. The model is tested based on processors, threads consumed, and various types of inputs ranging from static images to moving videos. Tiny-YOLOv3 performs with the best frames per second and the least processing time, followed by SPP-YOLOv3 and YOLOv3. The model proves its evidence on various parameters and metrics to work robustly. As well as the reason to adopt YOLOv3 over other YOLOv4 and YOLOV5 is tabulated. This model initiates the curiosity to develop a mobile application with security systems based on IoT and CCTV to monitor crowded places. Graphical Abstract |
| ArticleNumber | 718 |
| Author | V, Mareeswari Pople, Vedant R, Vijayan |
| Author_xml | – sequence: 1 givenname: Vijayan orcidid: 0000-0002-1164-7569 surname: R fullname: R, Vijayan organization: School of Computer Science Engineering and Information Systems (SCORE), Vellore Institute of Technology (VIT) – sequence: 2 givenname: Mareeswari orcidid: 0000-0002-2768-943X surname: V fullname: V, Mareeswari email: vmareeswari@vit.ac.in organization: School of Computer Science Engineering and Information Systems (SCORE), Vellore Institute of Technology (VIT) – sequence: 3 givenname: Vedant surname: Pople fullname: Pople, Vedant organization: Fulton Schools of Engineering, Arizona State University |
| BookMark | eNp9kMtKAzEUhoNUsNa-gKsB16O5zmVZWm8wUqF1IQghEzM1ZZqMSbro25txBMVFF-HkwP_lnHznYGSsUQBcIniNIMxvPMVlXqYQk3gQQSk-AWOcZSgtSpiP_tzPwNT7LYQQM0hpxsbg7Xlft1omKyu1aJOF9kEYqZIna3SwTptNsjr4oHbJi--bZb1VMiQLFWLR1iSvy2oZW9UllRLO9JlZu4lk-NhdgNNGtF5Nf-oErO9u1_OHtFreP85nVSoxoTgtCGKyIQgXmUIESlwUDSZlTbOmofBdQCJIjmpUikIQBiETopQSKyqIyuuGTMDV8Gzn7Ode-cC3du9MnMhxiREqGaMspoohJZ313qmGSx1E_4fghG45gry3yQebPNrk3zY5jij-h3ZO74Q7HIfIAPmu16jc71ZHqC8p1ogP |
| CitedBy_id | crossref_primary_10_3390_app142210713 |
| Cites_doi | 10.1007/s10462-020-09825-6 10.1016/j.jiph.2020.03.019 10.1088/1742-6596/1679/4/042022 10.1109/ACCESS.2019.2961959 10.1088/1742-6596/1916/1/012039 10.1007/s13042-020-01220-5 10.1109/TPAMI.2017.2687462 10.1007/s11554-022-01203-5 10.1007/s11554-021-01070-6 10.1088/1757-899X/533/1/012056 10.1109/ACCESS.2020.3018140 10.1177/1729881420936062 10.1186/s40537-021-00434-w 10.1109/JIOT.2017.2787779 10.1016/j.scs.2020.102582 10.3390/cryptography6020016 10.1155/2022/2103975 10.1371/journal.pone.0247440 10.1080/21642583.2020.1824132 10.1016/j.ins.2020.02.067 10.1109/TPAMI.2016.2577031 10.4218/etrij.15.0114.0629 10.3390/s20174938 10.1007/s00521-023-08556-3 10.3390/app10093079 10.1109/TNNLS.2018.2876865 10.3390/s19112508 10.1007/s10586-017-0968-3 10.1109/ACCESS.2021.3094720 10.1109/ICACCS48705.2020.9074315 10.1109/ICCMC51019.2021.9418478 10.1109/CRV.2018.00023 10.1109/ICCSCE50387.2020.9204934 10.1109/ISC2.2017.8090864 10.1109/CVPR.2016.91 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-023-02131-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_023_02131_2 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c2342-8315cf31286e130c288f239b46ff40da03a371b19a8a35005aa9cc2e4a3e7bf3 |
| IEDL.DBID | P5Z |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Wed Nov 05 15:01:22 EST 2025 Tue Nov 18 22:34:06 EST 2025 Sat Nov 29 01:32:51 EST 2025 Fri Feb 21 02:41:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | YOLO Deep learning Computer vision Object classification Social monitoring Object detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2342-8315cf31286e130c288f239b46ff40da03a371b19a8a35005aa9cc2e4a3e7bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2768-943X 0000-0002-1164-7569 |
| PQID | 2921195545 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_2921195545 crossref_citationtrail_10_1007_s42979_023_02131_2 crossref_primary_10_1007_s42979_023_02131_2 springer_journals_10_1007_s42979_023_02131_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Saponara, Elhanashi, Zheng (CR12) 2022; 19 Ahmad, Ma, Yahya, Ahmad, Nazir (CR29) 2020; 2020 Srivastava, Divekar, Anilkumar, Naik, Kulkarni, Pattabiraman (CR28) 2021; 8 Zhang, Gao, Wang, Wang (CR37) 2020; 17 CR39 CR15 Carrasco, Rashwan, Puig (CR41) 2021; 39 CR13 Liu (CR3) 2016 CR11 CR33 Huang, Wang, Fu, Yu, Guo, Wang (CR36) 2020; 522 CR31 Khan, Khan, Saba, Razzak, Rehman, Bahaj (CR34) 2021; 9 Fang, Wang, Ren (CR40) 2019; 8 Ren, He, Girshick, Sun (CR21) 2016 Khan, Sohail, Zahoora, Qureshi (CR17) 2020; 53 Zhao, Zheng, Xu, Wu (CR18) 2019; 30 Nguyen (CR23) 2020; 8 Ahmed, Adnan (CR27) 2018; 21 Choi, Moon, Yoo (CR6) 2015; 37 Dehghan, Shah (CR26) 2017; 40 Zhang, Wang, Zhao, Xie (CR38) 2021; 9 Shorfuzzaman, Hossain, Alhamid (CR14) 2021; 64 Saponara, Elhanashi, Gagliardi (CR25) 2021; 18 Huang, Zheng, Sun, Yang, Liu (CR30) 2020; 10 Harapan (CR2) 2020; 13 Ahmed, Ahmad, Ahmad, Jeon (CR5) 2021 Meivel (CR32) 2022; 2020 Ansari, Singh (CR24) 2021; 13 Unhale (CR1) 2020; 6 Li, Zhang, Lei, Wang, Guo (CR8) 2020; 20 Ahmed, Ahmad, Piccialli, Sangaiah, Jeon (CR4) 2017; 5 CR43 Zhang, Wang, Chen, Zhang (CR19) 2019; 19 CR42 Dorrer, Tolmacheva (CR9) 2020; 1679 Shalini, Margret, Niraimathi, Subashree (CR20) 2021; 1916 Rahim, Maqbool, Rana (CR10) 2021; 16 Gündüz, Işık (CR16) 2023 Feng, Mu, Zhong, Zhang, Yuan (CR44) 2022; 6 Zhao, Ren (CR7) 2019; 533 Cepni, Atik, Duran (CR35) 2020; 8 Mareeswari, Vijayan, Sathiyamoorthy, Ephzibah (CR22) 2022; 9 J-W Choi (2131_CR6) 2015; 37 2131_CR42 GV Shalini (2131_CR20) 2021; 1916 M Ansari (2131_CR24) 2021; 13 W Fang (2131_CR40) 2019; 8 V Mareeswari (2131_CR22) 2022; 9 I Ahmed (2131_CR4) 2017; 5 H Harapan (2131_CR2) 2020; 13 Y-Q Huang (2131_CR30) 2020; 10 S Meivel (2131_CR32) 2022; 2020 S Ren (2131_CR21) 2016 A Dehghan (2131_CR26) 2017; 40 Z Huang (2131_CR36) 2020; 522 X Zhang (2131_CR38) 2021; 9 DP Carrasco (2131_CR41) 2021; 39 MZ Khan (2131_CR34) 2021; 9 MS Gündüz (2131_CR16) 2023 2131_CR43 M Shorfuzzaman (2131_CR14) 2021; 64 A Khan (2131_CR17) 2020; 53 M Li (2131_CR8) 2020; 20 W Liu (2131_CR3) 2016 Z-Q Zhao (2131_CR18) 2019; 30 2131_CR31 K Zhao (2131_CR7) 2019; 533 S Saponara (2131_CR12) 2022; 19 H Feng (2131_CR44) 2022; 6 Imran Ahmed (2131_CR5) 2021 I Ahmed (2131_CR27) 2018; 21 S Cepni (2131_CR35) 2020; 8 MG Dorrer (2131_CR9) 2020; 1679 G Zhang (2131_CR19) 2019; 19 T Ahmad (2131_CR29) 2020; 2020 S Srivastava (2131_CR28) 2021; 8 SS Unhale (2131_CR1) 2020; 6 X Zhang (2131_CR37) 2020; 17 S Saponara (2131_CR25) 2021; 18 A Rahim (2131_CR10) 2021; 16 2131_CR15 2131_CR39 2131_CR11 2131_CR33 2131_CR13 CT Nguyen (2131_CR23) 2020; 8 |
| References_xml | – volume: 53 start-page: 5455 issue: 8 year: 2020 end-page: 5516 ident: CR17 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09825-6 – volume: 13 start-page: 667 issue: 5 year: 2020 end-page: 673 ident: CR2 article-title: Coronavirus disease 2019 (COVID-19): a literature review publication-title: J. Infect. Public Health doi: 10.1016/j.jiph.2020.03.019 – ident: CR43 – ident: CR39 – volume: 1679 start-page: 42022 issue: 4 year: 2020 ident: CR9 article-title: Comparison of the YOLOv3 and Mask R-CNN architectures’ efficiency in the smart refrigerator’s computer vision publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1679/4/042022 – volume: 8 start-page: 1935 year: 2019 end-page: 1944 ident: CR40 article-title: Tinier-YOLO: a real-time object detection method for constrained environments publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961959 – volume: 1916 start-page: 12039 issue: 1 year: 2021 ident: CR20 article-title: Social distancing analyzer using computer vision and deep learning publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1916/1/012039 – year: 2021 ident: CR5 article-title: Top view multiple people tracking by detection using deep SORT and YOLOv3 with transfer learning: within 5G infrastructure publication-title: t J Mach Learn Cybern doi: 10.1007/s13042-020-01220-5 – volume: 40 start-page: 568 issue: 3 year: 2017 end-page: 581 ident: CR26 article-title: Binary quadratic programing for online tracking of hundreds of people in extremely crowded scenes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2687462 – volume: 9 start-page: 623 year: 2022 end-page: 643 ident: CR22 article-title: A narrative review of medical image processing by deep learning models: origin to COVID-19 publication-title: Int. J. Adv. Technol. Eng. Explor. – ident: CR33 – volume: 8 start-page: 347 issue: 2 year: 2020 end-page: 358 ident: CR35 article-title: Vehicle detection using different deep learning algorithms from image sequence publication-title: Balt. J. Mod. Comput. – volume: 19 start-page: 551 issue: 3 year: 2022 end-page: 563 ident: CR12 article-title: Developing a real-time social distancing detection system based on YOLOv4-tiny and bird-eye view for COVID-19 publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-022-01203-5 – volume: 18 start-page: 1937 issue: 6 year: 2021 end-page: 1947 ident: CR25 article-title: Implementing a real-time, AI-based, people detection and social distancing measuring system for Covid-19 publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-021-01070-6 – volume: 533 start-page: 12056 issue: 1 year: 2019 ident: CR7 article-title: Small aircraft detection in remote sensing images based on YOLOv3 publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/533/1/012056 – volume: 8 start-page: 153479 year: 2020 end-page: 153507 ident: CR23 article-title: A comprehensive survey of enabling and emerging technologies for social distancing Part I: fundamentals and enabling technologies publication-title: Ieee Access doi: 10.1109/ACCESS.2020.3018140 – volume: 17 start-page: 1729881420936062 issue: 4 year: 2020 ident: CR37 article-title: Improve YOLOv3 using dilated spatial pyramid module for multi-scale object detection publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881420936062 – volume: 8 start-page: 1 issue: 1 year: 2021 end-page: 27 ident: CR28 article-title: Comparative analysis of deep learning image detection algorithms publication-title: J. Big Data doi: 10.1186/s40537-021-00434-w – volume: 5 start-page: 1598 issue: 3 year: 2017 end-page: 1605 ident: CR4 article-title: A robust features-based person tracker for overhead views in industrial environment publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2787779 – ident: CR42 – volume: 64 year: 2021 ident: CR14 article-title: Towards the sustainable development of smart cities through mass video surveillance: a response to the COVID-19 pandemic publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102582 – volume: 6 start-page: 16 issue: 2 year: 2022 ident: CR44 article-title: Benchmark analysis of yolo performance on edge intelligence devices publication-title: Cryptography doi: 10.3390/cryptography6020016 – volume: 2020 start-page: 1 year: 2020 end-page: 10 ident: CR29 article-title: Object detection through modified YOLO neural network publication-title: Sci. Program. – volume: 2020 start-page: 1 year: 2022 end-page: 13 ident: CR32 article-title: Mask detection and social distance identification using internet of things and faster R-CNN algorithm publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/2103975 – volume: 6 start-page: 109 issue: 4 year: 2020 end-page: 115 ident: CR1 article-title: A review on corona virus (COVID-19) publication-title: World J. Pharm. life Sci. – volume: 16 issue: 2 year: 2021 ident: CR10 article-title: Monitoring social distancing under various low light conditions with deep learning and a single motionless time of flight camera publication-title: PLoS One doi: 10.1371/journal.pone.0247440 – volume: 9 start-page: 142 issue: sup1 year: 2021 end-page: 149 ident: CR38 article-title: An improved YOLOv3 model based on skipping connections and spatial pyramid pooling publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2020.1824132 – ident: CR15 – volume: 522 start-page: 241 year: 2020 end-page: 258 ident: CR36 article-title: DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2020.02.067 – volume: 39 start-page: 1137 issue: 6 year: 2021 end-page: 1149 ident: CR41 article-title: T-YOLO: tiny vehicle detection based on YOLO and multi-scale convolutional neural networks” publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/TPAMI.2016.2577031 – ident: CR31 – ident: CR13 – volume: 37 start-page: 551 issue: 3 year: 2015 end-page: 561 ident: CR6 article-title: Robust multi-person tracking for real-time intelligent video surveillance publication-title: ETRI J. doi: 10.4218/etrij.15.0114.0629 – ident: CR11 – volume: 20 start-page: 4938 issue: 17 year: 2020 ident: CR8 article-title: Agricultural greenhouses detection in high-resolution satellite images based on convolutional neural networks: comparison of faster R-CNN, YOLO v3 and SSD publication-title: Sensors doi: 10.3390/s20174938 – year: 2016 ident: CR21 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Transact Patt Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – year: 2023 ident: CR16 article-title: A new YOLO-based method for social distancing from real-time videos publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08556-3 – volume: 10 start-page: 3079 issue: 9 year: 2020 ident: CR30 article-title: Optimized YOLOv3 algorithm and its application in traffic flow detections publication-title: Appl. Sci. doi: 10.3390/app10093079 – volume: 30 start-page: 3212 issue: 11 year: 2019 end-page: 3232 ident: CR18 article-title: Object detection with deep learning: a review publication-title: IEEE Trans. neural networks Learn. Syst. doi: 10.1109/TNNLS.2018.2876865 – volume: 19 start-page: 2508 issue: 11 year: 2019 ident: CR19 article-title: Wireless indoor localization using convolutional neural network and Gaussian process regression publication-title: Sensors doi: 10.3390/s19112508 – start-page: 21 year: 2016 end-page: 37 ident: CR3 publication-title: “Ssd: Single shot multibox detector. European conference on computer vision – volume: 13 start-page: 1255 issue: 3 year: 2021 end-page: 1264 ident: CR24 article-title: Monitoring social distancing through human detection for preventing/reducing COVID spread publication-title: Int. J. Inf. Technol. – volume: 21 start-page: 633 issue: 1 year: 2018 end-page: 654 ident: CR27 article-title: A robust algorithm for detecting people in overhead views publication-title: Cluster Comput. doi: 10.1007/s10586-017-0968-3 – volume: 9 start-page: 100040 year: 2021 end-page: 100049 ident: CR34 article-title: Hot-Spot zone detection to tackle COVID19 spread by fusing the traditional machine learning and deep learning approaches of computer vision publication-title: Ieee Access doi: 10.1109/ACCESS.2021.3094720 – volume: 30 start-page: 3212 issue: 11 year: 2019 ident: 2131_CR18 publication-title: IEEE Trans. neural networks Learn. Syst. doi: 10.1109/TNNLS.2018.2876865 – volume: 17 start-page: 172988142093606 issue: 4 year: 2020 ident: 2131_CR37 publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881420936062 – volume: 8 start-page: 1935 year: 2019 ident: 2131_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2961959 – volume: 2020 start-page: 1 year: 2020 ident: 2131_CR29 publication-title: Sci. Program. – volume: 1916 start-page: 12039 issue: 1 year: 2021 ident: 2131_CR20 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1916/1/012039 – year: 2021 ident: 2131_CR5 publication-title: t J Mach Learn Cybern doi: 10.1007/s13042-020-01220-5 – volume: 53 start-page: 5455 issue: 8 year: 2020 ident: 2131_CR17 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09825-6 – ident: 2131_CR39 doi: 10.1109/ICACCS48705.2020.9074315 – volume: 18 start-page: 1937 issue: 6 year: 2021 ident: 2131_CR25 publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-021-01070-6 – volume: 37 start-page: 551 issue: 3 year: 2015 ident: 2131_CR6 publication-title: ETRI J. doi: 10.4218/etrij.15.0114.0629 – volume: 9 start-page: 623 year: 2022 ident: 2131_CR22 publication-title: Int. J. Adv. Technol. Eng. Explor. – ident: 2131_CR43 – ident: 2131_CR33 doi: 10.1109/ICCMC51019.2021.9418478 – volume: 1679 start-page: 42022 issue: 4 year: 2020 ident: 2131_CR9 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1679/4/042022 – volume: 2020 start-page: 1 year: 2022 ident: 2131_CR32 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/2103975 – volume: 64 year: 2021 ident: 2131_CR14 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102582 – volume: 19 start-page: 551 issue: 3 year: 2022 ident: 2131_CR12 publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-022-01203-5 – volume: 19 start-page: 2508 issue: 11 year: 2019 ident: 2131_CR19 publication-title: Sensors doi: 10.3390/s19112508 – volume: 13 start-page: 667 issue: 5 year: 2020 ident: 2131_CR2 publication-title: J. Infect. Public Health doi: 10.1016/j.jiph.2020.03.019 – volume: 10 start-page: 3079 issue: 9 year: 2020 ident: 2131_CR30 publication-title: Appl. Sci. doi: 10.3390/app10093079 – volume: 13 start-page: 1255 issue: 3 year: 2021 ident: 2131_CR24 publication-title: Int. J. Inf. Technol. – volume: 40 start-page: 568 issue: 3 year: 2017 ident: 2131_CR26 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2687462 – year: 2023 ident: 2131_CR16 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-08556-3 – ident: 2131_CR15 – volume: 21 start-page: 633 issue: 1 year: 2018 ident: 2131_CR27 publication-title: Cluster Comput. doi: 10.1007/s10586-017-0968-3 – volume: 20 start-page: 4938 issue: 17 year: 2020 ident: 2131_CR8 publication-title: Sensors doi: 10.3390/s20174938 – ident: 2131_CR31 doi: 10.1109/CRV.2018.00023 – volume: 6 start-page: 16 issue: 2 year: 2022 ident: 2131_CR44 publication-title: Cryptography doi: 10.3390/cryptography6020016 – volume: 8 start-page: 153479 year: 2020 ident: 2131_CR23 publication-title: Ieee Access doi: 10.1109/ACCESS.2020.3018140 – volume: 8 start-page: 347 issue: 2 year: 2020 ident: 2131_CR35 publication-title: Balt. J. Mod. Comput. – volume: 6 start-page: 109 issue: 4 year: 2020 ident: 2131_CR1 publication-title: World J. Pharm. life Sci. – volume: 533 start-page: 12056 issue: 1 year: 2019 ident: 2131_CR7 publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/533/1/012056 – year: 2016 ident: 2131_CR21 publication-title: IEEE Transact Patt Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – start-page: 21 volume-title: “Ssd: Single shot multibox detector. European conference on computer vision year: 2016 ident: 2131_CR3 – ident: 2131_CR11 doi: 10.1109/ICCSCE50387.2020.9204934 – volume: 5 start-page: 1598 issue: 3 year: 2017 ident: 2131_CR4 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2787779 – volume: 16 issue: 2 year: 2021 ident: 2131_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0247440 – ident: 2131_CR13 doi: 10.1109/ISC2.2017.8090864 – volume: 9 start-page: 142 issue: sup1 year: 2021 ident: 2131_CR38 publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2020.1824132 – volume: 39 start-page: 1137 issue: 6 year: 2021 ident: 2131_CR41 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence. doi: 10.1109/TPAMI.2016.2577031 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 2131_CR28 publication-title: J. Big Data doi: 10.1186/s40537-021-00434-w – volume: 522 start-page: 241 year: 2020 ident: 2131_CR36 publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2020.02.067 – volume: 9 start-page: 100040 year: 2021 ident: 2131_CR34 publication-title: Ieee Access doi: 10.1109/ACCESS.2021.3094720 – ident: 2131_CR42 doi: 10.1109/CVPR.2016.91 |
| SSID | ssj0002504465 |
| Score | 2.2363114 |
| Snippet | Computer vision and deep learning are emerging technologies as the backbone system to maintain the public healthcare sector to detect the object and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 718 |
| SubjectTerms | Accuracy Algorithms Applications programs Classification Comparative analysis Computer Imaging Computer Science Computer Systems Organization and Communication Networks Computer vision Coronaviruses COVID-19 Data Structures and Information Theory Deep learning Disease prevention Disease transmission Energy consumption Frames (data processing) Frames per second Graphics processing units Information Systems and Communication Service Machine learning Mobile computing Monitoring Monitoring systems Neural networks New technology Object recognition Original Research Pandemics Pattern Recognition and Graphics Research Trends in Computational Intelligence Security systems Social distancing Software Engineering/Programming and Operating Systems Video data Violations Vision |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPXhxfuJ0Sg7etLAkTT-Owzk8jE10jAlCSbNkClsdW_Xv9yVNOxQV9NBDyXttecn76Eve7yF04Qc60CGfgCJxZn5QpCcimXoQvEpFBOXaVniPemG_H43H8Z0rCluVp93LLUlrqatiN7CcYeyBj4GLMOKB4d0EdxeZhg33D6Mqs2JAufyAuwqZ71k_e6F1aPllN9Q6mW79f5-3i3ZcUInbxSrYQxsq20f1smEDdvp7gJ6KJB0uanJxx8SOMIALxTavwwWCObYnCfAgNVka3FG5PbCV4cdBbwC3aoEdLusUt2dT4Myf54do2L0ZXt96rr2CJynzwQ4ywqVm4KACBZ5M0ijSlMUpTJ_2WxPRYoKFJCWxiATjoK1CxFJS5QumwlSzI1TLXjN1jDA3auwLiBWo9KWKYgokJEhDGXCqZauBSCntRDrocdMBY5ZUoMlWeglIL7HSS2gDXVY8iwJ441fqZjmJiVPCVUJjA18H8RJvoKty0tbDPz_t5G_kp2jbNKEvKhSbqJYv39QZ2pLv-ctqeW4X5wcAHtz7 priority: 102 providerName: Springer Nature |
| Title | Public Social Distance Monitoring System Using Object Detection YOLO Deep Learning Algorithm |
| URI | https://link.springer.com/article/10.1007/s42979-023-02131-2 https://www.proquest.com/docview/2921195545 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2661-8907 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20200101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: RSV dateStart: 20190101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54e_DFCypO58iDbxpck6ZtnsQrgmMbU2SKUNIsncLc5jb9_Z6k2YaCvvjQQmkSQk_OpSc53wdwGEZ5lMeig4okuP1B0VQlOqMYvGoTKCZyV-H9UIvr9aTdlk2fcBv7Y5VTm-gMdWegbY78hEmLRYbOT5wO36lljbK7q55CYxGWLUqCpW5oiqdZjsXCc4WOTRLdEKNSiravm3HVc2iKY0nRaeEV8ICy775pHnD-2CN1rud6_b-T3oA1H3SSs2KVbMKC6W_Bc5GxI0WBLrm0gSSuAFJouZ0JKeDMiTtWQBqZTdmQSzNxp7f65LFRa-CjGRIP0tolZ70u9py8vG3D_fXV_cUN9VwLVDMeolHkgdA5R28VGXRrmiVJzrjMUJZ5WO2oKlc8DrJAqkRxgaqrlNSamVBxE2c534Gl_qBvdoEIq9OhwsCB6VCbRDJsEkRZrCPBcl0tQTD9yKn2OOSWDqOXzhCUnWBSFEzqBJOyEhzN-gwLFI4_W5en0ki9Ro7TuShKcDyV5_z176Pt_T3aPqxaBvqiPLEMS5PRhzmAFf05eR2PKrB8flVvtiqweBvTiludeG_dPXwBl8bmWQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4qHRK7jCFAFLrNBziBRWPHSXxAU0VXtWppOVSoSEiW4zpjUmlL223iR-0_7tlJWoG03nrgkEMUx4rj733v-dnvPYC3YZRFWSwmKEiCuwWKoToxKUXj1dhAM5H5CO9v_XgwSMZj-bUCd2UsjDtWWXKiJ-rJ3Dgf-UcmXS4yVH7ifPGbuqpRbne1LKGRw6Jn_9zikm31qdvC-X3HWPti9LlDi6oC1DAeovjzQJiMIy9HFgncsCTJGJcpfnUWNia6wTWPgzSQOtFcIEi1lsYwG2pu4zTj2O0jOAh5Ejux6sV049Jx2cBCX7wStR6jUopxEabjg_WQ-WNJUUfiFfCAsr9V4da-_WdL1mu69tP_7B8dw1FhUpNmLgPPoGJnz-FH7o8kefgxaTkzGfFNcg5zAyd5snbiD02QYeocUqRl1_5s2ox8H_aHeGsXpEhBe0ma00t8c_3z1wsY7WM8L6E6m8_sKyDCMVao0SxiJjQ2kQybBFEam0iwzDRqEJRzqkyRZd0V-5iqTX5ojwOFOFAeB4rV4P3mnUWeY2Rn63o5-argm5XaznwNPpTw2T5-uLfXu3s7gyed0Ze-6ncHvTdwyBx6fSBmHarr5bU9gcfmZn21Wp56USCg9gyrewq7PN8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3Xdq89nEs1qJY2oKlVBCWbJpUoa6lXf39TvbRqqggHvawJNkNk0xmksz3DUJn3DWu8cQIFEkwu0FRjvRV5IDzqjSRVJgU4T1oe52OPxwGvQ8o_jTavbiSzDANlqUpTmrTkaktgG-winqBA_YGHsKIA4vwKreB9Ha_fjdYnLJYgi7uihwt833TzxZp6WZ-uRlNDU6r_P-ubqHN3NnEjWx2bKMVHe-gcpHIAed6vYsessM7nGF1cdP6lFCAM4W3v8YZszlOIwxwN7KnN7ipkzSQK8b33XYXXvUU53ytY9yYjKFl8vi8h_qtq_7ltZOnXXAUZRzWR0aEMgwMl6vBwinq-4ayIIJhNbw-knUmmUciEkhfMgFaLGWgFNVcMu1Fhu2jUvwS6wOEhVVvLsGHoIor7QcUqhA38pQrqFH1CiKF5EOVU5LbzBiTcEGmnEovBOmFqfRCWkHnizbTjJDj19rVYkDDXDnnIQ0srR34UaKCLooBXBb__LXDv1U_Reu9Zits33Ruj9CGzVOfgRirqJTMXvUxWlNvydN8dpLO2Xf4aOjD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Public+Social+Distance+Monitoring+System+Using+Object+Detection+YOLO+Deep+Learning+Algorithm&rft.jtitle=SN+computer+science&rft.au=R%2C+Vijayan&rft.au=V%2C+Mareeswari&rft.au=Pople%2C+Vedant&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=4&rft.issue=6&rft.spage=718&rft_id=info:doi/10.1007%2Fs42979-023-02131-2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |