Public Social Distance Monitoring System Using Object Detection YOLO Deep Learning Algorithm

Computer vision and deep learning are emerging technologies as the backbone system to maintain the public healthcare sector to detect the object and surrounding, especially during the COVID-19 pandemic. Generally, in a single stage, you only look once version 3 (YOLOv3) algorithms promising the best...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SN computer science Ročník 4; číslo 6; s. 718
Hlavní autori: R, Vijayan, V, Mareeswari, Pople, Vedant
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore Springer Nature Singapore 01.11.2023
Springer Nature B.V
Predmet:
ISSN:2661-8907, 2662-995X, 2661-8907
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Computer vision and deep learning are emerging technologies as the backbone system to maintain the public healthcare sector to detect the object and surrounding, especially during the COVID-19 pandemic. Generally, in a single stage, you only look once version 3 (YOLOv3) algorithms promising the best results to detect the object in images, live feeds, or videos by learning features at a faster rate than two-stage algorithms such as R-CNN, fast CNN, and faster CNN. Deep sort methods were employed to track identified people by supporting bounding boxes and calculating the Euclidian distances between the people to maintain social distance. Moreover, the YOLOV3 model requires more computational cost to detect the object at best with a lower detection time. Hence, it motivates us to practice a single graphics processing unit (GPU) with the multithreaded approach to increase the frames per second at detection. The proposed model uses a background modeling method grounded on frame variance accumulation which is used to define the number of frames and weight updating. This approach uses two steps, localization of the object and then the classification of localized objects. Distances between people are calculated and compared with threshold values to facilitate comparison. The threshold limit triggers the alert system which is accessible to people, monitoring many video streams at a time. The model is tested based on processors, threads consumed, and various types of inputs ranging from static images to moving videos. Tiny-YOLOv3 performs with the best frames per second and the least processing time, followed by SPP-YOLOv3 and YOLOv3. The model proves its evidence on various parameters and metrics to work robustly. As well as the reason to adopt YOLOv3 over other YOLOv4 and YOLOV5 is tabulated. This model initiates the curiosity to develop a mobile application with security systems based on IoT and CCTV to monitor crowded places. Graphical Abstract
AbstractList Computer vision and deep learning are emerging technologies as the backbone system to maintain the public healthcare sector to detect the object and surrounding, especially during the COVID-19 pandemic. Generally, in a single stage, you only look once version 3 (YOLOv3) algorithms promising the best results to detect the object in images, live feeds, or videos by learning features at a faster rate than two-stage algorithms such as R-CNN, fast CNN, and faster CNN. Deep sort methods were employed to track identified people by supporting bounding boxes and calculating the Euclidian distances between the people to maintain social distance. Moreover, the YOLOV3 model requires more computational cost to detect the object at best with a lower detection time. Hence, it motivates us to practice a single graphics processing unit (GPU) with the multithreaded approach to increase the frames per second at detection. The proposed model uses a background modeling method grounded on frame variance accumulation which is used to define the number of frames and weight updating. This approach uses two steps, localization of the object and then the classification of localized objects. Distances between people are calculated and compared with threshold values to facilitate comparison. The threshold limit triggers the alert system which is accessible to people, monitoring many video streams at a time. The model is tested based on processors, threads consumed, and various types of inputs ranging from static images to moving videos. Tiny-YOLOv3 performs with the best frames per second and the least processing time, followed by SPP-YOLOv3 and YOLOv3. The model proves its evidence on various parameters and metrics to work robustly. As well as the reason to adopt YOLOv3 over other YOLOv4 and YOLOV5 is tabulated. This model initiates the curiosity to develop a mobile application with security systems based on IoT and CCTV to monitor crowded places.
Computer vision and deep learning are emerging technologies as the backbone system to maintain the public healthcare sector to detect the object and surrounding, especially during the COVID-19 pandemic. Generally, in a single stage, you only look once version 3 (YOLOv3) algorithms promising the best results to detect the object in images, live feeds, or videos by learning features at a faster rate than two-stage algorithms such as R-CNN, fast CNN, and faster CNN. Deep sort methods were employed to track identified people by supporting bounding boxes and calculating the Euclidian distances between the people to maintain social distance. Moreover, the YOLOV3 model requires more computational cost to detect the object at best with a lower detection time. Hence, it motivates us to practice a single graphics processing unit (GPU) with the multithreaded approach to increase the frames per second at detection. The proposed model uses a background modeling method grounded on frame variance accumulation which is used to define the number of frames and weight updating. This approach uses two steps, localization of the object and then the classification of localized objects. Distances between people are calculated and compared with threshold values to facilitate comparison. The threshold limit triggers the alert system which is accessible to people, monitoring many video streams at a time. The model is tested based on processors, threads consumed, and various types of inputs ranging from static images to moving videos. Tiny-YOLOv3 performs with the best frames per second and the least processing time, followed by SPP-YOLOv3 and YOLOv3. The model proves its evidence on various parameters and metrics to work robustly. As well as the reason to adopt YOLOv3 over other YOLOv4 and YOLOV5 is tabulated. This model initiates the curiosity to develop a mobile application with security systems based on IoT and CCTV to monitor crowded places. Graphical Abstract
ArticleNumber 718
Author V, Mareeswari
Pople, Vedant
R, Vijayan
Author_xml – sequence: 1
  givenname: Vijayan
  orcidid: 0000-0002-1164-7569
  surname: R
  fullname: R, Vijayan
  organization: School of Computer Science Engineering and Information Systems (SCORE), Vellore Institute of Technology (VIT)
– sequence: 2
  givenname: Mareeswari
  orcidid: 0000-0002-2768-943X
  surname: V
  fullname: V, Mareeswari
  email: vmareeswari@vit.ac.in
  organization: School of Computer Science Engineering and Information Systems (SCORE), Vellore Institute of Technology (VIT)
– sequence: 3
  givenname: Vedant
  surname: Pople
  fullname: Pople, Vedant
  organization: Fulton Schools of Engineering, Arizona State University
BookMark eNp9kMtKAzEUhoNUsNa-gKsB16O5zmVZWm8wUqF1IQghEzM1ZZqMSbro25txBMVFF-HkwP_lnHznYGSsUQBcIniNIMxvPMVlXqYQk3gQQSk-AWOcZSgtSpiP_tzPwNT7LYQQM0hpxsbg7Xlft1omKyu1aJOF9kEYqZIna3SwTptNsjr4oHbJi--bZb1VMiQLFWLR1iSvy2oZW9UllRLO9JlZu4lk-NhdgNNGtF5Nf-oErO9u1_OHtFreP85nVSoxoTgtCGKyIQgXmUIESlwUDSZlTbOmofBdQCJIjmpUikIQBiETopQSKyqIyuuGTMDV8Gzn7Ode-cC3du9MnMhxiREqGaMspoohJZ313qmGSx1E_4fghG45gry3yQebPNrk3zY5jij-h3ZO74Q7HIfIAPmu16jc71ZHqC8p1ogP
CitedBy_id crossref_primary_10_3390_app142210713
Cites_doi 10.1007/s10462-020-09825-6
10.1016/j.jiph.2020.03.019
10.1088/1742-6596/1679/4/042022
10.1109/ACCESS.2019.2961959
10.1088/1742-6596/1916/1/012039
10.1007/s13042-020-01220-5
10.1109/TPAMI.2017.2687462
10.1007/s11554-022-01203-5
10.1007/s11554-021-01070-6
10.1088/1757-899X/533/1/012056
10.1109/ACCESS.2020.3018140
10.1177/1729881420936062
10.1186/s40537-021-00434-w
10.1109/JIOT.2017.2787779
10.1016/j.scs.2020.102582
10.3390/cryptography6020016
10.1155/2022/2103975
10.1371/journal.pone.0247440
10.1080/21642583.2020.1824132
10.1016/j.ins.2020.02.067
10.1109/TPAMI.2016.2577031
10.4218/etrij.15.0114.0629
10.3390/s20174938
10.1007/s00521-023-08556-3
10.3390/app10093079
10.1109/TNNLS.2018.2876865
10.3390/s19112508
10.1007/s10586-017-0968-3
10.1109/ACCESS.2021.3094720
10.1109/ICACCS48705.2020.9074315
10.1109/ICCMC51019.2021.9418478
10.1109/CRV.2018.00023
10.1109/ICCSCE50387.2020.9204934
10.1109/ISC2.2017.8090864
10.1109/CVPR.2016.91
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-023-02131-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_023_02131_2
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2342-8315cf31286e130c288f239b46ff40da03a371b19a8a35005aa9cc2e4a3e7bf3
IEDL.DBID P5Z
ISSN 2661-8907
2662-995X
IngestDate Wed Nov 05 15:01:22 EST 2025
Tue Nov 18 22:34:06 EST 2025
Sat Nov 29 01:32:51 EST 2025
Fri Feb 21 02:41:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords YOLO
Deep learning
Computer vision
Object classification
Social monitoring
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2342-8315cf31286e130c288f239b46ff40da03a371b19a8a35005aa9cc2e4a3e7bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2768-943X
0000-0002-1164-7569
PQID 2921195545
PQPubID 6623307
ParticipantIDs proquest_journals_2921195545
crossref_citationtrail_10_1007_s42979_023_02131_2
crossref_primary_10_1007_s42979_023_02131_2
springer_journals_10_1007_s42979_023_02131_2
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Saponara, Elhanashi, Zheng (CR12) 2022; 19
Ahmad, Ma, Yahya, Ahmad, Nazir (CR29) 2020; 2020
Srivastava, Divekar, Anilkumar, Naik, Kulkarni, Pattabiraman (CR28) 2021; 8
Zhang, Gao, Wang, Wang (CR37) 2020; 17
CR39
CR15
Carrasco, Rashwan, Puig (CR41) 2021; 39
CR13
Liu (CR3) 2016
CR11
CR33
Huang, Wang, Fu, Yu, Guo, Wang (CR36) 2020; 522
CR31
Khan, Khan, Saba, Razzak, Rehman, Bahaj (CR34) 2021; 9
Fang, Wang, Ren (CR40) 2019; 8
Ren, He, Girshick, Sun (CR21) 2016
Khan, Sohail, Zahoora, Qureshi (CR17) 2020; 53
Zhao, Zheng, Xu, Wu (CR18) 2019; 30
Nguyen (CR23) 2020; 8
Ahmed, Adnan (CR27) 2018; 21
Choi, Moon, Yoo (CR6) 2015; 37
Dehghan, Shah (CR26) 2017; 40
Zhang, Wang, Zhao, Xie (CR38) 2021; 9
Shorfuzzaman, Hossain, Alhamid (CR14) 2021; 64
Saponara, Elhanashi, Gagliardi (CR25) 2021; 18
Huang, Zheng, Sun, Yang, Liu (CR30) 2020; 10
Harapan (CR2) 2020; 13
Ahmed, Ahmad, Ahmad, Jeon (CR5) 2021
Meivel (CR32) 2022; 2020
Ansari, Singh (CR24) 2021; 13
Unhale (CR1) 2020; 6
Li, Zhang, Lei, Wang, Guo (CR8) 2020; 20
Ahmed, Ahmad, Piccialli, Sangaiah, Jeon (CR4) 2017; 5
CR43
Zhang, Wang, Chen, Zhang (CR19) 2019; 19
CR42
Dorrer, Tolmacheva (CR9) 2020; 1679
Shalini, Margret, Niraimathi, Subashree (CR20) 2021; 1916
Rahim, Maqbool, Rana (CR10) 2021; 16
Gündüz, Işık (CR16) 2023
Feng, Mu, Zhong, Zhang, Yuan (CR44) 2022; 6
Zhao, Ren (CR7) 2019; 533
Cepni, Atik, Duran (CR35) 2020; 8
Mareeswari, Vijayan, Sathiyamoorthy, Ephzibah (CR22) 2022; 9
J-W Choi (2131_CR6) 2015; 37
2131_CR42
GV Shalini (2131_CR20) 2021; 1916
M Ansari (2131_CR24) 2021; 13
W Fang (2131_CR40) 2019; 8
V Mareeswari (2131_CR22) 2022; 9
I Ahmed (2131_CR4) 2017; 5
H Harapan (2131_CR2) 2020; 13
Y-Q Huang (2131_CR30) 2020; 10
S Meivel (2131_CR32) 2022; 2020
S Ren (2131_CR21) 2016
A Dehghan (2131_CR26) 2017; 40
Z Huang (2131_CR36) 2020; 522
X Zhang (2131_CR38) 2021; 9
DP Carrasco (2131_CR41) 2021; 39
MZ Khan (2131_CR34) 2021; 9
MS Gündüz (2131_CR16) 2023
2131_CR43
M Shorfuzzaman (2131_CR14) 2021; 64
A Khan (2131_CR17) 2020; 53
M Li (2131_CR8) 2020; 20
W Liu (2131_CR3) 2016
Z-Q Zhao (2131_CR18) 2019; 30
2131_CR31
K Zhao (2131_CR7) 2019; 533
S Saponara (2131_CR12) 2022; 19
H Feng (2131_CR44) 2022; 6
Imran Ahmed (2131_CR5) 2021
I Ahmed (2131_CR27) 2018; 21
S Cepni (2131_CR35) 2020; 8
MG Dorrer (2131_CR9) 2020; 1679
G Zhang (2131_CR19) 2019; 19
T Ahmad (2131_CR29) 2020; 2020
S Srivastava (2131_CR28) 2021; 8
SS Unhale (2131_CR1) 2020; 6
X Zhang (2131_CR37) 2020; 17
S Saponara (2131_CR25) 2021; 18
A Rahim (2131_CR10) 2021; 16
2131_CR15
2131_CR39
2131_CR11
2131_CR33
2131_CR13
CT Nguyen (2131_CR23) 2020; 8
References_xml – volume: 53
  start-page: 5455
  issue: 8
  year: 2020
  end-page: 5516
  ident: CR17
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09825-6
– volume: 13
  start-page: 667
  issue: 5
  year: 2020
  end-page: 673
  ident: CR2
  article-title: Coronavirus disease 2019 (COVID-19): a literature review
  publication-title: J. Infect. Public Health
  doi: 10.1016/j.jiph.2020.03.019
– ident: CR43
– ident: CR39
– volume: 1679
  start-page: 42022
  issue: 4
  year: 2020
  ident: CR9
  article-title: Comparison of the YOLOv3 and Mask R-CNN architectures’ efficiency in the smart refrigerator’s computer vision
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1679/4/042022
– volume: 8
  start-page: 1935
  year: 2019
  end-page: 1944
  ident: CR40
  article-title: Tinier-YOLO: a real-time object detection method for constrained environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961959
– volume: 1916
  start-page: 12039
  issue: 1
  year: 2021
  ident: CR20
  article-title: Social distancing analyzer using computer vision and deep learning
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1916/1/012039
– year: 2021
  ident: CR5
  article-title: Top view multiple people tracking by detection using deep SORT and YOLOv3 with transfer learning: within 5G infrastructure
  publication-title: t J Mach Learn Cybern
  doi: 10.1007/s13042-020-01220-5
– volume: 40
  start-page: 568
  issue: 3
  year: 2017
  end-page: 581
  ident: CR26
  article-title: Binary quadratic programing for online tracking of hundreds of people in extremely crowded scenes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2687462
– volume: 9
  start-page: 623
  year: 2022
  end-page: 643
  ident: CR22
  article-title: A narrative review of medical image processing by deep learning models: origin to COVID-19
  publication-title: Int. J. Adv. Technol. Eng. Explor.
– ident: CR33
– volume: 8
  start-page: 347
  issue: 2
  year: 2020
  end-page: 358
  ident: CR35
  article-title: Vehicle detection using different deep learning algorithms from image sequence
  publication-title: Balt. J. Mod. Comput.
– volume: 19
  start-page: 551
  issue: 3
  year: 2022
  end-page: 563
  ident: CR12
  article-title: Developing a real-time social distancing detection system based on YOLOv4-tiny and bird-eye view for COVID-19
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-022-01203-5
– volume: 18
  start-page: 1937
  issue: 6
  year: 2021
  end-page: 1947
  ident: CR25
  article-title: Implementing a real-time, AI-based, people detection and social distancing measuring system for Covid-19
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-021-01070-6
– volume: 533
  start-page: 12056
  issue: 1
  year: 2019
  ident: CR7
  article-title: Small aircraft detection in remote sensing images based on YOLOv3
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/533/1/012056
– volume: 8
  start-page: 153479
  year: 2020
  end-page: 153507
  ident: CR23
  article-title: A comprehensive survey of enabling and emerging technologies for social distancing Part I: fundamentals and enabling technologies
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.3018140
– volume: 17
  start-page: 1729881420936062
  issue: 4
  year: 2020
  ident: CR37
  article-title: Improve YOLOv3 using dilated spatial pyramid module for multi-scale object detection
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/1729881420936062
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  end-page: 27
  ident: CR28
  article-title: Comparative analysis of deep learning image detection algorithms
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00434-w
– volume: 5
  start-page: 1598
  issue: 3
  year: 2017
  end-page: 1605
  ident: CR4
  article-title: A robust features-based person tracker for overhead views in industrial environment
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2787779
– ident: CR42
– volume: 64
  year: 2021
  ident: CR14
  article-title: Towards the sustainable development of smart cities through mass video surveillance: a response to the COVID-19 pandemic
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102582
– volume: 6
  start-page: 16
  issue: 2
  year: 2022
  ident: CR44
  article-title: Benchmark analysis of yolo performance on edge intelligence devices
  publication-title: Cryptography
  doi: 10.3390/cryptography6020016
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR29
  article-title: Object detection through modified YOLO neural network
  publication-title: Sci. Program.
– volume: 2020
  start-page: 1
  year: 2022
  end-page: 13
  ident: CR32
  article-title: Mask detection and social distance identification using internet of things and faster R-CNN algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/2103975
– volume: 6
  start-page: 109
  issue: 4
  year: 2020
  end-page: 115
  ident: CR1
  article-title: A review on corona virus (COVID-19)
  publication-title: World J. Pharm. life Sci.
– volume: 16
  issue: 2
  year: 2021
  ident: CR10
  article-title: Monitoring social distancing under various low light conditions with deep learning and a single motionless time of flight camera
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0247440
– volume: 9
  start-page: 142
  issue: sup1
  year: 2021
  end-page: 149
  ident: CR38
  article-title: An improved YOLOv3 model based on skipping connections and spatial pyramid pooling
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2020.1824132
– ident: CR15
– volume: 522
  start-page: 241
  year: 2020
  end-page: 258
  ident: CR36
  article-title: DC-SPP-YOLO: Dense connection and spatial pyramid pooling based YOLO for object detection
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2020.02.067
– volume: 39
  start-page: 1137
  issue: 6
  year: 2021
  end-page: 1149
  ident: CR41
  article-title: T-YOLO: tiny vehicle detection based on YOLO and multi-scale convolutional neural networks”
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence.
  doi: 10.1109/TPAMI.2016.2577031
– ident: CR31
– ident: CR13
– volume: 37
  start-page: 551
  issue: 3
  year: 2015
  end-page: 561
  ident: CR6
  article-title: Robust multi-person tracking for real-time intelligent video surveillance
  publication-title: ETRI J.
  doi: 10.4218/etrij.15.0114.0629
– ident: CR11
– volume: 20
  start-page: 4938
  issue: 17
  year: 2020
  ident: CR8
  article-title: Agricultural greenhouses detection in high-resolution satellite images based on convolutional neural networks: comparison of faster R-CNN, YOLO v3 and SSD
  publication-title: Sensors
  doi: 10.3390/s20174938
– year: 2016
  ident: CR21
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Transact Patt Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– year: 2023
  ident: CR16
  article-title: A new YOLO-based method for social distancing from real-time videos
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08556-3
– volume: 10
  start-page: 3079
  issue: 9
  year: 2020
  ident: CR30
  article-title: Optimized YOLOv3 algorithm and its application in traffic flow detections
  publication-title: Appl. Sci.
  doi: 10.3390/app10093079
– volume: 30
  start-page: 3212
  issue: 11
  year: 2019
  end-page: 3232
  ident: CR18
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Trans. neural networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– volume: 19
  start-page: 2508
  issue: 11
  year: 2019
  ident: CR19
  article-title: Wireless indoor localization using convolutional neural network and Gaussian process regression
  publication-title: Sensors
  doi: 10.3390/s19112508
– start-page: 21
  year: 2016
  end-page: 37
  ident: CR3
  publication-title: “Ssd: Single shot multibox detector. European conference on computer vision
– volume: 13
  start-page: 1255
  issue: 3
  year: 2021
  end-page: 1264
  ident: CR24
  article-title: Monitoring social distancing through human detection for preventing/reducing COVID spread
  publication-title: Int. J. Inf. Technol.
– volume: 21
  start-page: 633
  issue: 1
  year: 2018
  end-page: 654
  ident: CR27
  article-title: A robust algorithm for detecting people in overhead views
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-0968-3
– volume: 9
  start-page: 100040
  year: 2021
  end-page: 100049
  ident: CR34
  article-title: Hot-Spot zone detection to tackle COVID19 spread by fusing the traditional machine learning and deep learning approaches of computer vision
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2021.3094720
– volume: 30
  start-page: 3212
  issue: 11
  year: 2019
  ident: 2131_CR18
  publication-title: IEEE Trans. neural networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– volume: 17
  start-page: 172988142093606
  issue: 4
  year: 2020
  ident: 2131_CR37
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/1729881420936062
– volume: 8
  start-page: 1935
  year: 2019
  ident: 2131_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961959
– volume: 2020
  start-page: 1
  year: 2020
  ident: 2131_CR29
  publication-title: Sci. Program.
– volume: 1916
  start-page: 12039
  issue: 1
  year: 2021
  ident: 2131_CR20
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1916/1/012039
– year: 2021
  ident: 2131_CR5
  publication-title: t J Mach Learn Cybern
  doi: 10.1007/s13042-020-01220-5
– volume: 53
  start-page: 5455
  issue: 8
  year: 2020
  ident: 2131_CR17
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09825-6
– ident: 2131_CR39
  doi: 10.1109/ICACCS48705.2020.9074315
– volume: 18
  start-page: 1937
  issue: 6
  year: 2021
  ident: 2131_CR25
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-021-01070-6
– volume: 37
  start-page: 551
  issue: 3
  year: 2015
  ident: 2131_CR6
  publication-title: ETRI J.
  doi: 10.4218/etrij.15.0114.0629
– volume: 9
  start-page: 623
  year: 2022
  ident: 2131_CR22
  publication-title: Int. J. Adv. Technol. Eng. Explor.
– ident: 2131_CR43
– ident: 2131_CR33
  doi: 10.1109/ICCMC51019.2021.9418478
– volume: 1679
  start-page: 42022
  issue: 4
  year: 2020
  ident: 2131_CR9
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1679/4/042022
– volume: 2020
  start-page: 1
  year: 2022
  ident: 2131_CR32
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/2103975
– volume: 64
  year: 2021
  ident: 2131_CR14
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102582
– volume: 19
  start-page: 551
  issue: 3
  year: 2022
  ident: 2131_CR12
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-022-01203-5
– volume: 19
  start-page: 2508
  issue: 11
  year: 2019
  ident: 2131_CR19
  publication-title: Sensors
  doi: 10.3390/s19112508
– volume: 13
  start-page: 667
  issue: 5
  year: 2020
  ident: 2131_CR2
  publication-title: J. Infect. Public Health
  doi: 10.1016/j.jiph.2020.03.019
– volume: 10
  start-page: 3079
  issue: 9
  year: 2020
  ident: 2131_CR30
  publication-title: Appl. Sci.
  doi: 10.3390/app10093079
– volume: 13
  start-page: 1255
  issue: 3
  year: 2021
  ident: 2131_CR24
  publication-title: Int. J. Inf. Technol.
– volume: 40
  start-page: 568
  issue: 3
  year: 2017
  ident: 2131_CR26
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2687462
– year: 2023
  ident: 2131_CR16
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08556-3
– ident: 2131_CR15
– volume: 21
  start-page: 633
  issue: 1
  year: 2018
  ident: 2131_CR27
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-017-0968-3
– volume: 20
  start-page: 4938
  issue: 17
  year: 2020
  ident: 2131_CR8
  publication-title: Sensors
  doi: 10.3390/s20174938
– ident: 2131_CR31
  doi: 10.1109/CRV.2018.00023
– volume: 6
  start-page: 16
  issue: 2
  year: 2022
  ident: 2131_CR44
  publication-title: Cryptography
  doi: 10.3390/cryptography6020016
– volume: 8
  start-page: 153479
  year: 2020
  ident: 2131_CR23
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.3018140
– volume: 8
  start-page: 347
  issue: 2
  year: 2020
  ident: 2131_CR35
  publication-title: Balt. J. Mod. Comput.
– volume: 6
  start-page: 109
  issue: 4
  year: 2020
  ident: 2131_CR1
  publication-title: World J. Pharm. life Sci.
– volume: 533
  start-page: 12056
  issue: 1
  year: 2019
  ident: 2131_CR7
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/533/1/012056
– year: 2016
  ident: 2131_CR21
  publication-title: IEEE Transact Patt Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 21
  volume-title: “Ssd: Single shot multibox detector. European conference on computer vision
  year: 2016
  ident: 2131_CR3
– ident: 2131_CR11
  doi: 10.1109/ICCSCE50387.2020.9204934
– volume: 5
  start-page: 1598
  issue: 3
  year: 2017
  ident: 2131_CR4
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2787779
– volume: 16
  issue: 2
  year: 2021
  ident: 2131_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0247440
– ident: 2131_CR13
  doi: 10.1109/ISC2.2017.8090864
– volume: 9
  start-page: 142
  issue: sup1
  year: 2021
  ident: 2131_CR38
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2020.1824132
– volume: 39
  start-page: 1137
  issue: 6
  year: 2021
  ident: 2131_CR41
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 2131_CR28
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00434-w
– volume: 522
  start-page: 241
  year: 2020
  ident: 2131_CR36
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2020.02.067
– volume: 9
  start-page: 100040
  year: 2021
  ident: 2131_CR34
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2021.3094720
– ident: 2131_CR42
  doi: 10.1109/CVPR.2016.91
SSID ssj0002504465
Score 2.2363114
Snippet Computer vision and deep learning are emerging technologies as the backbone system to maintain the public healthcare sector to detect the object and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 718
SubjectTerms Accuracy
Algorithms
Applications programs
Classification
Comparative analysis
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Computer vision
Coronaviruses
COVID-19
Data Structures and Information Theory
Deep learning
Disease prevention
Disease transmission
Energy consumption
Frames (data processing)
Frames per second
Graphics processing units
Information Systems and Communication Service
Machine learning
Mobile computing
Monitoring
Monitoring systems
Neural networks
New technology
Object recognition
Original Research
Pandemics
Pattern Recognition and Graphics
Research Trends in Computational Intelligence
Security systems
Social distancing
Software Engineering/Programming and Operating Systems
Video data
Violations
Vision
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPXhxfuJ0Sg7etLAkTT-Owzk8jE10jAlCSbNkClsdW_Xv9yVNOxQV9NBDyXttecn76Eve7yF04Qc60CGfgCJxZn5QpCcimXoQvEpFBOXaVniPemG_H43H8Z0rCluVp93LLUlrqatiN7CcYeyBj4GLMOKB4d0EdxeZhg33D6Mqs2JAufyAuwqZ71k_e6F1aPllN9Q6mW79f5-3i3ZcUInbxSrYQxsq20f1smEDdvp7gJ6KJB0uanJxx8SOMIALxTavwwWCObYnCfAgNVka3FG5PbCV4cdBbwC3aoEdLusUt2dT4Myf54do2L0ZXt96rr2CJynzwQ4ywqVm4KACBZ5M0ijSlMUpTJ_2WxPRYoKFJCWxiATjoK1CxFJS5QumwlSzI1TLXjN1jDA3auwLiBWo9KWKYgokJEhDGXCqZauBSCntRDrocdMBY5ZUoMlWeglIL7HSS2gDXVY8iwJ441fqZjmJiVPCVUJjA18H8RJvoKty0tbDPz_t5G_kp2jbNKEvKhSbqJYv39QZ2pLv-ctqeW4X5wcAHtz7
  priority: 102
  providerName: Springer Nature
Title Public Social Distance Monitoring System Using Object Detection YOLO Deep Learning Algorithm
URI https://link.springer.com/article/10.1007/s42979-023-02131-2
https://www.proquest.com/docview/2921195545
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54e_DFCypO58iDbxpck6ZtnsQrgmMbU2SKUNIsncLc5jb9_Z6k2YaCvvjQQmkSQk_OpSc53wdwGEZ5lMeig4okuP1B0VQlOqMYvGoTKCZyV-H9UIvr9aTdlk2fcBv7Y5VTm-gMdWegbY78hEmLRYbOT5wO36lljbK7q55CYxGWLUqCpW5oiqdZjsXCc4WOTRLdEKNSiravm3HVc2iKY0nRaeEV8ICy775pHnD-2CN1rud6_b-T3oA1H3SSs2KVbMKC6W_Bc5GxI0WBLrm0gSSuAFJouZ0JKeDMiTtWQBqZTdmQSzNxp7f65LFRa-CjGRIP0tolZ70u9py8vG3D_fXV_cUN9VwLVDMeolHkgdA5R28VGXRrmiVJzrjMUJZ5WO2oKlc8DrJAqkRxgaqrlNSamVBxE2c534Gl_qBvdoEIq9OhwsCB6VCbRDJsEkRZrCPBcl0tQTD9yKn2OOSWDqOXzhCUnWBSFEzqBJOyEhzN-gwLFI4_W5en0ki9Ro7TuShKcDyV5_z176Pt_T3aPqxaBvqiPLEMS5PRhzmAFf05eR2PKrB8flVvtiqweBvTiludeG_dPXwBl8bmWQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Bb9MwFH4qHRK7jCFAFLrNBziBRWPHSXxAU0VXtWppOVSoSEiW4zpjUmlL223iR-0_7tlJWoG03nrgkEMUx4rj733v-dnvPYC3YZRFWSwmKEiCuwWKoToxKUXj1dhAM5H5CO9v_XgwSMZj-bUCd2UsjDtWWXKiJ-rJ3Dgf-UcmXS4yVH7ifPGbuqpRbne1LKGRw6Jn_9zikm31qdvC-X3HWPti9LlDi6oC1DAeovjzQJiMIy9HFgncsCTJGJcpfnUWNia6wTWPgzSQOtFcIEi1lsYwG2pu4zTj2O0jOAh5Ejux6sV049Jx2cBCX7wStR6jUopxEabjg_WQ-WNJUUfiFfCAsr9V4da-_WdL1mu69tP_7B8dw1FhUpNmLgPPoGJnz-FH7o8kefgxaTkzGfFNcg5zAyd5snbiD02QYeocUqRl1_5s2ox8H_aHeGsXpEhBe0ma00t8c_3z1wsY7WM8L6E6m8_sKyDCMVao0SxiJjQ2kQybBFEam0iwzDRqEJRzqkyRZd0V-5iqTX5ojwOFOFAeB4rV4P3mnUWeY2Rn63o5-argm5XaznwNPpTw2T5-uLfXu3s7gyed0Ze-6ncHvTdwyBx6fSBmHarr5bU9gcfmZn21Wp56USCg9gyrewq7PN8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SRbxYn1itmoM3Xdq89nEs1qJY2oKlVBCWbJpUoa6lXf39TvbRqqggHvawJNkNk0xmksz3DUJn3DWu8cQIFEkwu0FRjvRV5IDzqjSRVJgU4T1oe52OPxwGvQ8o_jTavbiSzDANlqUpTmrTkaktgG-winqBA_YGHsKIA4vwKreB9Ha_fjdYnLJYgi7uihwt833TzxZp6WZ-uRlNDU6r_P-ubqHN3NnEjWx2bKMVHe-gcpHIAed6vYsessM7nGF1cdP6lFCAM4W3v8YZszlOIwxwN7KnN7ipkzSQK8b33XYXXvUU53ytY9yYjKFl8vi8h_qtq_7ltZOnXXAUZRzWR0aEMgwMl6vBwinq-4ayIIJhNbw-knUmmUciEkhfMgFaLGWgFNVcMu1Fhu2jUvwS6wOEhVVvLsGHoIor7QcUqhA38pQrqFH1CiKF5EOVU5LbzBiTcEGmnEovBOmFqfRCWkHnizbTjJDj19rVYkDDXDnnIQ0srR34UaKCLooBXBb__LXDv1U_Reu9Zits33Ruj9CGzVOfgRirqJTMXvUxWlNvydN8dpLO2Xf4aOjD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Public+Social+Distance+Monitoring+System+Using+Object+Detection+YOLO+Deep+Learning+Algorithm&rft.jtitle=SN+computer+science&rft.au=R%2C+Vijayan&rft.au=V%2C+Mareeswari&rft.au=Pople%2C+Vedant&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=4&rft.issue=6&rft.spage=718&rft_id=info:doi/10.1007%2Fs42979-023-02131-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon