Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces
The split feasibility problem is to find a point x ∗ with the property that x ∗ ∈ C and A x ∗ ∈ Q , where C and Q are nonempty closed convex subsets of real Hilbert spaces X and Y , respectively, and A is a bounded linear operator from X to Y . The split feasibility problem models inverse problems a...
Saved in:
| Published in: | Numerical algorithms Vol. 87; no. 3; pp. 1075 - 1095 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.07.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1017-1398, 1572-9265 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The split feasibility problem is to find a point
x
∗
with the property that
x
∗
∈
C
and
A
x
∗
∈
Q
, where
C
and
Q
are nonempty closed convex subsets of real Hilbert spaces
X
and
Y
, respectively, and
A
is a bounded linear operator from
X
to
Y
. The split feasibility problem models inverse problems arising from phase retrieval problems and the intensity-modulated radiation therapy. In this paper, we introduce a new inertial relaxed
CQ
algorithm for solving the split feasibility problem in real Hilbert spaces and establish weak convergence of the proposed
CQ
algorithm under certain mild conditions. Our result is a significant improvement of the recent results related to the split feasibility problem. |
|---|---|
| AbstractList | The split feasibility problem is to find a point
x
∗
with the property that
x
∗
∈
C
and
A
x
∗
∈
Q
, where
C
and
Q
are nonempty closed convex subsets of real Hilbert spaces
X
and
Y
, respectively, and
A
is a bounded linear operator from
X
to
Y
. The split feasibility problem models inverse problems arising from phase retrieval problems and the intensity-modulated radiation therapy. In this paper, we introduce a new inertial relaxed
CQ
algorithm for solving the split feasibility problem in real Hilbert spaces and establish weak convergence of the proposed
CQ
algorithm under certain mild conditions. Our result is a significant improvement of the recent results related to the split feasibility problem. The split feasibility problem is to find a point x∗ with the property that x∗∈ C and Ax∗∈ Q, where C and Q are nonempty closed convex subsets of real Hilbert spaces X and Y, respectively, and A is a bounded linear operator from X to Y. The split feasibility problem models inverse problems arising from phase retrieval problems and the intensity-modulated radiation therapy. In this paper, we introduce a new inertial relaxed CQ algorithm for solving the split feasibility problem in real Hilbert spaces and establish weak convergence of the proposed CQ algorithm under certain mild conditions. Our result is a significant improvement of the recent results related to the split feasibility problem. |
| Author | Dong, Q.L. Kashyap, M.R. Li, X.H. Sahu, D.R. Cho, Y.J. |
| Author_xml | – sequence: 1 givenname: D.R. surname: Sahu fullname: Sahu, D.R. organization: Department of Mathematics, Institute of Science, Banaras Hindu University – sequence: 2 givenname: Y.J. surname: Cho fullname: Cho, Y.J. organization: Department of Mathematics Education, Gyeongsang National University, School of Mathematical Sciences, University of Electronic Science and Technology of China – sequence: 3 givenname: Q.L. orcidid: 0000-0001-6765-4437 surname: Dong fullname: Dong, Q.L. email: dongql@lsec.cc.ac.cn organization: Key Laboratory for Advanced Signal Processing and College of Science, Civil Aviation University of China – sequence: 4 givenname: M.R. surname: Kashyap fullname: Kashyap, M.R. organization: Department of Mathematics, Institute of Science, Banaras Hindu University – sequence: 5 givenname: X.H. surname: Li fullname: Li, X.H. organization: Key Laboratory for Advanced Signal Processing and College of Science, Civil Aviation University of China |
| BookMark | eNp9kM1KQzEQhYNUsK2-gKuA62iS-5NkKUVtoSBCF-5CkptbU9KkJrdi395oBcFFV3MW5zszcyZgFGKwAFwTfEswZneZEMwahClGGAshED0DY9IwigRtm1HRmDBEKsEvwCTnDcYFo2wMXhfBpsEpD5P16tN2cPYClV_H5Ia3bYZ9TDBH_-HCGiqYd94NsLcqO-2KPMBditrbLXQBzp3XJauYlLH5Epz3ymd79TunYPX4sJrN0fL5aTG7XyJDq5qihnPKDFaa9x2xLWs61RleM65pXxvdYt1a2mll2k6LjivVssI15TPd8tpWU3BzjC2HvO9tHuQm7lMoGyUVhNeC1LwqLn50mRRzTraXxg1qcDEMSTkvCZbfNcpjjbLUKH9qlLSg9B-6S26r0uE0VB2hXMxhbdPfVSeoL32Qh6s |
| CitedBy_id | crossref_primary_10_3390_math12152360 crossref_primary_10_3390_sym14122665 crossref_primary_10_3390_sym17071121 crossref_primary_10_1007_s11075_022_01343_6 crossref_primary_10_1016_j_chaos_2022_112048 crossref_primary_10_1007_s40314_021_01703_3 crossref_primary_10_1007_s10898_024_01399_9 crossref_primary_10_1007_s40314_022_01819_0 crossref_primary_10_1016_j_cam_2022_115010 crossref_primary_10_1007_s40314_024_02922_0 crossref_primary_10_1007_s00025_025_02495_2 crossref_primary_10_1007_s00025_023_02034_x crossref_primary_10_1007_s13226_024_00543_1 crossref_primary_10_1155_2021_6252984 crossref_primary_10_1007_s10898_022_01246_9 crossref_primary_10_1007_s10444_022_09959_x crossref_primary_10_1007_s40314_024_02960_8 crossref_primary_10_1080_02331934_2024_2358412 crossref_primary_10_3390_sym14071390 crossref_primary_10_33205_cma_1563173 crossref_primary_10_1016_j_amc_2023_128019 crossref_primary_10_1016_j_apnum_2021_07_022 crossref_primary_10_1007_s40314_023_02589_z crossref_primary_10_1007_s40314_025_03276_x crossref_primary_10_1007_s10915_022_01832_9 crossref_primary_10_1007_s11081_025_10023_y crossref_primary_10_3934_jimo_2025128 crossref_primary_10_1007_s10915_023_02132_6 crossref_primary_10_1007_s41478_023_00613_3 crossref_primary_10_1080_02331934_2022_2070066 crossref_primary_10_1007_s11075_023_01589_8 crossref_primary_10_53391_mmnsa_1595657 crossref_primary_10_1007_s10898_024_01389_x crossref_primary_10_1080_02331934_2023_2240347 crossref_primary_10_1007_s10957_025_02735_z crossref_primary_10_1080_02331934_2021_2010077 crossref_primary_10_1016_j_cnsns_2025_108822 crossref_primary_10_1109_ACCESS_2020_3045493 crossref_primary_10_1016_j_cnsns_2024_108374 crossref_primary_10_1007_s43034_022_00190_9 crossref_primary_10_1016_j_camwa_2024_03_025 crossref_primary_10_1007_s12190_021_01585_y crossref_primary_10_1007_s40314_023_02559_5 crossref_primary_10_3390_math12152406 |
| Cites_doi | 10.3934/jimo.2018023 10.1007/s10898-018-0628-z 10.1006/jmaa.1993.1309 10.1137/S0036144593251710 10.1215/20088752-2017-0028 10.1007/s11590-013-0619-4 10.1137/0314056 10.1007/s11228-006-0027-3 10.1111/j.2517-6161.1996.tb02080.x 10.1007/s10898-018-0727-x 10.1007/978-3-319-89815-5_7 10.3390/sym11020194 10.1186/s13660-019-2030-x 10.3390/math7030226 10.1007/s11590-020-01603-1 10.1007/BF02142692 10.1155/2018/4123168 10.1023/A:1011253113155 10.1088/0266-5611/21/6/017 10.1007/s40840-018-0614-0 10.1007/s11784-018-0620-8 10.1007/s11590-016-1102-9 10.1007/s10898-017-0506-0 10.1088/0266-5611/26/10/105018 10.3390/math7090789 10.1007/978-81-322-1883-8_9 10.1016/0041-5553(64)90137-5 10.3934/jimo.2018080 10.1088/0266-5611/18/2/310 10.3934/jimo.2016078 10.1007/s11075-019-00790-y 10.1007/s11075-017-0347-4 10.1016/j.jmaa.2004.07.048 10.1080/01630563.2016.1206566 10.1088/0266-5611/28/8/085004 10.1007/978-1-4419-9467-7 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11075-020-00999-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 1095 |
| ExternalDocumentID | 10_1007_s11075_020_00999_2 |
| GrantInformation_xml | – fundername: Open Fund of Tianjin Key Lab for Advanced Signal Processing grantid: No. 2019ASP-TJ03 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2342-58827c0ab8fd1e675dadc8478b2f4cb60b6e2dbac6db9d8aa672345572b684e3 |
| IEDL.DBID | RSV |
| ISSN | 1017-1398 |
| IngestDate | Wed Nov 05 01:56:09 EST 2025 Sat Nov 29 01:34:53 EST 2025 Tue Nov 18 22:39:25 EST 2025 Fri Feb 21 02:49:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Weak convergence 65K05 CQ algorithm 49J52 65K10 Inertial technique Split feasibility problem Self-adaptive algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2342-58827c0ab8fd1e675dadc8478b2f4cb60b6e2dbac6db9d8aa672345572b684e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6765-4437 |
| PQID | 2918491483 |
| PQPubID | 2043837 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2918491483 crossref_citationtrail_10_1007_s11075_020_00999_2 crossref_primary_10_1007_s11075_020_00999_2 springer_journals_10_1007_s11075_020_00999_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | CensorYElfvingTKopfNBortfeldTThe multiple-sets split feasibility problem and its applications for inverse problemsInverse Probl.200521207184218366810.1088/0266-5611/21/6/017 Shehu, Y., Gibali, A.: New inertial relaxed method for solving split feasibilities, Optim. Lett. https://doi.org/10.1007/s11590-020-01603-1 (2020) AlvarezFAttouchHAn inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with dampingSet-Valued Anal.20019311184593110.1023/A:1011253113155 ByrneCIterative oblique projection onto convex sets and the split feasibility problemInverse Probl.200218441453191024810.1088/0266-5611/18/2/310 Vinh, N., Cholamjiak, P., Suantai, S.: A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci Soc (2018) DongQLTangYCChoYJRassiasThM“Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problemJ. Global Optim.201871341360380030610.1007/s10898-018-0628-z RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control Optim.19761487789841048310.1137/0314056 DongQLYuanHBChoYJRassiasThMModified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappingsOptim. Lett.20181287102374295610.1007/s11590-016-1102-9 Ansari, Q.H., Rehan, A.: Split feasibility and xed point problems. In: Ansari, Q.H. (ed.) Nonlinear Analysis Approximation Theorem Optimization Application, pp 281–322. Springer (2014) DongQLHuangJLiXHChoYJRassiasThMMiKM: Multi-step inertial ktrsnosel’skií-mann algorithm and its applicationsJ. Global Optim.201973801824392512610.1007/s10898-018-0727-x SahuDRApplication of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory201112118720427970801281.47053 GibaliAMaiDTVinhNTA new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applicationsJ. Ind. Manag. Optim.20191596398439281171438.65124 CensorYElfvingTA multiprojection algorithm using Bregman projection in a product spaceNumer. Algorithms19948221239130922210.1007/BF02142692 DangYSunJXuHInertial accelerated algorithm for solving a split feasibility problemJ. Ind. Manag. Optim.2017131383139436512821362.65061 Dong, Q.L., Cho, Y.J., Rassias, Th.M.: General inertial Mann algorithms and their convergence analysis for nonexpansive mappings. In: Rassias, T.H.M. (ed.) Applications of Nonlinear Analysis, pp 175–191. Springer (2018) AnhPKVinhNTDungVTA new self-adaptive CQ algorithm with an application to the lasso problemJ. Fixed Point Theory Appl.201820142385703110.1007/s11784-018-0620-8 DongQLYaoYHeSWeak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in hilbert spacesOptim. Lett.2014810311046317058410.1007/s11590-013-0619-4 Ma, Z., Wang, L., Cho, Y.J.: Some results for split equality equilibrium problems in Banach spaces. Symmetry, 11 (2019) ZhaoJLiangYLiuYChoYJSplit equilibrium problems, variational inequality problems and fixed point problems for multi-valued mappings in Hilbert spacesAppl. Comput. Math.201817271283383947507122370 AgarwalRPReganDOSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications2009New York USASpringer WangFPolyak‘s gradient method for split feasibility problem constrained by level sets, NumerAlgorithms201877925938376660110.1007/s11075-017-0347-4 KesornpromSPholasaNCholamjiakPOn the convergence analysis of the gradient-CQ algorithms for the split feasibility problemNumer. Algor.2020849971017411069410.1007/s11075-019-00790-y BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011New YorkSpringer10.1007/978-1-4419-9467-7 DongQLChoYJZhongLLRassiasThMInertial projection and contraction algorithms for variational inequalitiesJ. Global Optim.201870687704376462410.1007/s10898-017-0506-0 SuantaiSPholasaNCholamjiakPThe modified inertial relaxed CQ algorithm for solving the split feasibility problemsJ. Indust. Manag. Optim.20181415951615391787507086866 MaingéPEInertial iterative process for fixed points of certain quasi-nonexpansive mappingSet Valued Anal.2007156779230871310.1007/s11228-006-0027-3 PolyakBTSome methods of speeding up the convergence of iteration methodsU.S.S.R. Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5 DongQLLiXHKitkuanDChoYJKumamPSome algorithms for classes of split feasibility problems involving paramonotone equilibria and convex optimizationJ. Inequal. Appl.2019201977392921710.1186/s13660-019-2030-x SuantaiSPholasaNCholamjiakPRelaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problemsRacsam Rev. R. Acad. A.201911310811099394238507086866 JirakitpuwapatWKumamPChoYJSitthithakerngkietKA general algorithm for the split common fixed point problem with its applications to signal processingMathematics20197322610.3390/math7030226 TibshiraniRRegression shrinkage and selection via the Lasso, J.R.Stat. Soc. Ser B19965826728813792420850.62538 WitthayaratUChoYJCholamjiakPOn solving proximal split feasibility problems and applicationsAnn. Funct. Anal.20189111122375874710.1215/20088752-2017-0028 TanKKXuHKApproximating fixed point of nonexpansive mappings by the Ishikawa iteration processJ. Math. Anal. Appl.1993178301308123887910.1006/jmaa.1993.1309 BauschkeHHBorweinJMOn projection algorithms for solving convex feasibility problemsSIAM Rev.199638367426140959110.1137/S0036144593251710 SahuDRAnsariQHYaoJCConvergence of inexact Mann iterations generated by nearly nonexpansive sequences and applicationsNumer. Funct. Anal. Optim.20163713121338355300910.1080/01630563.2016.1206566 Qu, B., Liu, B.: The split feasibility problem and its solution algorithm, Math Problems in Engin (2018) SuantaiSKesornpromSCholamjiakPA new hybrid CQ algorithm for the split feasibility problem in Hilbert spaces and its applications to compressed sensingMathematics2019778910.3390/math7090789 YangQOn variable-step relaxed projection algorithm for variational inequalitiesJ. Math. Anal. Appl.2005302166179210735510.1016/j.jmaa.2004.07.048 XuHKIterative methods for solving the split feasibility in infinite-dimensional Hilbert spacesInverse Probl.20102610501810.1088/0266-5611/26/10/105018 Lopez, G., Martin, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problem, 28 (2012) W Jirakitpuwapat (999_CR19) 2019; 7 R Tibshirani (999_CR34) 1996; 58 PE Maingé (999_CR23) 2007; 15 S Suantai (999_CR30) 2018; 14 QL Dong (999_CR14) 2018; 12 U Witthayarat (999_CR37) 2018; 9 J Zhao (999_CR40) 2018; 17 DR Sahu (999_CR27) 2011; 12 Y Censor (999_CR8) 1994; 8 S Suantai (999_CR32) 2019; 7 HK Xu (999_CR39) 2010; 26 999_CR21 999_CR22 QL Dong (999_CR12) 2019; 73 C Byrne (999_CR7) 2002; 18 HH Bauschke (999_CR6) 1996; 38 Y Censor (999_CR9) 2005; 21 QL Dong (999_CR11) 2019; 2019 999_CR29 999_CR25 F Wang (999_CR36) 2018; 77 F Alvarez (999_CR2) 2001; 9 PK Anh (999_CR3) 2018; 20 Y Dang (999_CR10) 2017; 13 A Gibali (999_CR18) 2019; 15 999_CR4 S Suantai (999_CR31) 2019; 113 QL Dong (999_CR13) 2014; 8 KK Tan (999_CR33) 1993; 178 S Kesornprom (999_CR20) 2020; 84 BT Polyak (999_CR24) 1964; 4 Q Yang (999_CR38) 2005; 302 999_CR35 QL Dong (999_CR15) 2018; 70 DR Sahu (999_CR28) 2016; 37 QL Dong (999_CR17) 2018; 71 HH Bauschke (999_CR5) 2011 RP Agarwal (999_CR1) 2009 999_CR16 RT Rockafellar (999_CR26) 1976; 14 |
| References_xml | – reference: WangFPolyak‘s gradient method for split feasibility problem constrained by level sets, NumerAlgorithms201877925938376660110.1007/s11075-017-0347-4 – reference: KesornpromSPholasaNCholamjiakPOn the convergence analysis of the gradient-CQ algorithms for the split feasibility problemNumer. Algor.2020849971017411069410.1007/s11075-019-00790-y – reference: SahuDRAnsariQHYaoJCConvergence of inexact Mann iterations generated by nearly nonexpansive sequences and applicationsNumer. Funct. Anal. Optim.20163713121338355300910.1080/01630563.2016.1206566 – reference: TibshiraniRRegression shrinkage and selection via the Lasso, J.R.Stat. Soc. Ser B19965826728813792420850.62538 – reference: AgarwalRPReganDOSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications2009New York USASpringer – reference: AnhPKVinhNTDungVTA new self-adaptive CQ algorithm with an application to the lasso problemJ. Fixed Point Theory Appl.201820142385703110.1007/s11784-018-0620-8 – reference: Ansari, Q.H., Rehan, A.: Split feasibility and xed point problems. In: Ansari, Q.H. (ed.) Nonlinear Analysis Approximation Theorem Optimization Application, pp 281–322. Springer (2014) – reference: Dong, Q.L., Cho, Y.J., Rassias, Th.M.: General inertial Mann algorithms and their convergence analysis for nonexpansive mappings. In: Rassias, T.H.M. (ed.) Applications of Nonlinear Analysis, pp 175–191. Springer (2018) – reference: CensorYElfvingTA multiprojection algorithm using Bregman projection in a product spaceNumer. Algorithms19948221239130922210.1007/BF02142692 – reference: ZhaoJLiangYLiuYChoYJSplit equilibrium problems, variational inequality problems and fixed point problems for multi-valued mappings in Hilbert spacesAppl. Comput. Math.201817271283383947507122370 – reference: JirakitpuwapatWKumamPChoYJSitthithakerngkietKA general algorithm for the split common fixed point problem with its applications to signal processingMathematics20197322610.3390/math7030226 – reference: DongQLChoYJZhongLLRassiasThMInertial projection and contraction algorithms for variational inequalitiesJ. Global Optim.201870687704376462410.1007/s10898-017-0506-0 – reference: Shehu, Y., Gibali, A.: New inertial relaxed method for solving split feasibilities, Optim. Lett. https://doi.org/10.1007/s11590-020-01603-1 (2020) – reference: BauschkeHHBorweinJMOn projection algorithms for solving convex feasibility problemsSIAM Rev.199638367426140959110.1137/S0036144593251710 – reference: GibaliAMaiDTVinhNTA new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applicationsJ. Ind. Manag. Optim.20191596398439281171438.65124 – reference: YangQOn variable-step relaxed projection algorithm for variational inequalitiesJ. Math. Anal. Appl.2005302166179210735510.1016/j.jmaa.2004.07.048 – reference: AlvarezFAttouchHAn inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with dampingSet-Valued Anal.20019311184593110.1023/A:1011253113155 – reference: DangYSunJXuHInertial accelerated algorithm for solving a split feasibility problemJ. Ind. Manag. Optim.2017131383139436512821362.65061 – reference: SahuDRApplication of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory201112118720427970801281.47053 – reference: WitthayaratUChoYJCholamjiakPOn solving proximal split feasibility problems and applicationsAnn. Funct. Anal.20189111122375874710.1215/20088752-2017-0028 – reference: Lopez, G., Martin, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problem, 28 (2012) – reference: PolyakBTSome methods of speeding up the convergence of iteration methodsU.S.S.R. Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5 – reference: DongQLYaoYHeSWeak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in hilbert spacesOptim. Lett.2014810311046317058410.1007/s11590-013-0619-4 – reference: DongQLYuanHBChoYJRassiasThMModified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappingsOptim. Lett.20181287102374295610.1007/s11590-016-1102-9 – reference: MaingéPEInertial iterative process for fixed points of certain quasi-nonexpansive mappingSet Valued Anal.2007156779230871310.1007/s11228-006-0027-3 – reference: DongQLHuangJLiXHChoYJRassiasThMMiKM: Multi-step inertial ktrsnosel’skií-mann algorithm and its applicationsJ. Global Optim.201973801824392512610.1007/s10898-018-0727-x – reference: SuantaiSPholasaNCholamjiakPThe modified inertial relaxed CQ algorithm for solving the split feasibility problemsJ. Indust. Manag. Optim.20181415951615391787507086866 – reference: TanKKXuHKApproximating fixed point of nonexpansive mappings by the Ishikawa iteration processJ. Math. Anal. Appl.1993178301308123887910.1006/jmaa.1993.1309 – reference: XuHKIterative methods for solving the split feasibility in infinite-dimensional Hilbert spacesInverse Probl.20102610501810.1088/0266-5611/26/10/105018 – reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011New YorkSpringer10.1007/978-1-4419-9467-7 – reference: RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control Optim.19761487789841048310.1137/0314056 – reference: SuantaiSKesornpromSCholamjiakPA new hybrid CQ algorithm for the split feasibility problem in Hilbert spaces and its applications to compressed sensingMathematics2019778910.3390/math7090789 – reference: Qu, B., Liu, B.: The split feasibility problem and its solution algorithm, Math Problems in Engin (2018) – reference: ByrneCIterative oblique projection onto convex sets and the split feasibility problemInverse Probl.200218441453191024810.1088/0266-5611/18/2/310 – reference: DongQLLiXHKitkuanDChoYJKumamPSome algorithms for classes of split feasibility problems involving paramonotone equilibria and convex optimizationJ. Inequal. Appl.2019201977392921710.1186/s13660-019-2030-x – reference: Ma, Z., Wang, L., Cho, Y.J.: Some results for split equality equilibrium problems in Banach spaces. Symmetry, 11 (2019) – reference: CensorYElfvingTKopfNBortfeldTThe multiple-sets split feasibility problem and its applications for inverse problemsInverse Probl.200521207184218366810.1088/0266-5611/21/6/017 – reference: DongQLTangYCChoYJRassiasThM“Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problemJ. Global Optim.201871341360380030610.1007/s10898-018-0628-z – reference: Vinh, N., Cholamjiak, P., Suantai, S.: A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci Soc (2018) – reference: SuantaiSPholasaNCholamjiakPRelaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problemsRacsam Rev. R. Acad. A.201911310811099394238507086866 – volume: 14 start-page: 1595 year: 2018 ident: 999_CR30 publication-title: J. Indust. Manag. Optim. doi: 10.3934/jimo.2018023 – volume: 71 start-page: 341 year: 2018 ident: 999_CR17 publication-title: J. Global Optim. doi: 10.1007/s10898-018-0628-z – volume: 178 start-page: 301 year: 1993 ident: 999_CR33 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1993.1309 – volume: 38 start-page: 367 year: 1996 ident: 999_CR6 publication-title: SIAM Rev. doi: 10.1137/S0036144593251710 – volume: 113 start-page: 1081 year: 2019 ident: 999_CR31 publication-title: Racsam Rev. R. Acad. A. – volume: 9 start-page: 111 year: 2018 ident: 999_CR37 publication-title: Ann. Funct. Anal. doi: 10.1215/20088752-2017-0028 – volume: 17 start-page: 271 year: 2018 ident: 999_CR40 publication-title: Appl. Comput. Math. – volume: 8 start-page: 1031 year: 2014 ident: 999_CR13 publication-title: Optim. Lett. doi: 10.1007/s11590-013-0619-4 – volume: 14 start-page: 877 year: 1976 ident: 999_CR26 publication-title: SIAM J. Control Optim. doi: 10.1137/0314056 – volume: 15 start-page: 67 year: 2007 ident: 999_CR23 publication-title: Set Valued Anal. doi: 10.1007/s11228-006-0027-3 – volume: 58 start-page: 267 year: 1996 ident: 999_CR34 publication-title: Stat. Soc. Ser B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 73 start-page: 801 year: 2019 ident: 999_CR12 publication-title: J. Global Optim. doi: 10.1007/s10898-018-0727-x – ident: 999_CR16 doi: 10.1007/978-3-319-89815-5_7 – ident: 999_CR22 doi: 10.3390/sym11020194 – volume: 2019 start-page: 77 year: 2019 ident: 999_CR11 publication-title: J. Inequal. Appl. doi: 10.1186/s13660-019-2030-x – volume: 7 start-page: 226 issue: 3 year: 2019 ident: 999_CR19 publication-title: Mathematics doi: 10.3390/math7030226 – ident: 999_CR29 doi: 10.1007/s11590-020-01603-1 – volume: 8 start-page: 221 year: 1994 ident: 999_CR8 publication-title: Numer. Algorithms doi: 10.1007/BF02142692 – ident: 999_CR25 doi: 10.1155/2018/4123168 – volume: 12 start-page: 187 issue: 1 year: 2011 ident: 999_CR27 publication-title: Fixed Point Theory – volume: 9 start-page: 3 year: 2001 ident: 999_CR2 publication-title: Set-Valued Anal. doi: 10.1023/A:1011253113155 – volume: 21 start-page: 2071 year: 2005 ident: 999_CR9 publication-title: Inverse Probl. doi: 10.1088/0266-5611/21/6/017 – ident: 999_CR35 doi: 10.1007/s40840-018-0614-0 – volume: 20 start-page: 142 year: 2018 ident: 999_CR3 publication-title: J. Fixed Point Theory Appl. doi: 10.1007/s11784-018-0620-8 – volume: 12 start-page: 87 year: 2018 ident: 999_CR14 publication-title: Optim. Lett. doi: 10.1007/s11590-016-1102-9 – volume: 70 start-page: 687 year: 2018 ident: 999_CR15 publication-title: J. Global Optim. doi: 10.1007/s10898-017-0506-0 – volume: 26 start-page: 105018 year: 2010 ident: 999_CR39 publication-title: Inverse Probl. doi: 10.1088/0266-5611/26/10/105018 – volume-title: Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications year: 2009 ident: 999_CR1 – volume: 7 start-page: 789 year: 2019 ident: 999_CR32 publication-title: Mathematics doi: 10.3390/math7090789 – ident: 999_CR4 doi: 10.1007/978-81-322-1883-8_9 – volume: 4 start-page: 1 year: 1964 ident: 999_CR24 publication-title: U.S.S.R. Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume: 15 start-page: 963 year: 2019 ident: 999_CR18 publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2018080 – volume: 18 start-page: 441 year: 2002 ident: 999_CR7 publication-title: Inverse Probl. doi: 10.1088/0266-5611/18/2/310 – volume: 13 start-page: 1383 year: 2017 ident: 999_CR10 publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2016078 – volume: 84 start-page: 997 year: 2020 ident: 999_CR20 publication-title: Numer. Algor. doi: 10.1007/s11075-019-00790-y – volume: 77 start-page: 925 year: 2018 ident: 999_CR36 publication-title: Algorithms doi: 10.1007/s11075-017-0347-4 – volume: 302 start-page: 166 year: 2005 ident: 999_CR38 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2004.07.048 – volume: 37 start-page: 1312 year: 2016 ident: 999_CR28 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2016.1206566 – ident: 999_CR21 doi: 10.1088/0266-5611/28/8/085004 – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2011 ident: 999_CR5 doi: 10.1007/978-1-4419-9467-7 |
| SSID | ssj0010027 |
| Score | 2.4346793 |
| Snippet | The split feasibility problem is to find a point
x
∗
with the property that
x
∗
∈
C
and
A
x
∗
∈
Q
, where
C
and
Q
are nonempty closed convex subsets of real... The split feasibility problem is to find a point x∗ with the property that x∗∈ C and Ax∗∈ Q, where C and Q are nonempty closed convex subsets of real Hilbert... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1075 |
| SubjectTerms | Algebra Algorithms Codes Computer Science Feasibility Hilbert space Inverse problems Linear operators Numeric Computing Numerical Analysis Original Paper Phase retrieval Radiation therapy Theory of Computation |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1xf5OBNi90026QnEVEUHyiI7K3kVV3Q-mgV_ffOdLO7KOjFc5O08E2TbzLzzQBsy6QjY0Nh9dT6SJjMRBk3KtIqVrLInIgbhfftuby8VN1udhUu3KqQVjnYE5uN2j1ZuiPf4xn6IhmS92T_-SWirlEUXQ0tNMZhss15m-z8TEbDKAL5XE20E3diZDoqiGb60jn0e0ibTLpqUuLz7wfTiG3-CJA2587x3H-_eB5mA-NkB30TWYAxXy7CXGCfLPzb1SLMXAwruFZL0D0tKeMaJ5La5QNHHl4z_XCHL6jvHyuGXJeh2dJ1BNOswsVqVngdkm0_WWhUw3olO-lRHa0aB1H61zLcHB_dHJ5EoQtDZHki0FNFDi5trI0qXNujf-G0s3imKcMLYU0am9RzZ7RNncmc0jqVOK_TkdykSvhkBSbKp9KvAhPCCyRMtki9FdJ5Q2TVFlbHiROC6xa0BwjkNlQop0YZD_motjKhliNqeYNazluwM5zz3K_P8efojQFUefhXq3yEUwt2B2CPHv--2trfq63DNKcEmCa3dwMm6tc3vwlT9r3uVa9bjaV-AUjw7RY priority: 102 providerName: ProQuest |
| Title | Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces |
| URI | https://link.springer.com/article/10.1007/s11075-020-00999-2 https://www.proquest.com/docview/2918491483 |
| Volume | 87 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB68HvTBemI9yj74poG42WY3jyqKohYvpG9hr2ihRmmi6L93Nt20KCro6x5D2Gu-ycw3A7DNozYPlXOrx9oGTCUqSKgSgRSh4FliWFgxvO_Oeacjut3k0pPCijravXZJVi_1mOyGlopjEzsmtOPO48M7jepOuOt4fXM38h04S6vyceL7i_hGeKrM9zI-q6MxxvziFq20zXHjf9-5APMeXZL94XFYhAmbL0HDI03i73GBTXUxh7ptCeYuRglci2XonuYu4BplObLLG04-vCKyf_806JUPjwVBqEvw1Lq_EUSSAuWXJLPSx9q-E1-nhvRyctJzabRKHOSiv1bg9vjo9vAk8EUYAk0jhoYqQnCuQ6lEZvYsmhdGGo0qTSiaMa3iUMWWGiV1bFRihJQxx3ntNqcqFsxGqzCVP-V2DQhjliFe0llsNePGKodVdaZlGBnGqGzCXr0VqfYJyl2djH46Tq3sljbFpU2rpU1pE3ZGc56H6Tl-Hb1Z73Dqr2qR0gSN3AStwqgJu_WOjrt_lrb-t-EbMEtdPEwV6rsJU-XgxW7BjH4te8WgBdMHR53L6xZMnvGg5SJQb1rVsf4A5xrs-g |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BanlQKEPsdBSH-BEo2Ydb-IcEEIt1a66XVGxQnuz_AqsVNLShEd_FP-RmayzKyrRWw89xx7J8Xj8jWe-GYBXWdLLYkNh9dT6SJjcRDk3MtIyllmROxE3DO_Pw2w0kpNJ_nEJ_rRcGEqrbG1iY6jdhaU38gOeoy-SI3hP3l1-j6hrFEVX2xYaM7U48de_0GWr3g6OcH9fc378YXzYj0JXgcjyRKDnhZgys7E2snBdj3jZaWfRRkvDC2FNGpvUc2e0TZ3JndQ6zXBer5dxk0rhExS7DA8EGf8mU_DTPGhBLl4TXEXDj8BKBo7OjKmHbhZRoYnGTcR__u89uAC3N-KxzTV3vH7PftATeBzwNHs_OwBPYcmXG7AesDULlqvagEen8_q01SZMBiXlk-NE4vL8xpGHZ0yff8H11F-_VQyRPMNDSY8tTLMKhdWs8DqkEl-z0IaHTUvWn1KVsBoHUXLbFozvYrHbsFJelP4ZMCG8QDhoi9RbkTlvCIrbwuo4cUJw3YFuu-HKhvrr1AbkXC0qR5OSKFQS1SiJ4h14M59zOas-cuvonVYzVLBElVqoRQf2W91afP6_tOe3S9uD1f74dKiGg9HJC1jjlOrTZDHvwEp99cPvwkP7s55WVy-bQ8JA3bHO_QVFTEp0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB1VtEJwICVQEaDtHriBhVlv7PUR0UaghghEhHKz9ssQiRoUG9T--8446wQqQEJc7d2RtZ_veebNAOwkUTcJNbnVY-MCoVMdpFzLQMlQJnlqRVgrvC_7yWAgR6P07JGKv452b1ySU00DZWkqqv07m-_PhW_IWkhZTKpo0tHjIfxRUNEg4usXlzM_ArGu2t-JZzFiHellM8_beHo1zfHmfy7S-ubptd7_zZ9hxaNOdjhdJqvwwRVtaHkEyvz-LvFRU-ShedaG5dNZYtdyDUYnBQVioy0SwfzBzkfnTN1c3U7G1fXvkiEEZria6S8FU6xE-xXLnfIxuH-Zr1_DxgU7HlN6rQobUVTYOgx7P4dHx4EvzhAYHgkksAjNExMqLXN74JB2WGUNXnVS81wYHYc6dtxqZWKrUyuVihPs1-0mXMdSuOgLLBS3hdsAJoQTiKNMHjsjEus0YViTGxVGVgiuOnDQTEtmfOJyqp9xk81TLtPQZji0WT20Ge_A7qzP3TRtx6utt5vZzvwWLjOeIvlNkS1GHdhrZnf--mVrm29r_h0Wz370sv7J4NcWLHEKmamjgbdhoZrcu6_wyTxU43LyrV7Z_wBEJvVg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+relaxed+CQ+algorithms+for+solving+a+split+feasibility+problem+in+Hilbert+spaces&rft.jtitle=Numerical+algorithms&rft.au=Sahu%2C+D.R.&rft.au=Cho%2C+Y.J.&rft.au=Dong%2C+Q.L.&rft.au=Kashyap%2C+M.R.&rft.date=2021-07-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=87&rft.issue=3&rft.spage=1075&rft.epage=1095&rft_id=info:doi/10.1007%2Fs11075-020-00999-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11075_020_00999_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |