Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces

The split feasibility problem is to find a point x ∗ with the property that x ∗ ∈ C and A x ∗ ∈ Q , where C and Q are nonempty closed convex subsets of real Hilbert spaces X and Y , respectively, and A is a bounded linear operator from X to Y . The split feasibility problem models inverse problems a...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms Vol. 87; no. 3; pp. 1075 - 1095
Main Authors: Sahu, D.R., Cho, Y.J., Dong, Q.L., Kashyap, M.R., Li, X.H.
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2021
Springer Nature B.V
Subjects:
ISSN:1017-1398, 1572-9265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The split feasibility problem is to find a point x ∗ with the property that x ∗ ∈ C and A x ∗ ∈ Q , where C and Q are nonempty closed convex subsets of real Hilbert spaces X and Y , respectively, and A is a bounded linear operator from X to Y . The split feasibility problem models inverse problems arising from phase retrieval problems and the intensity-modulated radiation therapy. In this paper, we introduce a new inertial relaxed CQ algorithm for solving the split feasibility problem in real Hilbert spaces and establish weak convergence of the proposed CQ algorithm under certain mild conditions. Our result is a significant improvement of the recent results related to the split feasibility problem.
AbstractList The split feasibility problem is to find a point x ∗ with the property that x ∗ ∈ C and A x ∗ ∈ Q , where C and Q are nonempty closed convex subsets of real Hilbert spaces X and Y , respectively, and A is a bounded linear operator from X to Y . The split feasibility problem models inverse problems arising from phase retrieval problems and the intensity-modulated radiation therapy. In this paper, we introduce a new inertial relaxed CQ algorithm for solving the split feasibility problem in real Hilbert spaces and establish weak convergence of the proposed CQ algorithm under certain mild conditions. Our result is a significant improvement of the recent results related to the split feasibility problem.
The split feasibility problem is to find a point x∗ with the property that x∗∈ C and Ax∗∈ Q, where C and Q are nonempty closed convex subsets of real Hilbert spaces X and Y, respectively, and A is a bounded linear operator from X to Y. The split feasibility problem models inverse problems arising from phase retrieval problems and the intensity-modulated radiation therapy. In this paper, we introduce a new inertial relaxed CQ algorithm for solving the split feasibility problem in real Hilbert spaces and establish weak convergence of the proposed CQ algorithm under certain mild conditions. Our result is a significant improvement of the recent results related to the split feasibility problem.
Author Dong, Q.L.
Kashyap, M.R.
Li, X.H.
Sahu, D.R.
Cho, Y.J.
Author_xml – sequence: 1
  givenname: D.R.
  surname: Sahu
  fullname: Sahu, D.R.
  organization: Department of Mathematics, Institute of Science, Banaras Hindu University
– sequence: 2
  givenname: Y.J.
  surname: Cho
  fullname: Cho, Y.J.
  organization: Department of Mathematics Education, Gyeongsang National University, School of Mathematical Sciences, University of Electronic Science and Technology of China
– sequence: 3
  givenname: Q.L.
  orcidid: 0000-0001-6765-4437
  surname: Dong
  fullname: Dong, Q.L.
  email: dongql@lsec.cc.ac.cn
  organization: Key Laboratory for Advanced Signal Processing and College of Science, Civil Aviation University of China
– sequence: 4
  givenname: M.R.
  surname: Kashyap
  fullname: Kashyap, M.R.
  organization: Department of Mathematics, Institute of Science, Banaras Hindu University
– sequence: 5
  givenname: X.H.
  surname: Li
  fullname: Li, X.H.
  organization: Key Laboratory for Advanced Signal Processing and College of Science, Civil Aviation University of China
BookMark eNp9kM1KQzEQhYNUsK2-gKuA62iS-5NkKUVtoSBCF-5CkptbU9KkJrdi395oBcFFV3MW5zszcyZgFGKwAFwTfEswZneZEMwahClGGAshED0DY9IwigRtm1HRmDBEKsEvwCTnDcYFo2wMXhfBpsEpD5P16tN2cPYClV_H5Ia3bYZ9TDBH_-HCGiqYd94NsLcqO-2KPMBditrbLXQBzp3XJauYlLH5Epz3ymd79TunYPX4sJrN0fL5aTG7XyJDq5qihnPKDFaa9x2xLWs61RleM65pXxvdYt1a2mll2k6LjivVssI15TPd8tpWU3BzjC2HvO9tHuQm7lMoGyUVhNeC1LwqLn50mRRzTraXxg1qcDEMSTkvCZbfNcpjjbLUKH9qlLSg9B-6S26r0uE0VB2hXMxhbdPfVSeoL32Qh6s
CitedBy_id crossref_primary_10_3390_math12152360
crossref_primary_10_3390_sym14122665
crossref_primary_10_3390_sym17071121
crossref_primary_10_1007_s11075_022_01343_6
crossref_primary_10_1016_j_chaos_2022_112048
crossref_primary_10_1007_s40314_021_01703_3
crossref_primary_10_1007_s10898_024_01399_9
crossref_primary_10_1007_s40314_022_01819_0
crossref_primary_10_1016_j_cam_2022_115010
crossref_primary_10_1007_s40314_024_02922_0
crossref_primary_10_1007_s00025_025_02495_2
crossref_primary_10_1007_s00025_023_02034_x
crossref_primary_10_1007_s13226_024_00543_1
crossref_primary_10_1155_2021_6252984
crossref_primary_10_1007_s10898_022_01246_9
crossref_primary_10_1007_s10444_022_09959_x
crossref_primary_10_1007_s40314_024_02960_8
crossref_primary_10_1080_02331934_2024_2358412
crossref_primary_10_3390_sym14071390
crossref_primary_10_33205_cma_1563173
crossref_primary_10_1016_j_amc_2023_128019
crossref_primary_10_1016_j_apnum_2021_07_022
crossref_primary_10_1007_s40314_023_02589_z
crossref_primary_10_1007_s40314_025_03276_x
crossref_primary_10_1007_s10915_022_01832_9
crossref_primary_10_1007_s11081_025_10023_y
crossref_primary_10_3934_jimo_2025128
crossref_primary_10_1007_s10915_023_02132_6
crossref_primary_10_1007_s41478_023_00613_3
crossref_primary_10_1080_02331934_2022_2070066
crossref_primary_10_1007_s11075_023_01589_8
crossref_primary_10_53391_mmnsa_1595657
crossref_primary_10_1007_s10898_024_01389_x
crossref_primary_10_1080_02331934_2023_2240347
crossref_primary_10_1007_s10957_025_02735_z
crossref_primary_10_1080_02331934_2021_2010077
crossref_primary_10_1016_j_cnsns_2025_108822
crossref_primary_10_1109_ACCESS_2020_3045493
crossref_primary_10_1016_j_cnsns_2024_108374
crossref_primary_10_1007_s43034_022_00190_9
crossref_primary_10_1016_j_camwa_2024_03_025
crossref_primary_10_1007_s12190_021_01585_y
crossref_primary_10_1007_s40314_023_02559_5
crossref_primary_10_3390_math12152406
Cites_doi 10.3934/jimo.2018023
10.1007/s10898-018-0628-z
10.1006/jmaa.1993.1309
10.1137/S0036144593251710
10.1215/20088752-2017-0028
10.1007/s11590-013-0619-4
10.1137/0314056
10.1007/s11228-006-0027-3
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s10898-018-0727-x
10.1007/978-3-319-89815-5_7
10.3390/sym11020194
10.1186/s13660-019-2030-x
10.3390/math7030226
10.1007/s11590-020-01603-1
10.1007/BF02142692
10.1155/2018/4123168
10.1023/A:1011253113155
10.1088/0266-5611/21/6/017
10.1007/s40840-018-0614-0
10.1007/s11784-018-0620-8
10.1007/s11590-016-1102-9
10.1007/s10898-017-0506-0
10.1088/0266-5611/26/10/105018
10.3390/math7090789
10.1007/978-81-322-1883-8_9
10.1016/0041-5553(64)90137-5
10.3934/jimo.2018080
10.1088/0266-5611/18/2/310
10.3934/jimo.2016078
10.1007/s11075-019-00790-y
10.1007/s11075-017-0347-4
10.1016/j.jmaa.2004.07.048
10.1080/01630563.2016.1206566
10.1088/0266-5611/28/8/085004
10.1007/978-1-4419-9467-7
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-020-00999-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1095
ExternalDocumentID 10_1007_s11075_020_00999_2
GrantInformation_xml – fundername: Open Fund of Tianjin Key Lab for Advanced Signal Processing
  grantid: No. 2019ASP-TJ03
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2342-58827c0ab8fd1e675dadc8478b2f4cb60b6e2dbac6db9d8aa672345572b684e3
IEDL.DBID RSV
ISSN 1017-1398
IngestDate Wed Nov 05 01:56:09 EST 2025
Sat Nov 29 01:34:53 EST 2025
Tue Nov 18 22:39:25 EST 2025
Fri Feb 21 02:49:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Weak convergence
65K05
CQ algorithm
49J52
65K10
Inertial technique
Split feasibility problem
Self-adaptive algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2342-58827c0ab8fd1e675dadc8478b2f4cb60b6e2dbac6db9d8aa672345572b684e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6765-4437
PQID 2918491483
PQPubID 2043837
PageCount 21
ParticipantIDs proquest_journals_2918491483
crossref_citationtrail_10_1007_s11075_020_00999_2
crossref_primary_10_1007_s11075_020_00999_2
springer_journals_10_1007_s11075_020_00999_2
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CensorYElfvingTKopfNBortfeldTThe multiple-sets split feasibility problem and its applications for inverse problemsInverse Probl.200521207184218366810.1088/0266-5611/21/6/017
Shehu, Y., Gibali, A.: New inertial relaxed method for solving split feasibilities, Optim. Lett. https://doi.org/10.1007/s11590-020-01603-1 (2020)
AlvarezFAttouchHAn inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with dampingSet-Valued Anal.20019311184593110.1023/A:1011253113155
ByrneCIterative oblique projection onto convex sets and the split feasibility problemInverse Probl.200218441453191024810.1088/0266-5611/18/2/310
Vinh, N., Cholamjiak, P., Suantai, S.: A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci Soc (2018)
DongQLTangYCChoYJRassiasThM“Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problemJ. Global Optim.201871341360380030610.1007/s10898-018-0628-z
RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control Optim.19761487789841048310.1137/0314056
DongQLYuanHBChoYJRassiasThMModified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappingsOptim. Lett.20181287102374295610.1007/s11590-016-1102-9
Ansari, Q.H., Rehan, A.: Split feasibility and xed point problems. In: Ansari, Q.H. (ed.) Nonlinear Analysis Approximation Theorem Optimization Application, pp 281–322. Springer (2014)
DongQLHuangJLiXHChoYJRassiasThMMiKM: Multi-step inertial ktrsnosel’skií-mann algorithm and its applicationsJ. Global Optim.201973801824392512610.1007/s10898-018-0727-x
SahuDRApplication of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory201112118720427970801281.47053
GibaliAMaiDTVinhNTA new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applicationsJ. Ind. Manag. Optim.20191596398439281171438.65124
CensorYElfvingTA multiprojection algorithm using Bregman projection in a product spaceNumer. Algorithms19948221239130922210.1007/BF02142692
DangYSunJXuHInertial accelerated algorithm for solving a split feasibility problemJ. Ind. Manag. Optim.2017131383139436512821362.65061
Dong, Q.L., Cho, Y.J., Rassias, Th.M.: General inertial Mann algorithms and their convergence analysis for nonexpansive mappings. In: Rassias, T.H.M. (ed.) Applications of Nonlinear Analysis, pp 175–191. Springer (2018)
AnhPKVinhNTDungVTA new self-adaptive CQ algorithm with an application to the lasso problemJ. Fixed Point Theory Appl.201820142385703110.1007/s11784-018-0620-8
DongQLYaoYHeSWeak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in hilbert spacesOptim. Lett.2014810311046317058410.1007/s11590-013-0619-4
Ma, Z., Wang, L., Cho, Y.J.: Some results for split equality equilibrium problems in Banach spaces. Symmetry, 11 (2019)
ZhaoJLiangYLiuYChoYJSplit equilibrium problems, variational inequality problems and fixed point problems for multi-valued mappings in Hilbert spacesAppl. Comput. Math.201817271283383947507122370
AgarwalRPReganDOSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications2009New York USASpringer
WangFPolyak‘s gradient method for split feasibility problem constrained by level sets, NumerAlgorithms201877925938376660110.1007/s11075-017-0347-4
KesornpromSPholasaNCholamjiakPOn the convergence analysis of the gradient-CQ algorithms for the split feasibility problemNumer. Algor.2020849971017411069410.1007/s11075-019-00790-y
BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011New YorkSpringer10.1007/978-1-4419-9467-7
DongQLChoYJZhongLLRassiasThMInertial projection and contraction algorithms for variational inequalitiesJ. Global Optim.201870687704376462410.1007/s10898-017-0506-0
SuantaiSPholasaNCholamjiakPThe modified inertial relaxed CQ algorithm for solving the split feasibility problemsJ. Indust. Manag. Optim.20181415951615391787507086866
MaingéPEInertial iterative process for fixed points of certain quasi-nonexpansive mappingSet Valued Anal.2007156779230871310.1007/s11228-006-0027-3
PolyakBTSome methods of speeding up the convergence of iteration methodsU.S.S.R. Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5
DongQLLiXHKitkuanDChoYJKumamPSome algorithms for classes of split feasibility problems involving paramonotone equilibria and convex optimizationJ. Inequal. Appl.2019201977392921710.1186/s13660-019-2030-x
SuantaiSPholasaNCholamjiakPRelaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problemsRacsam Rev. R. Acad. A.201911310811099394238507086866
JirakitpuwapatWKumamPChoYJSitthithakerngkietKA general algorithm for the split common fixed point problem with its applications to signal processingMathematics20197322610.3390/math7030226
TibshiraniRRegression shrinkage and selection via the Lasso, J.R.Stat. Soc. Ser B19965826728813792420850.62538
WitthayaratUChoYJCholamjiakPOn solving proximal split feasibility problems and applicationsAnn. Funct. Anal.20189111122375874710.1215/20088752-2017-0028
TanKKXuHKApproximating fixed point of nonexpansive mappings by the Ishikawa iteration processJ. Math. Anal. Appl.1993178301308123887910.1006/jmaa.1993.1309
BauschkeHHBorweinJMOn projection algorithms for solving convex feasibility problemsSIAM Rev.199638367426140959110.1137/S0036144593251710
SahuDRAnsariQHYaoJCConvergence of inexact Mann iterations generated by nearly nonexpansive sequences and applicationsNumer. Funct. Anal. Optim.20163713121338355300910.1080/01630563.2016.1206566
Qu, B., Liu, B.: The split feasibility problem and its solution algorithm, Math Problems in Engin (2018)
SuantaiSKesornpromSCholamjiakPA new hybrid CQ algorithm for the split feasibility problem in Hilbert spaces and its applications to compressed sensingMathematics2019778910.3390/math7090789
YangQOn variable-step relaxed projection algorithm for variational inequalitiesJ. Math. Anal. Appl.2005302166179210735510.1016/j.jmaa.2004.07.048
XuHKIterative methods for solving the split feasibility in infinite-dimensional Hilbert spacesInverse Probl.20102610501810.1088/0266-5611/26/10/105018
Lopez, G., Martin, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problem, 28 (2012)
W Jirakitpuwapat (999_CR19) 2019; 7
R Tibshirani (999_CR34) 1996; 58
PE Maingé (999_CR23) 2007; 15
S Suantai (999_CR30) 2018; 14
QL Dong (999_CR14) 2018; 12
U Witthayarat (999_CR37) 2018; 9
J Zhao (999_CR40) 2018; 17
DR Sahu (999_CR27) 2011; 12
Y Censor (999_CR8) 1994; 8
S Suantai (999_CR32) 2019; 7
HK Xu (999_CR39) 2010; 26
999_CR21
999_CR22
QL Dong (999_CR12) 2019; 73
C Byrne (999_CR7) 2002; 18
HH Bauschke (999_CR6) 1996; 38
Y Censor (999_CR9) 2005; 21
QL Dong (999_CR11) 2019; 2019
999_CR29
999_CR25
F Wang (999_CR36) 2018; 77
F Alvarez (999_CR2) 2001; 9
PK Anh (999_CR3) 2018; 20
Y Dang (999_CR10) 2017; 13
A Gibali (999_CR18) 2019; 15
999_CR4
S Suantai (999_CR31) 2019; 113
QL Dong (999_CR13) 2014; 8
KK Tan (999_CR33) 1993; 178
S Kesornprom (999_CR20) 2020; 84
BT Polyak (999_CR24) 1964; 4
Q Yang (999_CR38) 2005; 302
999_CR35
QL Dong (999_CR15) 2018; 70
DR Sahu (999_CR28) 2016; 37
QL Dong (999_CR17) 2018; 71
HH Bauschke (999_CR5) 2011
RP Agarwal (999_CR1) 2009
999_CR16
RT Rockafellar (999_CR26) 1976; 14
References_xml – reference: WangFPolyak‘s gradient method for split feasibility problem constrained by level sets, NumerAlgorithms201877925938376660110.1007/s11075-017-0347-4
– reference: KesornpromSPholasaNCholamjiakPOn the convergence analysis of the gradient-CQ algorithms for the split feasibility problemNumer. Algor.2020849971017411069410.1007/s11075-019-00790-y
– reference: SahuDRAnsariQHYaoJCConvergence of inexact Mann iterations generated by nearly nonexpansive sequences and applicationsNumer. Funct. Anal. Optim.20163713121338355300910.1080/01630563.2016.1206566
– reference: TibshiraniRRegression shrinkage and selection via the Lasso, J.R.Stat. Soc. Ser B19965826728813792420850.62538
– reference: AgarwalRPReganDOSahuDRFixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications2009New York USASpringer
– reference: AnhPKVinhNTDungVTA new self-adaptive CQ algorithm with an application to the lasso problemJ. Fixed Point Theory Appl.201820142385703110.1007/s11784-018-0620-8
– reference: Ansari, Q.H., Rehan, A.: Split feasibility and xed point problems. In: Ansari, Q.H. (ed.) Nonlinear Analysis Approximation Theorem Optimization Application, pp 281–322. Springer (2014)
– reference: Dong, Q.L., Cho, Y.J., Rassias, Th.M.: General inertial Mann algorithms and their convergence analysis for nonexpansive mappings. In: Rassias, T.H.M. (ed.) Applications of Nonlinear Analysis, pp 175–191. Springer (2018)
– reference: CensorYElfvingTA multiprojection algorithm using Bregman projection in a product spaceNumer. Algorithms19948221239130922210.1007/BF02142692
– reference: ZhaoJLiangYLiuYChoYJSplit equilibrium problems, variational inequality problems and fixed point problems for multi-valued mappings in Hilbert spacesAppl. Comput. Math.201817271283383947507122370
– reference: JirakitpuwapatWKumamPChoYJSitthithakerngkietKA general algorithm for the split common fixed point problem with its applications to signal processingMathematics20197322610.3390/math7030226
– reference: DongQLChoYJZhongLLRassiasThMInertial projection and contraction algorithms for variational inequalitiesJ. Global Optim.201870687704376462410.1007/s10898-017-0506-0
– reference: Shehu, Y., Gibali, A.: New inertial relaxed method for solving split feasibilities, Optim. Lett. https://doi.org/10.1007/s11590-020-01603-1 (2020)
– reference: BauschkeHHBorweinJMOn projection algorithms for solving convex feasibility problemsSIAM Rev.199638367426140959110.1137/S0036144593251710
– reference: GibaliAMaiDTVinhNTA new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applicationsJ. Ind. Manag. Optim.20191596398439281171438.65124
– reference: YangQOn variable-step relaxed projection algorithm for variational inequalitiesJ. Math. Anal. Appl.2005302166179210735510.1016/j.jmaa.2004.07.048
– reference: AlvarezFAttouchHAn inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with dampingSet-Valued Anal.20019311184593110.1023/A:1011253113155
– reference: DangYSunJXuHInertial accelerated algorithm for solving a split feasibility problemJ. Ind. Manag. Optim.2017131383139436512821362.65061
– reference: SahuDRApplication of the S-iteration process to constrained minimization problems and split feasibility problemsFixed Point Theory201112118720427970801281.47053
– reference: WitthayaratUChoYJCholamjiakPOn solving proximal split feasibility problems and applicationsAnn. Funct. Anal.20189111122375874710.1215/20088752-2017-0028
– reference: Lopez, G., Martin, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Problem, 28 (2012)
– reference: PolyakBTSome methods of speeding up the convergence of iteration methodsU.S.S.R. Comput. Math. Math. Phys.1964411710.1016/0041-5553(64)90137-5
– reference: DongQLYaoYHeSWeak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in hilbert spacesOptim. Lett.2014810311046317058410.1007/s11590-013-0619-4
– reference: DongQLYuanHBChoYJRassiasThMModified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappingsOptim. Lett.20181287102374295610.1007/s11590-016-1102-9
– reference: MaingéPEInertial iterative process for fixed points of certain quasi-nonexpansive mappingSet Valued Anal.2007156779230871310.1007/s11228-006-0027-3
– reference: DongQLHuangJLiXHChoYJRassiasThMMiKM: Multi-step inertial ktrsnosel’skií-mann algorithm and its applicationsJ. Global Optim.201973801824392512610.1007/s10898-018-0727-x
– reference: SuantaiSPholasaNCholamjiakPThe modified inertial relaxed CQ algorithm for solving the split feasibility problemsJ. Indust. Manag. Optim.20181415951615391787507086866
– reference: TanKKXuHKApproximating fixed point of nonexpansive mappings by the Ishikawa iteration processJ. Math. Anal. Appl.1993178301308123887910.1006/jmaa.1993.1309
– reference: XuHKIterative methods for solving the split feasibility in infinite-dimensional Hilbert spacesInverse Probl.20102610501810.1088/0266-5611/26/10/105018
– reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011New YorkSpringer10.1007/978-1-4419-9467-7
– reference: RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control Optim.19761487789841048310.1137/0314056
– reference: SuantaiSKesornpromSCholamjiakPA new hybrid CQ algorithm for the split feasibility problem in Hilbert spaces and its applications to compressed sensingMathematics2019778910.3390/math7090789
– reference: Qu, B., Liu, B.: The split feasibility problem and its solution algorithm, Math Problems in Engin (2018)
– reference: ByrneCIterative oblique projection onto convex sets and the split feasibility problemInverse Probl.200218441453191024810.1088/0266-5611/18/2/310
– reference: DongQLLiXHKitkuanDChoYJKumamPSome algorithms for classes of split feasibility problems involving paramonotone equilibria and convex optimizationJ. Inequal. Appl.2019201977392921710.1186/s13660-019-2030-x
– reference: Ma, Z., Wang, L., Cho, Y.J.: Some results for split equality equilibrium problems in Banach spaces. Symmetry, 11 (2019)
– reference: CensorYElfvingTKopfNBortfeldTThe multiple-sets split feasibility problem and its applications for inverse problemsInverse Probl.200521207184218366810.1088/0266-5611/21/6/017
– reference: DongQLTangYCChoYJRassiasThM“Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problemJ. Global Optim.201871341360380030610.1007/s10898-018-0628-z
– reference: Vinh, N., Cholamjiak, P., Suantai, S.: A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci Soc (2018)
– reference: SuantaiSPholasaNCholamjiakPRelaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problemsRacsam Rev. R. Acad. A.201911310811099394238507086866
– volume: 14
  start-page: 1595
  year: 2018
  ident: 999_CR30
  publication-title: J. Indust. Manag. Optim.
  doi: 10.3934/jimo.2018023
– volume: 71
  start-page: 341
  year: 2018
  ident: 999_CR17
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-0628-z
– volume: 178
  start-page: 301
  year: 1993
  ident: 999_CR33
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1993.1309
– volume: 38
  start-page: 367
  year: 1996
  ident: 999_CR6
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144593251710
– volume: 113
  start-page: 1081
  year: 2019
  ident: 999_CR31
  publication-title: Racsam Rev. R. Acad. A.
– volume: 9
  start-page: 111
  year: 2018
  ident: 999_CR37
  publication-title: Ann. Funct. Anal.
  doi: 10.1215/20088752-2017-0028
– volume: 17
  start-page: 271
  year: 2018
  ident: 999_CR40
  publication-title: Appl. Comput. Math.
– volume: 8
  start-page: 1031
  year: 2014
  ident: 999_CR13
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-013-0619-4
– volume: 14
  start-page: 877
  year: 1976
  ident: 999_CR26
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314056
– volume: 15
  start-page: 67
  year: 2007
  ident: 999_CR23
  publication-title: Set Valued Anal.
  doi: 10.1007/s11228-006-0027-3
– volume: 58
  start-page: 267
  year: 1996
  ident: 999_CR34
  publication-title: Stat. Soc. Ser B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 73
  start-page: 801
  year: 2019
  ident: 999_CR12
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-018-0727-x
– ident: 999_CR16
  doi: 10.1007/978-3-319-89815-5_7
– ident: 999_CR22
  doi: 10.3390/sym11020194
– volume: 2019
  start-page: 77
  year: 2019
  ident: 999_CR11
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-019-2030-x
– volume: 7
  start-page: 226
  issue: 3
  year: 2019
  ident: 999_CR19
  publication-title: Mathematics
  doi: 10.3390/math7030226
– ident: 999_CR29
  doi: 10.1007/s11590-020-01603-1
– volume: 8
  start-page: 221
  year: 1994
  ident: 999_CR8
  publication-title: Numer. Algorithms
  doi: 10.1007/BF02142692
– ident: 999_CR25
  doi: 10.1155/2018/4123168
– volume: 12
  start-page: 187
  issue: 1
  year: 2011
  ident: 999_CR27
  publication-title: Fixed Point Theory
– volume: 9
  start-page: 3
  year: 2001
  ident: 999_CR2
  publication-title: Set-Valued Anal.
  doi: 10.1023/A:1011253113155
– volume: 21
  start-page: 2071
  year: 2005
  ident: 999_CR9
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/6/017
– ident: 999_CR35
  doi: 10.1007/s40840-018-0614-0
– volume: 20
  start-page: 142
  year: 2018
  ident: 999_CR3
  publication-title: J. Fixed Point Theory Appl.
  doi: 10.1007/s11784-018-0620-8
– volume: 12
  start-page: 87
  year: 2018
  ident: 999_CR14
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-016-1102-9
– volume: 70
  start-page: 687
  year: 2018
  ident: 999_CR15
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-017-0506-0
– volume: 26
  start-page: 105018
  year: 2010
  ident: 999_CR39
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/26/10/105018
– volume-title: Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications
  year: 2009
  ident: 999_CR1
– volume: 7
  start-page: 789
  year: 2019
  ident: 999_CR32
  publication-title: Mathematics
  doi: 10.3390/math7090789
– ident: 999_CR4
  doi: 10.1007/978-81-322-1883-8_9
– volume: 4
  start-page: 1
  year: 1964
  ident: 999_CR24
  publication-title: U.S.S.R. Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 15
  start-page: 963
  year: 2019
  ident: 999_CR18
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2018080
– volume: 18
  start-page: 441
  year: 2002
  ident: 999_CR7
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/18/2/310
– volume: 13
  start-page: 1383
  year: 2017
  ident: 999_CR10
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2016078
– volume: 84
  start-page: 997
  year: 2020
  ident: 999_CR20
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-019-00790-y
– volume: 77
  start-page: 925
  year: 2018
  ident: 999_CR36
  publication-title: Algorithms
  doi: 10.1007/s11075-017-0347-4
– volume: 302
  start-page: 166
  year: 2005
  ident: 999_CR38
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.07.048
– volume: 37
  start-page: 1312
  year: 2016
  ident: 999_CR28
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2016.1206566
– ident: 999_CR21
  doi: 10.1088/0266-5611/28/8/085004
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2011
  ident: 999_CR5
  doi: 10.1007/978-1-4419-9467-7
SSID ssj0010027
Score 2.4346793
Snippet The split feasibility problem is to find a point x ∗ with the property that x ∗ ∈ C and A x ∗ ∈ Q , where C and Q are nonempty closed convex subsets of real...
The split feasibility problem is to find a point x∗ with the property that x∗∈ C and Ax∗∈ Q, where C and Q are nonempty closed convex subsets of real Hilbert...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1075
SubjectTerms Algebra
Algorithms
Codes
Computer Science
Feasibility
Hilbert space
Inverse problems
Linear operators
Numeric Computing
Numerical Analysis
Original Paper
Phase retrieval
Radiation therapy
Theory of Computation
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1xf5OBNi90026QnEVEUHyiI7K3kVV3Q-mgV_ffOdLO7KOjFc5O08E2TbzLzzQBsy6QjY0Nh9dT6SJjMRBk3KtIqVrLInIgbhfftuby8VN1udhUu3KqQVjnYE5uN2j1ZuiPf4xn6IhmS92T_-SWirlEUXQ0tNMZhss15m-z8TEbDKAL5XE20E3diZDoqiGb60jn0e0ibTLpqUuLz7wfTiG3-CJA2587x3H-_eB5mA-NkB30TWYAxXy7CXGCfLPzb1SLMXAwruFZL0D0tKeMaJ5La5QNHHl4z_XCHL6jvHyuGXJeh2dJ1BNOswsVqVngdkm0_WWhUw3olO-lRHa0aB1H61zLcHB_dHJ5EoQtDZHki0FNFDi5trI0qXNujf-G0s3imKcMLYU0am9RzZ7RNncmc0jqVOK_TkdykSvhkBSbKp9KvAhPCCyRMtki9FdJ5Q2TVFlbHiROC6xa0BwjkNlQop0YZD_motjKhliNqeYNazluwM5zz3K_P8efojQFUefhXq3yEUwt2B2CPHv--2trfq63DNKcEmCa3dwMm6tc3vwlT9r3uVa9bjaV-AUjw7RY
  priority: 102
  providerName: ProQuest
Title Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces
URI https://link.springer.com/article/10.1007/s11075-020-00999-2
https://www.proquest.com/docview/2918491483
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB68HvTBemI9yj74poG42WY3jyqKohYvpG9hr2ihRmmi6L93Nt20KCro6x5D2Gu-ycw3A7DNozYPlXOrx9oGTCUqSKgSgRSh4FliWFgxvO_Oeacjut3k0pPCijravXZJVi_1mOyGlopjEzsmtOPO48M7jepOuOt4fXM38h04S6vyceL7i_hGeKrM9zI-q6MxxvziFq20zXHjf9-5APMeXZL94XFYhAmbL0HDI03i73GBTXUxh7ptCeYuRglci2XonuYu4BplObLLG04-vCKyf_806JUPjwVBqEvw1Lq_EUSSAuWXJLPSx9q-E1-nhvRyctJzabRKHOSiv1bg9vjo9vAk8EUYAk0jhoYqQnCuQ6lEZvYsmhdGGo0qTSiaMa3iUMWWGiV1bFRihJQxx3ntNqcqFsxGqzCVP-V2DQhjliFe0llsNePGKodVdaZlGBnGqGzCXr0VqfYJyl2djH46Tq3sljbFpU2rpU1pE3ZGc56H6Tl-Hb1Z73Dqr2qR0gSN3AStwqgJu_WOjrt_lrb-t-EbMEtdPEwV6rsJU-XgxW7BjH4te8WgBdMHR53L6xZMnvGg5SJQb1rVsf4A5xrs-g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BanlQKEPsdBSH-BEo2Ydb-IcEEIt1a66XVGxQnuz_AqsVNLShEd_FP-RmayzKyrRWw89xx7J8Xj8jWe-GYBXWdLLYkNh9dT6SJjcRDk3MtIyllmROxE3DO_Pw2w0kpNJ_nEJ_rRcGEqrbG1iY6jdhaU38gOeoy-SI3hP3l1-j6hrFEVX2xYaM7U48de_0GWr3g6OcH9fc378YXzYj0JXgcjyRKDnhZgys7E2snBdj3jZaWfRRkvDC2FNGpvUc2e0TZ3JndQ6zXBer5dxk0rhExS7DA8EGf8mU_DTPGhBLl4TXEXDj8BKBo7OjKmHbhZRoYnGTcR__u89uAC3N-KxzTV3vH7PftATeBzwNHs_OwBPYcmXG7AesDULlqvagEen8_q01SZMBiXlk-NE4vL8xpGHZ0yff8H11F-_VQyRPMNDSY8tTLMKhdWs8DqkEl-z0IaHTUvWn1KVsBoHUXLbFozvYrHbsFJelP4ZMCG8QDhoi9RbkTlvCIrbwuo4cUJw3YFuu-HKhvrr1AbkXC0qR5OSKFQS1SiJ4h14M59zOas-cuvonVYzVLBElVqoRQf2W91afP6_tOe3S9uD1f74dKiGg9HJC1jjlOrTZDHvwEp99cPvwkP7s55WVy-bQ8JA3bHO_QVFTEp0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB1VtEJwICVQEaDtHriBhVlv7PUR0UaghghEhHKz9ssQiRoUG9T--8446wQqQEJc7d2RtZ_veebNAOwkUTcJNbnVY-MCoVMdpFzLQMlQJnlqRVgrvC_7yWAgR6P07JGKv452b1ySU00DZWkqqv07m-_PhW_IWkhZTKpo0tHjIfxRUNEg4usXlzM_ArGu2t-JZzFiHellM8_beHo1zfHmfy7S-ubptd7_zZ9hxaNOdjhdJqvwwRVtaHkEyvz-LvFRU-ShedaG5dNZYtdyDUYnBQVioy0SwfzBzkfnTN1c3U7G1fXvkiEEZria6S8FU6xE-xXLnfIxuH-Zr1_DxgU7HlN6rQobUVTYOgx7P4dHx4EvzhAYHgkksAjNExMqLXN74JB2WGUNXnVS81wYHYc6dtxqZWKrUyuVihPs1-0mXMdSuOgLLBS3hdsAJoQTiKNMHjsjEus0YViTGxVGVgiuOnDQTEtmfOJyqp9xk81TLtPQZji0WT20Ge_A7qzP3TRtx6utt5vZzvwWLjOeIvlNkS1GHdhrZnf--mVrm29r_h0Wz370sv7J4NcWLHEKmamjgbdhoZrcu6_wyTxU43LyrV7Z_wBEJvVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+relaxed+CQ+algorithms+for+solving+a+split+feasibility+problem+in+Hilbert+spaces&rft.jtitle=Numerical+algorithms&rft.au=Sahu%2C+D.R.&rft.au=Cho%2C+Y.J.&rft.au=Dong%2C+Q.L.&rft.au=Kashyap%2C+M.R.&rft.date=2021-07-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=87&rft.issue=3&rft.spage=1075&rft.epage=1095&rft_id=info:doi/10.1007%2Fs11075-020-00999-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11075_020_00999_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon