Revolutionizing emergency vehicle response: a smart traffic management approach with adaptive CNN and hybrid deep learning

This study explores the important problem of urban traffic congestion, focusing on the challenges that emergency vehicles encounter. Existing traffic management systems frequently fail to efficiently prioritize emergency vehicles, relying on costly sensors or manual intervention. To solve these chal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of information technology (Singapore. Online) Ročník 17; číslo 3; s. 1793 - 1804
Hlavní autoři: Vikraman, Bindu Puthentharayil, Mahadevan, Vanitha, Jabbar, Rani Fathima
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.04.2025
Springer Nature B.V
Témata:
ISSN:2511-2104, 2511-2112
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study explores the important problem of urban traffic congestion, focusing on the challenges that emergency vehicles encounter. Existing traffic management systems frequently fail to efficiently prioritize emergency vehicles, relying on costly sensors or manual intervention. To solve these challenges, this research presents a unique traffic control technique that detects and prioritizes emergency vehicles using images captured by traffic surveillance cameras.This approach involves denoising input traffic images and recognizing vehicles using Adaptive Faster R-CNN (AfR-CNN), which has been optimized with the Enhanced walrus optimization (EWO) algorithm. In addition, a hybrid deep learning model is used to identify emergency vehicles, with Stacked AutoEncoder (SAE) for feature extraction and modified DenseNet201 for classification. The evaluation metrics utilized for comparing with other deep learning techniques include accuracy, precision, recall, and the F-measure. Test results indicate that the proposed emergency vehicle detection model surpasses alternative deep learning algorithms in vehicle classification accuracy, achieving a remarkable accuracy.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2511-2104
2511-2112
DOI:10.1007/s41870-024-02088-2