An optimized CNN system to recognize handwritten characters in ancient documents in Grantha script

An optical character recognition (OCR) system plays an important role in the digitization of ancient handwritten text document. Various adversaries of ancient documents such as ink stains, faded portion of text, humidity spots, and similar-shaped characters make the task of character recognition cha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of information technology (Singapore. Online) Ročník 15; číslo 4; s. 1975 - 1983
Hlavní autori: Jindal, Amar, Ghosh, Rajib
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore Springer Nature Singapore 01.04.2023
Springer Nature B.V
Predmet:
ISSN:2511-2104, 2511-2112
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An optical character recognition (OCR) system plays an important role in the digitization of ancient handwritten text document. Various adversaries of ancient documents such as ink stains, faded portion of text, humidity spots, and similar-shaped characters make the task of character recognition challenging and tedious. This research study proposes an optimized convolution neural network (CNN) based OCR system to recognize each and every character present in the ancient document handwritten in Grantha script. A set of convolutional layers present in the proposed system extracts the deep hierarchical feature vectors from the input character image. Two fully connected neural network (FCNN) layers have classified these feature vectors into its correct class. The values of the hyper-parameters of CNN architecture such as the number of filters in each convolution layer, size of the filter in each convolution layer, number of FCNN layers, and neurons in each FCNN layer have been optimized using the Bayesian optimization technique. The major contribution of this work is the proposal of an optimized CNN architecture to perform OCR in ancient documents in Grantha script. A character recognition accuracy of 99.30% has been obtained from the proposed OCR system on the ancient handwritten documents in Grantha script. The experimental results demonstrate that the proposed OCR method outperforms the existing state-of-the-art methods in this regard.
AbstractList An optical character recognition (OCR) system plays an important role in the digitization of ancient handwritten text document. Various adversaries of ancient documents such as ink stains, faded portion of text, humidity spots, and similar-shaped characters make the task of character recognition challenging and tedious. This research study proposes an optimized convolution neural network (CNN) based OCR system to recognize each and every character present in the ancient document handwritten in Grantha script. A set of convolutional layers present in the proposed system extracts the deep hierarchical feature vectors from the input character image. Two fully connected neural network (FCNN) layers have classified these feature vectors into its correct class. The values of the hyper-parameters of CNN architecture such as the number of filters in each convolution layer, size of the filter in each convolution layer, number of FCNN layers, and neurons in each FCNN layer have been optimized using the Bayesian optimization technique. The major contribution of this work is the proposal of an optimized CNN architecture to perform OCR in ancient documents in Grantha script. A character recognition accuracy of 99.30% has been obtained from the proposed OCR system on the ancient handwritten documents in Grantha script. The experimental results demonstrate that the proposed OCR method outperforms the existing state-of-the-art methods in this regard.
An optical character recognition (OCR) system plays an important role in the digitization of ancient handwritten text document. Various adversaries of ancient documents such as ink stains, faded portion of text, humidity spots, and similar-shaped characters make the task of character recognition challenging and tedious. This research study proposes an optimized convolution neural network (CNN) based OCR system to recognize each and every character present in the ancient document handwritten in Grantha script. A set of convolutional layers present in the proposed system extracts the deep hierarchical feature vectors from the input character image. Two fully connected neural network (FCNN) layers have classified these feature vectors into its correct class. The values of the hyper-parameters of CNN architecture such as the number of filters in each convolution layer, size of the filter in each convolution layer, number of FCNN layers, and neurons in each FCNN layer have been optimized using the Bayesian optimization technique. The major contribution of this work is the proposal of an optimized CNN architecture to perform OCR in ancient documents in Grantha script. A character recognition accuracy of 99.30% has been obtained from the proposed OCR system on the ancient handwritten documents in Grantha script. The experimental results demonstrate that the proposed OCR method outperforms the existing state-of-the-art methods in this regard.
Author Ghosh, Rajib
Jindal, Amar
Author_xml – sequence: 1
  givenname: Amar
  surname: Jindal
  fullname: Jindal, Amar
  organization: Department of Computer Science and Engineering, National Institute of Technology Patna
– sequence: 2
  givenname: Rajib
  orcidid: 0000-0002-8553-8656
  surname: Ghosh
  fullname: Ghosh, Rajib
  email: rajib.ghosh@nitp.ac.in
  organization: Department of Computer Science and Engineering, National Institute of Technology Patna
BookMark eNp9kE9LAzEQxYMo-K9fwFPA82om2exuj1K0CqVe9Byyk6SN2KQmKaKf3tUVBQ-e5jHzfjPDOyb7IQZLyBmwC2Csvcw1dC2rGBcVA163FeyRIy4BKg7A9380qw_JJGffMwG8EbKFI9JfBRq3xW_8uzV0tlzS_JaL3dASabIYV2EY0LUO5jX5UmyguNZJY7EpUx-oDuhtKNRE3G0G8dWcJx3KWtOMyW_LKTlw-jnbyXc9IY831w-z22pxP7-bXS0q5KKGSkwbI5DVEgyXbQ3oQGOvUQp0deOkaequbxrXM260mTrnOjSuF4xJ12CP4oScj3u3Kb7sbC7qKe5SGE4qwaXkIFrWDC4-ujDFnJN1apv8Rqc3BUx9xqnGONUQp_qKU8EAdX8g9EUXH0NJ2j__j4oRzcOdsLLp96t_qA8pXI0S
CitedBy_id crossref_primary_10_1007_s11042_023_17697_5
crossref_primary_10_1186_s40494_024_01438_4
crossref_primary_10_1007_s41870_023_01529_8
crossref_primary_10_1007_s00521_024_10717_x
crossref_primary_10_1080_1448837X_2025_2553938
crossref_primary_10_1007_s41870_024_02377_w
Cites_doi 10.1007/s12046-019-1126-9
10.1109/ACCESS.2020.2975023
10.1007/s11063-018-9913-6
10.1109/ACCESS.2019.2960161
10.1007/s11042-019-7620-6
10.1016/j.patcog.2019.03.030
10.1007/s11042-021-10775-6
10.1007/s00500-020-05018-z
10.1007/s00500-019-04596-x
10.1016/j.patrec.2020.05.026
10.1007/s00521-015-1972-2
10.1007/s42452-019-1340-4
10.1109/CVPR.2016.308
10.17632/y2s635w8wd.1
10.1155/2021/2491116
10.1007/s11042-022-13709-y
10.1109/CVPR.2016.90
10.1109/ICCMC.2017.8282574
10.1109/PDGC.2018.8745903
10.1109/DAS.2018.50
10.1109/DAS.2016.60
10.1109/CVPR.2017.195
10.1007/978-981-15-1084-7_19
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s41870-023-01247-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2511-2112
EndPage 1983
ExternalDocumentID 10_1007_s41870_023_01247_1
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z7Z
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
JQ2
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2341-396d3c0451d25741cf1acbac53cf46f5d648b66fb02dad9fff8cdfb3005f6cbc3
IEDL.DBID RSV
ISSN 2511-2104
IngestDate Sun Nov 30 04:09:22 EST 2025
Tue Nov 18 22:28:09 EST 2025
Sat Nov 29 03:11:47 EST 2025
Fri Feb 21 02:43:23 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Optimized CNN
Character recognition
Grantha script
Ancient handwritten documents
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2341-396d3c0451d25741cf1acbac53cf46f5d648b66fb02dad9fff8cdfb3005f6cbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8553-8656
PQID 3255213706
PQPubID 2034493
PageCount 9
ParticipantIDs proquest_journals_3255213706
crossref_primary_10_1007_s41870_023_01247_1
crossref_citationtrail_10_1007_s41870_023_01247_1
springer_journals_10_1007_s41870_023_01247_1
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationSubtitle An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management
PublicationTitle International journal of information technology (Singapore. Online)
PublicationTitleAbbrev Int. j. inf. tecnol
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Garg, Jindal, Singh (CR20) 2021; 13
Narang, Jindal, Kumar (CR18) 2019; 44
CR16
Narang, Jindal, Ahuja, Kumar (CR17) 2020; 24
CR15
CR14
Narang, Jindal, Kumar (CR3) 2019; 78
CR12
Ghosh, Vamshi, Kumar (CR1) 2019; 92
CR30
Kumar, Jindal, Jindal, Lehal (CR7) 2019; 50
Ma, Long, Duan, Zhang, Li, Zhao (CR22) 2020; 8
Garg, Jindal, Singh (CR21) 2022; 14
Ly, Nguyen, Nakagawa (CR10) 2020; 136
Narang, Kumar, Jindal (CR5) 2021; 80
Sharma, Dhaka (CR4) 2016; 27
Suganya, Murugavalli (CR8) 2020; 24
Jyothi, Rahiman (CR13) 2020; 15
CR2
CR6
CR29
CR28
CR9
Hussain (CR26) 2022; 14
CR27
Weldegebriel, Liu, Haq, Bugingo, Zhang (CR23) 2020; 8
Lakshmi, Sastry, Rajinikanth (CR11) 2017; 20
CR24
Joseph (CR19) 2020; 12
Demilew, Sekeroglu (CR25) 2019; 1
1247_CR14
1247_CR15
1247_CR16
FA Demilew (1247_CR25) 2019; 1
T Suganya (1247_CR8) 2020; 24
TV Lakshmi (1247_CR11) 2017; 20
1247_CR12
1247_CR2
SR Narang (1247_CR3) 2019; 78
1247_CR30
1247_CR6
R Ghosh (1247_CR1) 2019; 92
M Kumar (1247_CR7) 2019; 50
1247_CR9
FJJ Joseph (1247_CR19) 2020; 12
S Narang (1247_CR18) 2019; 44
R Jyothi (1247_CR13) 2020; 15
HT Weldegebriel (1247_CR23) 2020; 8
J Hussain (1247_CR26) 2022; 14
1247_CR24
NT Ly (1247_CR10) 2020; 136
L Ma (1247_CR22) 2020; 8
1247_CR27
SR Narang (1247_CR5) 2021; 80
SR Narang (1247_CR17) 2020; 24
MK Sharma (1247_CR4) 2016; 27
A Garg (1247_CR21) 2022; 14
A Garg (1247_CR20) 2021; 13
1247_CR28
1247_CR29
References_xml – volume: 44
  start-page: 1
  issue: 6
  year: 2019
  end-page: 8
  ident: CR18
  article-title: Devanagari ancient documents recognition using statistical feature extraction techniques
  publication-title: Sādhanā
  doi: 10.1007/s12046-019-1126-9
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR12
– ident: CR30
– volume: 20
  start-page: 143
  issue: 1
  year: 2017
  end-page: 150
  ident: CR11
  article-title: A novel 3D approach to recognize Telugu palm leaf text
  publication-title: Eng Sci Technol Int J
– volume: 8
  start-page: 52641
  year: 2020
  end-page: 52651
  ident: CR22
  article-title: Segmentation and recognition for historical Tibetan document images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975023
– ident: CR6
– ident: CR29
– volume: 50
  start-page: 43
  issue: 1
  year: 2019
  end-page: 56
  ident: CR7
  article-title: Improved recognition results of medieval handwritten Gurmukhi manuscripts using boosting and bagging methodologies
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-018-9913-6
– volume: 14
  start-page: 3457
  issue: 7
  year: 2022
  end-page: 3469
  ident: CR26
  article-title: Image denoising to enhance character recognition using deep learning
  publication-title: Int J Inf Technol
– ident: CR27
– volume: 8
  start-page: 17804
  year: 2020
  end-page: 17818
  ident: CR23
  article-title: A new hybrid convolutional neural network and eXtreme gradient boosting classifier for recognizing handwritten Ethiopian characters
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960161
– volume: 78
  start-page: 23255
  year: 2019
  end-page: 23280
  ident: CR3
  article-title: Drop flow method: an iterative algorithm for complete segmentation of devanagari ancient manuscripts
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7620-6
– volume: 12
  start-page: 57
  issue: 1
  year: 2020
  end-page: 64
  ident: CR19
  article-title: Effect of supervised learning methodologies in offline handwritten thai character recognition
  publication-title: Int J Inf Technol
– volume: 14
  start-page: 145
  year: 2022
  end-page: 153
  ident: CR21
  article-title: Degraded offline handwritten gurmukhi character recognition: study of various features and classifiers
  publication-title: Int J Inf Technol
– ident: CR15
– volume: 92
  start-page: 203
  issue: 1
  year: 2019
  end-page: 218
  ident: CR1
  article-title: RNN based online handwritten word recognition in Devanagari and Bengali scripts using horizontal zoning
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.03.030
– ident: CR9
– volume: 80
  start-page: 20671
  issue: 13
  year: 2021
  end-page: 20686
  ident: CR5
  article-title: DeepNetDevanagari: a deep learning model for Devanagari ancient character recognition
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-10775-6
– volume: 24
  start-page: 17279
  issue: 22
  year: 2020
  end-page: 17289
  ident: CR17
  article-title: On the recognition of Devanagari ancient handwritten characters using SIFT and Gabor features
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05018-z
– volume: 24
  start-page: 10933
  issue: 14
  year: 2020
  end-page: 10941
  ident: CR8
  article-title: A hybrid group search optimization: firefly algorithm-based big data framework for ancient script recognition
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04596-x
– volume: 136
  start-page: 134
  year: 2020
  end-page: 141
  ident: CR10
  article-title: An attention-based row-column encoder-decoder model for text recognition in Japanese historical documents
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.05.026
– ident: CR28
– volume: 27
  start-page: 1817
  year: 2016
  end-page: 1829
  ident: CR4
  article-title: Pixel plot and trace based segmentation method for bilingual handwritten scripts using feedforward neural network
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1972-2
– volume: 15
  start-page: 827
  issue: 8
  year: 2020
  end-page: 834
  ident: CR13
  article-title: Handwritten character recognition from ancient palm leaves using Gabor based MultiLayer Architecture:GMA
  publication-title: Int J Appl Eng Res
– volume: 13
  start-page: 2389
  year: 2021
  end-page: 2396
  ident: CR20
  article-title: Offline handwritten gurmukhi character recognition: k-nn vs. svm classifier
  publication-title: Int J Inf Technol
– ident: CR24
– volume: 1
  start-page: 1
  issue: 11
  year: 2019
  end-page: 7
  ident: CR25
  article-title: Ancient Geez script recognition using deep learning
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-1340-4
– volume: 78
  start-page: 23255
  year: 2019
  ident: 1247_CR3
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7620-6
– ident: 1247_CR30
  doi: 10.1109/CVPR.2016.308
– volume: 24
  start-page: 17279
  issue: 22
  year: 2020
  ident: 1247_CR17
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05018-z
– volume: 8
  start-page: 52641
  year: 2020
  ident: 1247_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975023
– volume: 136
  start-page: 134
  year: 2020
  ident: 1247_CR10
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.05.026
– volume: 1
  start-page: 1
  issue: 11
  year: 2019
  ident: 1247_CR25
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-1340-4
– volume: 14
  start-page: 145
  year: 2022
  ident: 1247_CR21
  publication-title: Int J Inf Technol
– volume: 24
  start-page: 10933
  issue: 14
  year: 2020
  ident: 1247_CR8
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04596-x
– volume: 80
  start-page: 20671
  issue: 13
  year: 2021
  ident: 1247_CR5
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-10775-6
– ident: 1247_CR27
  doi: 10.17632/y2s635w8wd.1
– ident: 1247_CR24
  doi: 10.1155/2021/2491116
– ident: 1247_CR2
  doi: 10.1007/s11042-022-13709-y
– ident: 1247_CR16
– volume: 13
  start-page: 2389
  year: 2021
  ident: 1247_CR20
  publication-title: Int J Inf Technol
– volume: 15
  start-page: 827
  issue: 8
  year: 2020
  ident: 1247_CR13
  publication-title: Int J Appl Eng Res
– volume: 12
  start-page: 57
  issue: 1
  year: 2020
  ident: 1247_CR19
  publication-title: Int J Inf Technol
– volume: 27
  start-page: 1817
  year: 2016
  ident: 1247_CR4
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1972-2
– volume: 50
  start-page: 43
  issue: 1
  year: 2019
  ident: 1247_CR7
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-018-9913-6
– ident: 1247_CR28
  doi: 10.1109/CVPR.2016.90
– ident: 1247_CR6
  doi: 10.1109/ICCMC.2017.8282574
– ident: 1247_CR12
  doi: 10.1109/PDGC.2018.8745903
– ident: 1247_CR14
  doi: 10.1109/DAS.2018.50
– volume: 14
  start-page: 3457
  issue: 7
  year: 2022
  ident: 1247_CR26
  publication-title: Int J Inf Technol
– ident: 1247_CR9
  doi: 10.1109/DAS.2016.60
– ident: 1247_CR29
  doi: 10.1109/CVPR.2017.195
– ident: 1247_CR15
  doi: 10.1007/978-981-15-1084-7_19
– volume: 20
  start-page: 143
  issue: 1
  year: 2017
  ident: 1247_CR11
  publication-title: Eng Sci Technol Int J
– volume: 44
  start-page: 1
  issue: 6
  year: 2019
  ident: 1247_CR18
  publication-title: Sādhanā
  doi: 10.1007/s12046-019-1126-9
– volume: 8
  start-page: 17804
  year: 2020
  ident: 1247_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960161
– volume: 92
  start-page: 203
  issue: 1
  year: 2019
  ident: 1247_CR1
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2019.03.030
SSID ssib031263571
ssj0002710285
Score 2.2147255
Snippet An optical character recognition (OCR) system plays an important role in the digitization of ancient handwritten text document. Various adversaries of ancient...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1975
SubjectTerms Artificial Intelligence
Artificial neural networks
Computer Imaging
Computer Science
Convolution
Documents
Handwriting recognition
Image Processing and Computer Vision
Machine Learning
Neural networks
Optical character recognition
Optimization techniques
Original Research
Pattern Recognition and Graphics
Software Engineering
Vision
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMMDAN6JQkAc2sKjtxEknVCEKU8UAElsUn2NRBCm0AaT-enyu0wISLKz5sJLc-e7Fd36PkGPnM6CEtsxECliUS8G0jRQTCjpgZK5FbLzYRNLvp_f3nZuw4DYObZV1TPSB2gwB18jPpMO-gsukrc5fXhmqRmF1NUhoLJIlLlwQxqJswmp_khyZVgLcefRFNkyn2NWIwJq5v50o7KPxu-kinqIKi8AGIxEljH_PVXMA-qNm6lNRb_2_L7FB1gIIpd2p12yShaLcIqtfqAm3ie6WdOjCyfNgUhh60e_TKeczrYY0NB1NCorL7h-jQeWAN4Wa-nlMByX1or9lRd0zvflddHjwyiXG6iGn01C1Q-56l7cX1yzoMTAQLtkx2VFGAhLSGDfRIw6W56BziCU489rYqCjVSlndFiY3HWttCsZqJMS3CjTIXdIoh2WxR2gKkLSN8-K40A5SQJ6i0IyV0uVTF7rjJuH1l88gkJWjZsZTNqNZ9tbKnLUyb62MN8nJ7J6XKVXHn1e3ahNlYdqOs7l9muS0NvL89O-j7f892gFZEd6vsOOnRRrV6K04JMvwXg3GoyPvtJ_Dy-_Z
  priority: 102
  providerName: ProQuest
Title An optimized CNN system to recognize handwritten characters in ancient documents in Grantha script
URI https://link.springer.com/article/10.1007/s41870-023-01247-1
https://www.proquest.com/docview/3255213706
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2511-2112
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: RSV
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HfTgLo7LkIM3DUyTNu0cVVxAKIMb4qU0Lw2OaEdmOgr-epNMOi6ooJce2jSUvJe3NO99H8CO0RkUTGqqQoE0zDmjUoeCMoFtVDyXLFKObCJO0-Tmpt3xTWGDutq9PpJ0lnrc7BYGiSVJYbb-h4UxNTnPdGTRZmyOfnFdaxEPLL6KD3Lu3dGadaK2ltGG09TkOKHvnvl-2s8e6j3s_HJS6hzQ8cL_Pn0R5n3ASfZHGrIEE0W5DAs1mQPxe3sZ5j4gE66A3C9Jz1iTx-5rochhmpIR5DOpesTXHL0WxP51f-l3KxN3E6yRnwekWxLH-VtWRPVw6Jro7M0T4xeru5yMLNUqXB0fXR6eUk_HQJEZX0d5WyiOFo9GmX0eBqiDHGWOEUcjXR0pESZSCC1bTOWqrbVOUGlp8fC1QIl8DabKXlmsA0kQ45YyShwV0kQUmCeWZ0ZzbtypsdxRA4JaBBl6rHJLmfGQjVGW3ZJmZkkzt6RZ0IDd8TtPI6SOX0dv1ZLN_K4dZNzkVyzgcUs0YK-W5Pvjn2fb-NvwTZhlThlsAdAWTFX9YbENM_hcdQf9JkwfHKWd8yZMnsXUXDvRbdNp-BvmkO_l
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-EZdKOADnMBiYzve7AFVVaG0aol6KFLFJcTjWCyCbLubUtEfxW_sjJN0AYneeuCaDytxnmfGmZn3AJ4TZtAqF6Q3FqUptZIuGCuVxTF6XTqV-ig2Mcrz7OBgvLcEv_peGC6r7G1iNNR-ivyP_LWm2FclejS0a4dHklWjOLvaS2i0sNipfp7Qlm3-Zvstfd8XSm2-29_Ykp2qgERFJlvqsfUamVbFE1xNgiEp0ZWYaqSHDKm3JnPWBjdUvvTjEEKGPjimdQ8WHWoa9wpcNUYNWTFhL_3U41cnzOzShVdfY1KP3TdXUXIgL2l3Zbq-ndi9Z5KMVV8UFzQpM5LJn75xEfD-laONrm_z9v82aXfgVhdki_V2VdyFpaq-Bzd_o168D269FlMyl98np5UXG3kuWk5r0UxFV1R1WglOK5zMJg1tLAT21NZzMalFFDWuG0FzcBy7BPnge3L8zZdStKb4AXy8lJd8CMv1tK5WQGSIo6GnVZpWjkImLDMW0glaU7xArikdQNJ_6QI7MnbWBPlWnNNIR3QUhI4ioqNIBvDy_J7DlorkwqtXe0gUnVmaFws8DOBVD6rF6X-P9uji0Z7B9a39D7vF7na-8xhuqIhprm5aheVmdlw9gWv4o5nMZ0_jghHw-bLBdgY2iU_o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwoFCKWGjBBziB1Y2dONkDQn0tVEXRqqJSbyEex2IRZMtuSkV_Gr-OseN0WyR664FrHlbifJ5HPPN9AC8JM6iEttzECnlcSsG1jRUXCodoZKlFYrzYRJrn2fHxcLwEv7teGFdW2dlEb6jNFN0_8k1Jsa-IZDpQmzaURYx3R-9OfnCnIOV2Wjs5jRYiB9WvM0rf5m_3d-lbvxJitPdp5wMPCgMcBZlvLofKSHQUK4agG0dooxJ1iYlEemCbGBVnWimrB8KUZmitzdBY7SjerUKNksa9BcuppKSnB8vbe_n4sEOzjBzPSwi2vvotPufMXU2lC-s55Vpx6OLxvXxxlDkNGOHKm0Sc8uiqp1yEv3_t2HpHOFr5n6fwAdwP4TfbatfLQ1iq6lW4d4mU8RHorZpNyZB-n5xXhu3kOWvZrlkzZaHc6rxibsPhbDZpKOVg2JFez9mkZl7uuG4Yzcep7x90B99TSNB8KVlrpNfg6EZe8jH06mldPQGWIaYDQ-s3qTQFU1hmTmLHSkmRBDmtpA9R99ULDDTtTi3kW3FBMO2RUhBSCo-UIurD64t7TlqSkmuvXu_gUQSDNS8W2OjDmw5gi9P_Hu3p9aO9gDuEseLjfn7wDO4KD29X9rQOvWZ2Wm3AbfzZTOaz52H1MPh802j7A74HWek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimized+CNN+system+to+recognize+handwritten+characters+in+ancient+documents+in+Grantha+script&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Jindal%2C+Amar&rft.au=Ghosh%2C+Rajib&rft.date=2023-04-01&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=15&rft.issue=4&rft.spage=1975&rft.epage=1983&rft_id=info:doi/10.1007%2Fs41870-023-01247-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41870_023_01247_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon