Optimized deep autoencoder and BiLSTM for intrusion detection in IoTs-Fog computing

Our world is rapidly evolving toward the Internet of Things (IoT), that connects all gadgets to digital services and simplifies our lives. As IoT devices expand, network vulnerabilities may rise, leading to more network threats. An intrusion detection system (IDS) with low latency and high accuracy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 84; číslo 8; s. 4907 - 4943
Hlavní autor: Alqahtani, Abdullah
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2025
Springer Nature B.V
Témata:
ISSN:1573-7721, 1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Our world is rapidly evolving toward the Internet of Things (IoT), that connects all gadgets to digital services and simplifies our lives. As IoT devices expand, network vulnerabilities may rise, leading to more network threats. An intrusion detection system (IDS) with low latency and high accuracy is essential in this dynamic IoT environment to identify threats. Many IDSs utilize deep learning (DL) methods, but adjusting parameters for different environments can be challenging. This work proposes an improved hybrid Deep autoencoder (DAE) and Bidirectional long short-term memory (BiLSTM) for fog item installation to protect vital networks from prompt and efficient malicious threat detection. Determining the hyperparameters of complicated DL networks is tough. Low accuracy, efficiency, and performance in high-dimensional models afflict existing approaches. Therefore, the Sparrow Search Optimization Algorithm (SSOA) is adopted to enhance model hyperparameters. Employing IoT-based data, we assess the effectiveness of our suggested model. The outcome of the experiment obtained by analyzing the suggested IDS utilizing CICIDS2017 and BoT-IoT datasets attested to their supremacy over modern systems that are currently available in terms of precision, accuracy, FAR, error rate, and detection rate (DR). To learn more about how well our model works, added two additional metrics: Cohen's Kappa coefficients and Mathew correlation. The proposed optimization model demonstrated its ability to work well with various platforms, adapt to changing requirements, and handle larger workloads. In addition, it is possible to enhance the intrusion detection rate by minimizing both the error rate and computational time. Based on the experiments conducted, the proposed method yields superior results in terms of detection accuracy and reduced latency.
AbstractList Our world is rapidly evolving toward the Internet of Things (IoT), that connects all gadgets to digital services and simplifies our lives. As IoT devices expand, network vulnerabilities may rise, leading to more network threats. An intrusion detection system (IDS) with low latency and high accuracy is essential in this dynamic IoT environment to identify threats. Many IDSs utilize deep learning (DL) methods, but adjusting parameters for different environments can be challenging. This work proposes an improved hybrid Deep autoencoder (DAE) and Bidirectional long short-term memory (BiLSTM) for fog item installation to protect vital networks from prompt and efficient malicious threat detection. Determining the hyperparameters of complicated DL networks is tough. Low accuracy, efficiency, and performance in high-dimensional models afflict existing approaches. Therefore, the Sparrow Search Optimization Algorithm (SSOA) is adopted to enhance model hyperparameters. Employing IoT-based data, we assess the effectiveness of our suggested model. The outcome of the experiment obtained by analyzing the suggested IDS utilizing CICIDS2017 and BoT-IoT datasets attested to their supremacy over modern systems that are currently available in terms of precision, accuracy, FAR, error rate, and detection rate (DR). To learn more about how well our model works, added two additional metrics: Cohen's Kappa coefficients and Mathew correlation. The proposed optimization model demonstrated its ability to work well with various platforms, adapt to changing requirements, and handle larger workloads. In addition, it is possible to enhance the intrusion detection rate by minimizing both the error rate and computational time. Based on the experiments conducted, the proposed method yields superior results in terms of detection accuracy and reduced latency.
Author Alqahtani, Abdullah
Author_xml – sequence: 1
  givenname: Abdullah
  surname: Alqahtani
  fullname: Alqahtani, Abdullah
  email: aq.alqahtani@psau.edu.sa
  organization: Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University
BookMark eNp9kDFPwzAQhS0EEm3hDzBZYg6c7cRJRqgoVCrq0DJbjuNUrlo72M4Av56EIIEYOt0b3nd3703RuXVWI3RD4I4A5PeBEEhpAjRNSFGSMoEzNCFZzpI8p-T8j75E0xD2AIRnNJ2gzbqN5mg-dY1rrVssu-i0Va7WHktb40ez2mxfceM8Njb6Lhhne2fUKg7KWLx025As3A4rd2y7aOzuCl008hD09c-cobfF03b-kqzWz8v5wypRlKWQ1LzWUJa5pLypKlAAvKa8KHnNpIKMpYxQxYmqqibjGQeVZxVkWipJJKNcsxm6Hfe23r13OkSxd523_UnBSDFEBFL0Ljq6lHcheN2I1puj9B-CgBjKE2N5oi9PfJcnoIeKf5AyUQ6Ro5fmcBplIxr6O3an_e9XJ6gvl1uE_w
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3531659
crossref_primary_10_1371_journal_pone_0323954
crossref_primary_10_1007_s10586_025_05234_y
Cites_doi 10.1007/s11042-022-13836-6
10.1016/j.patcog.2016.06.008
10.1016/j.future.2019.05.041
10.3390/electronics11193007
10.1007/s11042-021-11271-7
10.1016/j.future.2021.09.027
10.1109/JIOT.2020.3002255
10.1016/j.compeleceng.2022.107694
10.1109/TMC.2020.3026580
10.1016/j.procs.2020.03.271
10.1109/ACCESS.2020.3022855
10.1016/j.knosys.2022.108505
10.1007/s10489-019-01436-1
10.1007/s11042-023-16436-0
10.1007/s11042-021-11747-6
10.1016/j.compeleceng.2022.108214
10.3390/sym13040557
10.1109/ACCESS.2020.2988854
10.1155/2023/7107663
10.1007/s12065-019-00291-w
10.3390/electronics10091077
10.1109/ACCESS.2020.2988055
10.1007/s00779-019-01332-y
10.1109/ACCESS.2021.3137201
10.3390/sym12101695
10.1007/s11277-022-09548-7
10.1007/s11042-021-10640-6
10.1016/j.future.2020.07.020
10.1007/s11042-021-11740-z
10.1002/ett.3868
10.1016/j.comnet.2023.109662
10.1007/s11042-023-17677-9
10.3390/s21217016
10.1002/ett.3803
10.1155/2023/1982173
10.1109/ACCESS.2020.3009843
10.1109/ACCESS.2022.3206425
10.1080/21642583.2019.1708830
10.1007/s11042-021-11423-9
10.32604/cmc.2022.031303
10.1109/ACCESS.2019.2895334
10.1016/j.knosys.2022.109364
10.1007/s11042-022-12330-3
10.3390/electronics9111771
10.3390/sym14010161
10.1016/j.cose.2020.101752
10.1007/s12652-020-02696-3
10.1016/j.imu.2020.100368
10.3390/s22218417
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-18919-0
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 4943
ExternalDocumentID 10_1007_s11042_024_18919_0
GrantInformation_xml – fundername: Prince Sattam bin Abdulaziz University
  grantid: PSAU/2023/R/1444
  funderid: http://dx.doi.org/10.13039/100009392
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2340-d6de0997a26fbb0c006d26896d3ac0534312c61cbbf56560c75b05eaca1a326e3
IEDL.DBID RSV
ISSN 1573-7721
1380-7501
IngestDate Wed Nov 05 15:23:55 EST 2025
Sat Nov 29 08:05:19 EST 2025
Tue Nov 18 22:06:59 EST 2025
Sat Mar 22 01:17:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deep learning
Multiple attack detection
Fog computing
Sparrow Search Optimization Algorithm
Intrusion detection system
Bidirectional LSTM
Internet of Things
Deep autoencoder
Hyperparameter tuning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2340-d6de0997a26fbb0c006d26896d3ac0534312c61cbbf56560c75b05eaca1a326e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3180016018
PQPubID 54626
PageCount 37
ParticipantIDs proquest_journals_3180016018
crossref_primary_10_1007_s11042_024_18919_0
crossref_citationtrail_10_1007_s11042_024_18919_0
springer_journals_10_1007_s11042_024_18919_0
PublicationCentury 2000
PublicationDate 20250300
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References R Chowdhury (18919_CR7) 2022; 81
M Zeeshan (18919_CR36) 2021; 10
WM Oboya (18919_CR48) 2023; 11
18919_CR54
18919_CR4
MA Hamza (18919_CR25) 2022; 73
IV Pustokhina (18919_CR5) 2022; 81
S Roy (18919_CR17) 2022; 127
M Shafiq (18919_CR41) 2020; 8
KG Lore (18919_CR44) 2017; 61
AM Banaamah (18919_CR29) 2022; 22
I Babić (18919_CR52) 2021; 13
A Samy (18919_CR2) 2020; 8
18919_CR50
PLS Jayalaxmi (18919_CR53) 2022; 102
M Rani (18919_CR1) 2022; 81
NF Syed (18919_CR26) 2023; 225
P Kumar (18919_CR35) 2021; 12
MA Khan (18919_CR18) 2021; 21
A Sarkar (18919_CR23) 2023; 15
BA NG (18919_CR51) 2020; 113
R Gopi (18919_CR12) 2021; 81
18919_CR28
MA Khan (18919_CR19) 2020; 9
MS Sofla (18919_CR10) 2022; 81
C Tang (18919_CR21) 2020; 12
18919_CR24
Y Otoum (18919_CR31) 2022; 33
A Boukhalfa (18919_CR49) 2020; 10
Y Chen (18919_CR47) 2022; 244
F Hosseini (18919_CR27) 2023; 82
Y Labiod (18919_CR32) 2022; 125
N Koroniotis (18919_CR42) 2019; 100
J Pacheco (18919_CR39) 2020; 8
V Kumar (18919_CR16) 2021; 14
YN Kunang (18919_CR22) 2021; 58
N Kaja (18919_CR6) 2019; 49
A Halbouni (18919_CR46) 2022; 10
M Ijaz (18919_CR11) 2021; 10
S Liao (18919_CR13) 2020; 21
HB Hassen (18919_CR9) 2020; 20
SD Kebede (18919_CR15) 2022; 81
OA Alzubi (18919_CR55) 2022; 11
MP Ramkumar (18919_CR30) 2022; 252
DK Reddy (18919_CR34) 2021; 60
D Stiawan (18919_CR40) 2020; 8
J Xue (18919_CR45) 2020; 8
A-E Benrazek (18919_CR14) 2020; 31
CA De Souza (18919_CR33) 2022; 98
A Samy (18919_CR38) 2020; 8
M Dua (18919_CR43) 2020; 167
SM Kasongo (18919_CR8) 2020; 92
18919_CR3
K Sadaf (18919_CR37) 2020; 8
J Lee (18919_CR20) 2021; 25
References_xml – volume: 82
  start-page: 13369
  issue: 9
  year: 2023
  ident: 18919_CR27
  publication-title: Multimed Tools Applic
  doi: 10.1007/s11042-022-13836-6
– volume: 61
  start-page: 650
  year: 2017
  ident: 18919_CR44
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.06.008
– volume: 100
  start-page: 779
  year: 2019
  ident: 18919_CR42
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.05.041
– volume: 11
  start-page: 3007
  issue: 19
  year: 2022
  ident: 18919_CR55
  publication-title: Electronics
  doi: 10.3390/electronics11193007
– volume: 10
  start-page: 3315
  issue: 3
  year: 2020
  ident: 18919_CR49
  publication-title: Int J Electr Comput Eng
– volume: 81
  start-page: 34951
  issue: 24
  year: 2022
  ident: 18919_CR5
  publication-title: Multimed Tools Applic
  doi: 10.1007/s11042-021-11271-7
– volume: 127
  start-page: 276
  year: 2022
  ident: 18919_CR17
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2021.09.027
– volume: 8
  start-page: 3242
  issue: 5
  year: 2020
  ident: 18919_CR41
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.3002255
– volume: 98
  start-page: 107694
  year: 2022
  ident: 18919_CR33
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.107694
– volume: 21
  start-page: 1596
  issue: 5
  year: 2020
  ident: 18919_CR13
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2020.3026580
– volume: 167
  start-page: 2191
  year: 2020
  ident: 18919_CR43
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.03.271
– volume: 8
  start-page: 167059
  year: 2020
  ident: 18919_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3022855
– volume: 244
  start-page: 108505
  year: 2022
  ident: 18919_CR47
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.108505
– volume: 49
  start-page: 3235
  year: 2019
  ident: 18919_CR6
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01436-1
– ident: 18919_CR3
  doi: 10.1007/s11042-023-16436-0
– volume: 81
  start-page: 8499
  issue: 6
  year: 2022
  ident: 18919_CR1
  publication-title: Multimed Tools Applic
  doi: 10.1007/s11042-021-11747-6
– volume: 102
  start-page: 108214
  year: 2022
  ident: 18919_CR53
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.108214
– volume: 13
  start-page: 557
  issue: 4
  year: 2021
  ident: 18919_CR52
  publication-title: Symmetry
  doi: 10.3390/sym13040557
– volume: 8
  start-page: 74571
  year: 2020
  ident: 18919_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988854
– ident: 18919_CR54
  doi: 10.1155/2023/7107663
– volume: 14
  start-page: 47
  issue: 1
  year: 2021
  ident: 18919_CR16
  publication-title: Evol Intel
  doi: 10.1007/s12065-019-00291-w
– volume: 10
  start-page: 1077
  issue: 9
  year: 2021
  ident: 18919_CR11
  publication-title: Electronics
  doi: 10.3390/electronics10091077
– volume: 58
  start-page: 102804
  year: 2021
  ident: 18919_CR22
  publication-title: J Inf Secur Applic
– volume: 8
  start-page: 73907
  year: 2020
  ident: 18919_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988055
– volume: 25
  start-page: 121
  year: 2021
  ident: 18919_CR20
  publication-title: Pers Ubiquit Comput
  doi: 10.1007/s00779-019-01332-y
– volume: 10
  start-page: 2269
  year: 2021
  ident: 18919_CR36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3137201
– volume: 12
  start-page: 1695
  issue: 10
  year: 2020
  ident: 18919_CR21
  publication-title: Symmetry
  doi: 10.3390/sym12101695
– volume: 125
  start-page: 231
  issue: 1
  year: 2022
  ident: 18919_CR32
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-022-09548-7
– volume: 81
  start-page: 26739
  year: 2021
  ident: 18919_CR12
  publication-title: Multimed Tools Applic
  doi: 10.1007/s11042-021-10640-6
– volume: 113
  start-page: 255
  year: 2020
  ident: 18919_CR51
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2020.07.020
– volume: 81
  start-page: 4185
  issue: 3
  year: 2022
  ident: 18919_CR15
  publication-title: Multimed Tools Applic
  doi: 10.1007/s11042-021-11740-z
– volume: 31
  start-page: e3868
  issue: 3
  year: 2020
  ident: 18919_CR14
  publication-title: Trans Emerg Telecommun Technol
  doi: 10.1002/ett.3868
– volume: 60
  start-page: 102866
  year: 2021
  ident: 18919_CR34
  publication-title: J Inf Secur Applic
– volume: 225
  start-page: 109662
  year: 2023
  ident: 18919_CR26
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2023.109662
– ident: 18919_CR28
  doi: 10.1007/s11042-023-17677-9
– volume: 21
  start-page: 7016
  issue: 21
  year: 2021
  ident: 18919_CR18
  publication-title: Sensors
  doi: 10.3390/s21217016
– volume: 33
  start-page: e3803
  issue: 3
  year: 2022
  ident: 18919_CR31
  publication-title: Trans Emerg Telecommun Technol
  doi: 10.1002/ett.3803
– ident: 18919_CR50
  doi: 10.1155/2023/1982173
– volume: 8
  start-page: 132911
  year: 2020
  ident: 18919_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009843
– volume: 10
  start-page: 99837
  year: 2022
  ident: 18919_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3206425
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 18919_CR45
  publication-title: Syst Sci Control Eng
  doi: 10.1080/21642583.2019.1708830
– volume: 81
  start-page: 1997
  issue: 2
  year: 2022
  ident: 18919_CR10
  publication-title: Multimed Tools Applic
  doi: 10.1007/s11042-021-11423-9
– volume: 73
  start-page: 6579
  issue: 3
  year: 2022
  ident: 18919_CR25
  publication-title: CMC-Comput Mater Continua
  doi: 10.32604/cmc.2022.031303
– volume: 8
  start-page: 74571
  year: 2020
  ident: 18919_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988854
– ident: 18919_CR4
  doi: 10.1109/ACCESS.2019.2895334
– volume: 15
  start-page: 423
  issue: 1
  year: 2023
  ident: 18919_CR23
  publication-title: Int J Inf Technol
– volume: 252
  start-page: 109364
  year: 2022
  ident: 18919_CR30
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.109364
– volume: 81
  start-page: 41225
  issue: 28
  year: 2022
  ident: 18919_CR7
  publication-title: Multimed Tools Applic
  doi: 10.1007/s11042-022-12330-3
– volume: 9
  start-page: 1771
  issue: 11
  year: 2020
  ident: 18919_CR19
  publication-title: Electronics
  doi: 10.3390/electronics9111771
– ident: 18919_CR24
  doi: 10.3390/sym14010161
– volume: 92
  start-page: 101752
  year: 2020
  ident: 18919_CR8
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2020.101752
– volume: 12
  start-page: 9555
  issue: 10
  year: 2021
  ident: 18919_CR35
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02696-3
– volume: 11
  start-page: 371
  issue: 04
  year: 2023
  ident: 18919_CR48
  publication-title: J Data Anal Inf Process
– volume: 20
  start-page: 100368
  year: 2020
  ident: 18919_CR9
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100368
– volume: 22
  start-page: 8417
  issue: 21
  year: 2022
  ident: 18919_CR29
  publication-title: Sensors
  doi: 10.3390/s22218417
SSID ssj0016524
Score 2.3757925
Snippet Our world is rapidly evolving toward the Internet of Things (IoT), that connects all gadgets to digital services and simplifies our lives. As IoT devices...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4907
SubjectTerms Accuracy
Algorithms
Computer Communication Networks
Computer Science
Computing time
Data Structures and Information Theory
Edge computing
Error detection
Internet of Things
Intrusion detection systems
Machine learning
Multimedia Information Systems
Network latency
Optimization models
Special Purpose and Application-Based Systems
Workload
Title Optimized deep autoencoder and BiLSTM for intrusion detection in IoTs-Fog computing
URI https://link.springer.com/article/10.1007/s11042-024-18919-0
https://www.proquest.com/docview/3180016018
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAO3CBSm76PgJhAgoHYmHarmsdQJWgnOjjw63GydgUESHDpoU3Syo7tr3I-G-BQk3CYN_YoXhzqjqOQcikCGskkUp6weGLavQ2vgl4vHI2i25IUVlSn3auUpPHUNdnN1lQSjCnUDiNNvVmEJQx3oW7YcNcfznMHvsfckh7z_bzPIajGlV9SoSbCdJv_-7Z1WCsRJTmZbYENWFBZC5pVtwZSGm8LVj-UHtyE_g36iqf0TUkilZqQ5GWa65qWEqckmSSn6VV_cE0Q0pI008QM1B-OnJqTWxneI5f5oKDd_IEI8ypcdQvuu-eDswtaNliggjmuRaUvlWbOJswfc24JtEDJ_DDypZMItE4EF0z4tuB8rHGfJQKPWx666sROEPYpZxsaWZ6pHSCRx4JQuQwRiety_K1GRxE5wuYaozFLtsGuZB6Lsvq4boLxGNd1k7UMY5RhbGQYW204ms-ZzGpv_Dq6U6kyLu2wiNFjmU7adtiG40p19eOfV9v92_A9WGG6MbA5nNaBBupF7cOyeJ2mxfOB2Z_vTfPdtw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4omqgHH6gRRd2DN92k3T5oj2okEAsaQcKt6T5qSLQQQQ_-emeXFtSoiV56aHe3zczOzNfMfjMAJ5qEw7zUo3hxqJuGAeVS1Ggok1B5wuKJaffWi2rtdtDvh7c5KWxcnHYvUpLGU8_JbramkmBMoXYQaurNIiy5GLF0xfy7Tm-WO_A95ub0mO_nfQ5Bc1z5JRVqIkx943_ftgnrOaIk59MtsAULKivDRtGtgeTGW4a1D6UHt6Fzg77iafCmJJFKjUjyMhnqmpYSpySZJBeDqNNtEYS0ZJBpYgbqD0dOzMmtDO-R5rA7pvXhAxHmVbjqDtzXr7qXDZo3WKCCOa5FpS-VZs4mzE85twRaoGR-EPrSSQRaJ4ILJnxbcJ5q3GeJmsctD111YicI-5SzC6VsmKk9IKHHaoFyGSIS1-X4W42OInSEzTVGY5asgF3IPBZ59XHdBOMxntdN1jKMUYaxkWFsVeB0Nmc0rb3x6-hqoco4t8NxjB7LdNK2gwqcFaqbP_55tf2_DT-GlUa3FcVRs319AKtMNwk2B9WqUEIdqUNYFq-Twfj5yOzVd7s24Js
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oGqMHUdSIou7Bm25otw_aoy8iEZEEJNya7qOGRAsR9OCvd3ZpBY2aGC89tLvbzczO7LfZ-WYAjjUJh3mJR_HhUDcJA8qlqNFQxqHyhMVjU-6t16y1WkG_H7bnWPwm2j2_kpxyGnSWpnRSHcmkOiO-2ZpWgvsLtYNQ03AWYcnVgfT6vN7pfdwj-B5zM6rM9_0-b0czjPnlWtTsNvXi_-e5AesZ0iRn06WxCQsqLUExr-JAMqMuwdpcSsIt6NyhD3kavClJpFIjEr9MhjrXpcQucSrJ-aDZ6d4ShLpkkGrCBuoVW05MRFeK70hj2B3T-vCBCPMrHHUb7utX3YtrmhVeoII5rkWlL5Vm1MbMTzi3BFqmZH4Q-tKJBVotgg4mfFtwnmg8aImaxy0PXXhsxwgHlbMDhXSYql0gocdqgXIZIhXX5XjcRgcSOsLmGrsxS5bBzuUfiSwruS6O8RjN8ilrGUYow8jIMLLKcPLRZzTNyfFr60qu1iizz3GEnsxU2LaDMpzmapx9_nm0vb81P4KV9mU9ajZaN_uwynTtYBO_VoECqkgdwLJ4nQzGz4dm2b4DdEbpfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+deep+autoencoder+and+BiLSTM+for+intrusion+detection+in+IoTs-Fog+computing&rft.jtitle=Multimedia+tools+and+applications&rft.date=2025-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=84&rft.issue=8&rft.spage=4907&rft.epage=4943&rft_id=info:doi/10.1007%2Fs11042-024-18919-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon