A robust hierarchical clustering algorithm for automatic identification of clusters

Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing hierarchical clustering methods can identify the number of clusters in a dataset, most are only effective for well-separated clusters and struggle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied intelligence (Dordrecht, Netherlands) Ročník 55; číslo 7; s. 497
Hlavní autoři: Long, Jianwu, Wang, Qiang, Liu, Luping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer Nature B.V 01.05.2025
Témata:
ISSN:0924-669X, 1573-7497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing hierarchical clustering methods can identify the number of clusters in a dataset, most are only effective for well-separated clusters and struggle to identify the number of clusters in complex datasets, particularly non-convex noisy datasets. To address these shortcomings, this paper proposes a robust hierarchical clustering algorithm for automatic identification of clusters(RHCAIC), which can identify the optimal number of clusters while providing reliable clustering results. To reduce the impact of noise in clustering, the method first calculates reverse density and designs a dynamic noise discriminator to denoise the dataset. Based on the fact that more similar points have a higher probability of being clustered into the same cluster among multiple results of hierarchical clustering, a robust solution was designed. After constructing a directed graph using the kNN algorithm, the graph merging process is performed by iteratively traversing the directed edges. During this process, the number of clusters is identified, and the clustering results of the denoised dataset are obtained. Finally, by incorporating density information into the noise clustering, the final clustering results are obtained. A series of experiments conducted on 12 synthetic datasets and 8 real datasets demonstrate that, compared to seven other benchmark algorithms, the RHCAIC algorithm not only accurately identifies the number of clusters in the dataset but also produces better clustering results.
AbstractList Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing hierarchical clustering methods can identify the number of clusters in a dataset, most are only effective for well-separated clusters and struggle to identify the number of clusters in complex datasets, particularly non-convex noisy datasets. To address these shortcomings, this paper proposes a robust hierarchical clustering algorithm for automatic identification of clusters(RHCAIC), which can identify the optimal number of clusters while providing reliable clustering results. To reduce the impact of noise in clustering, the method first calculates reverse density and designs a dynamic noise discriminator to denoise the dataset. Based on the fact that more similar points have a higher probability of being clustered into the same cluster among multiple results of hierarchical clustering, a robust solution was designed. After constructing a directed graph using the kNN algorithm, the graph merging process is performed by iteratively traversing the directed edges. During this process, the number of clusters is identified, and the clustering results of the denoised dataset are obtained. Finally, by incorporating density information into the noise clustering, the final clustering results are obtained. A series of experiments conducted on 12 synthetic datasets and 8 real datasets demonstrate that, compared to seven other benchmark algorithms, the RHCAIC algorithm not only accurately identifies the number of clusters in the dataset but also produces better clustering results.
ArticleNumber 497
Author Liu, Luping
Wang, Qiang
Long, Jianwu
Author_xml – sequence: 1
  givenname: Jianwu
  surname: Long
  fullname: Long, Jianwu
– sequence: 2
  givenname: Qiang
  orcidid: 0009-0004-4325-6281
  surname: Wang
  fullname: Wang, Qiang
– sequence: 3
  givenname: Luping
  surname: Liu
  fullname: Liu, Luping
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTzebrWIpfUPCggreQZpM2ZbupSXrw37u2evFQGBgY3meGeSZo1MfeIXRN4JYAiLtMoJGqgppVwKnglThDY8IErUSjxAiNQdVNxbn6uECTnDcAQCmQMXqd4RSX-1zwOrhkkl0Hazpsu2HkUuhX2HSrmEJZb7GPCZt9iVtTgsWhdX0JfoiXEHsc_R-UL9G5N112V799it4f7t_mT9Xi5fF5PltUtqa0VL41rvWWUseEVfXSKSaVFZ4R46nnsvXEu6USDThDlWTOg-FCcm5aYIx5OkU3x727FD_3Lhe9ifvUDyc1JYpQJgmXp1NiKCCyGVLymLIp5pyc1zaUw2clmdBpAvpHtD6K1oNofRCtxYDW_9BdCluTvk5B3wqgg9c
CitedBy_id crossref_primary_10_1016_j_dwt_2025_101404
Cites_doi 10.1109/34.868688
10.1016/j.crfs.2023.100522
10.1016/j.knosys.2020.106532
10.1016/j.patcog.2023.109300
10.1109/TNNLS.2018.2853710
10.1016/j.is.2020.101504
10.1016/j.knosys.2019.105102
10.1016/j.knosys.2020.106028
10.1109/TNNLS.2016.2608001
10.1016/j.knosys.2021.107295
10.1109/TPAMI.1979.4766909
10.1007/s10489-021-02389-0
10.1109/TIM.2020.3016408
10.1016/j.ins.2018.03.031
10.1016/j.knosys.2013.02.009
10.1016/j.ins.2023.03.012
10.1007/s10489-022-03493-5
10.1109/ACCESS.2020.2988796
10.1016/j.knosys.2019.01.026
10.1109/TIP.2010.2040763
10.1016/0377-0427(87)90125-7
10.1109/COMPSAC51774.2021.00047
10.1109/TKDE.2017.2701825
10.1016/0098-3004(84)90020-7
10.1007/s13042-023-01968-6
10.1016/j.eswa.2023.120633
10.1016/j.ins.2011.04.013
10.1016/j.patcog.2022.109255
10.1080/01621459.1983.10478008
10.1016/j.ins.2024.120811
10.1109/TSMC.2021.3049490
10.1007/s12559-017-9462-8
10.1016/j.ins.2018.01.001
10.1016/j.patcog.2016.04.015
10.1016/j.patcog.2023.109517
10.1016/j.patcog.2021.108177
10.1126/science.1242072
10.1016/j.patrec.2016.05.007
10.1016/j.eswa.2014.09.054
10.1016/j.automatica.2022.110739
10.1145/1553374.1553511
10.1016/j.eswa.2023.120377
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Apr 2025
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: Copyright Springer Nature B.V. Apr 2025
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10489-025-06376-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
ExternalDocumentID 10_1007_s10489_025_06376_7
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77I
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~A9
~EX
7SC
8FD
AESKC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c233t-fdaedfc33e57c92be9589c7f51af3f68df1feb9740ea3985ef0a67866ad0555f3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001436213600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:58:15 EST 2025
Wed Nov 05 14:54:34 EST 2025
Tue Nov 18 20:53:55 EST 2025
Sat Nov 29 07:26:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-fdaedfc33e57c92be9589c7f51af3f68df1feb9740ea3985ef0a67866ad0555f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-4325-6281
PQID 3173170184
PQPubID 326365
ParticipantIDs proquest_journals_3191358168
proquest_journals_3173170184
crossref_citationtrail_10_1007_s10489_025_06376_7
crossref_primary_10_1007_s10489_025_06376_7
PublicationCentury 2000
PublicationDate 20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 20250501
  day: 01
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References EB Fowlkes (6376_CR45) 1983; 78
W Wang (6376_CR25) 2023; 147
Y Zhang (6376_CR40) 2021; 51
H Yu (6376_CR2) 2021; 211
B Yu (6376_CR26) 2023; 632
LT Li (6376_CR34) 2020; 91
R Liu (6376_CR16) 2018; 450
J Chen (6376_CR4) 2018; 435
D Cheng (6376_CR32) 2019; 30
X Han (6376_CR41) 2023; 139
6376_CR33
KP Sinaga (6376_CR1) 2020; 8
WB Xie (6376_CR28) 2024; 676
K Chu (6376_CR36) 2024; 15
6376_CR37
ND Thanh (6376_CR5) 2017; 9
C Wu (6376_CR38) 2021; 228
Z Kang (6376_CR19) 2020; 189
6376_CR8
M Zhang (6376_CR15) 2023; 230
C Zhong (6376_CR23) 2011; 181
J Xia (6376_CR35) 2022; 121
A Bouguettaya (6376_CR13) 2015; 42
C Ge (6376_CR7) 2021; 70
X Xu (6376_CR18) 2020; 200
Q Huang (6376_CR24) 2023; 136
S Zhou (6376_CR31) 2017; 28
JC Bezdek (6376_CR9) 1984; 10
P Zhou (6376_CR3) 2023; 53
Q Zhu (6376_CR42) 2016; 80
S Zhou (6376_CR14) 2017; 28
J Hou (6376_CR6) 2016; 60
A Rodriguez (6376_CR17) 2014; 344
PJ Rousseeuw (6376_CR30) 1987; 20
A Gere (6376_CR39) 2023; 6
SE Hashemi (6376_CR10) 2023; 227
6376_CR44
E Rashedi (6376_CR12) 2013; 45
J Shi (6376_CR22) 2000; 22
DL Davies (6376_CR29) 1979; 1
S Krinidis (6376_CR11) 2010; 19
Y Yang (6376_CR43) 2017; 29
X Tao (6376_CR20) 2019; 170
T Qiu (6376_CR27) 2023; 137
D Cheng (6376_CR21) 2022; 52
References_xml – volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 6376_CR22
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
– volume: 6
  start-page: 100522
  year: 2023
  ident: 6376_CR39
  publication-title: Curr Res Food Sci
  doi: 10.1016/j.crfs.2023.100522
– volume: 211
  start-page: 106532
  year: 2021
  ident: 6376_CR2
  publication-title: Know Based Syst
  doi: 10.1016/j.knosys.2020.106532
– volume: 137
  start-page: 109300
  year: 2023
  ident: 6376_CR27
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.109300
– ident: 6376_CR33
– volume: 30
  start-page: 985
  issue: 4
  year: 2019
  ident: 6376_CR32
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2853710
– volume: 91
  start-page: 101504
  year: 2020
  ident: 6376_CR34
  publication-title: Inf Syst
  doi: 10.1016/j.is.2020.101504
– volume: 189
  start-page: 105102
  year: 2020
  ident: 6376_CR19
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.105102
– volume: 200
  start-page: 106028
  year: 2020
  ident: 6376_CR18
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.106028
– volume: 28
  start-page: 3007
  issue: 12
  year: 2017
  ident: 6376_CR14
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2608001
– volume: 228
  start-page: 107295
  year: 2021
  ident: 6376_CR38
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107295
– volume: 1
  start-page: 224
  issue: 2
  year: 1979
  ident: 6376_CR29
  publication-title: IEEE Trans Pattern Anal Mach Intell PAMI
  doi: 10.1109/TPAMI.1979.4766909
– volume: 51
  start-page: 8399
  year: 2021
  ident: 6376_CR40
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02389-0
– volume: 70
  start-page: 1
  year: 2021
  ident: 6376_CR7
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2020.3016408
– volume: 450
  start-page: 200
  year: 2018
  ident: 6376_CR16
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.03.031
– volume: 45
  start-page: 83
  year: 2013
  ident: 6376_CR12
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2013.02.009
– ident: 6376_CR8
– volume: 632
  start-page: 232
  year: 2023
  ident: 6376_CR26
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2023.03.012
– volume: 53
  start-page: 1254
  issue: 2
  year: 2023
  ident: 6376_CR3
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03493-5
– volume: 8
  start-page: 80716
  year: 2020
  ident: 6376_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 170
  start-page: 26
  year: 2019
  ident: 6376_CR20
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.01.026
– volume: 19
  start-page: 1328
  issue: 5
  year: 2010
  ident: 6376_CR11
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2040763
– volume: 20
  start-page: 53
  year: 1987
  ident: 6376_CR30
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– ident: 6376_CR37
  doi: 10.1109/COMPSAC51774.2021.00047
– volume: 29
  start-page: 1834
  issue: 9
  year: 2017
  ident: 6376_CR43
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2701825
– volume: 10
  start-page: 191
  issue: 2
  year: 1984
  ident: 6376_CR9
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 15
  start-page: 1295
  issue: 4
  year: 2024
  ident: 6376_CR36
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-023-01968-6
– volume: 230
  start-page: 120633
  year: 2023
  ident: 6376_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120633
– volume: 181
  start-page: 3397
  issue: 16
  year: 2011
  ident: 6376_CR23
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2011.04.013
– volume: 136
  start-page: 109255
  year: 2023
  ident: 6376_CR24
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.109255
– volume: 78
  start-page: 553
  issue: 383
  year: 1983
  ident: 6376_CR45
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1983.10478008
– volume: 676
  start-page: 120811
  year: 2024
  ident: 6376_CR28
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2024.120811
– volume: 52
  start-page: 2348
  issue: 4
  year: 2022
  ident: 6376_CR21
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2021.3049490
– volume: 9
  start-page: 526
  year: 2017
  ident: 6376_CR5
  publication-title: Cognit Comput
  doi: 10.1007/s12559-017-9462-8
– volume: 435
  start-page: 124
  year: 2018
  ident: 6376_CR4
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.01.001
– volume: 60
  start-page: 25
  year: 2016
  ident: 6376_CR6
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.04.015
– volume: 28
  start-page: 3007
  issue: 12
  year: 2017
  ident: 6376_CR31
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2608001
– volume: 139
  start-page: 109517
  year: 2023
  ident: 6376_CR41
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.109517
– volume: 121
  start-page: 108177
  year: 2022
  ident: 6376_CR35
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2021.108177
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 6376_CR17
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 80
  start-page: 30
  year: 2016
  ident: 6376_CR42
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2016.05.007
– volume: 42
  start-page: 2785
  issue: 5
  year: 2015
  ident: 6376_CR13
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.09.054
– volume: 147
  start-page: 110739
  year: 2023
  ident: 6376_CR25
  publication-title: Automatica
  doi: 10.1016/j.automatica.2022.110739
– ident: 6376_CR44
  doi: 10.1145/1553374.1553511
– volume: 227
  start-page: 120377
  year: 2023
  ident: 6376_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120377
SSID ssj0003301
Score 2.3905563
Snippet Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 497
SubjectTerms Algorithms
Cluster analysis
Clustering
Data analysis
Datasets
Density
Graph theory
K-nearest neighbors algorithm
Noise reduction
Robustness (mathematics)
Synthetic data
Title A robust hierarchical clustering algorithm for automatic identification of clusters
URI https://www.proquest.com/docview/3173170184
https://www.proquest.com/docview/3191358168
Volume 55
WOSCitedRecordID wos001436213600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1j-OCL8xOnU_LgmwbWJE2TxyEOH2SI07G3kuZDB3OVfvj7TbJuMnDCntu05Z4mJ5fcew4AN_1IYi4FQ0xGMaJYUySoV0Y0lGtruc6CWPXkKRmN-HQqnlvgbusJvm9yo76sB8fI0WnCkG8djxj2dgUv48l62XWJebDHcwkFYkxMmw6Zvx-xyUKbi3BglmFnt286BAfNDhIOlpAfgZZZHIPOyp0BNpP1BIwHsMizuqygt7sOBwYOD6jmtddGcIwF5fw9L2bVxyd0O1co6yoP-q1wppsSooAazO1qUHkK3oYPr_ePqLFQQAoTUiGrpdFWEWLiRAmcGRFzoRIbR9ISyxwckTWZyyn6RhLBY2P70tEXY1J7JTBLzkB7kS_MOYCOxSSWynpFMaozkUU0kQlWiaYko9p0QbQKaaoafXFvczFPf5WRfdRSF7U0RC1NuuB2PeZrqa7x7929FVJpM9PK1O1_iNeU53TLZRF5iTfGL3Z61yXYxwFeX9rYA-2qqM0V2FPf1awsrsOf9wN9HtAk
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+hierarchical+clustering+algorithm+for+automatic+identification+of+clusters&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Long%2C+Jianwu&rft.au=Wang%2C+Qiang&rft.au=Liu%2C+Luping&rft.date=2025-05-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=7&rft_id=info:doi/10.1007%2Fs10489-025-06376-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_025_06376_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon