A robust hierarchical clustering algorithm for automatic identification of clusters
Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing hierarchical clustering methods can identify the number of clusters in a dataset, most are only effective for well-separated clusters and struggle...
Uloženo v:
| Vydáno v: | Applied intelligence (Dordrecht, Netherlands) Ročník 55; číslo 7; s. 497 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer Nature B.V
01.05.2025
|
| Témata: | |
| ISSN: | 0924-669X, 1573-7497 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing hierarchical clustering methods can identify the number of clusters in a dataset, most are only effective for well-separated clusters and struggle to identify the number of clusters in complex datasets, particularly non-convex noisy datasets. To address these shortcomings, this paper proposes a robust hierarchical clustering algorithm for automatic identification of clusters(RHCAIC), which can identify the optimal number of clusters while providing reliable clustering results. To reduce the impact of noise in clustering, the method first calculates reverse density and designs a dynamic noise discriminator to denoise the dataset. Based on the fact that more similar points have a higher probability of being clustered into the same cluster among multiple results of hierarchical clustering, a robust solution was designed. After constructing a directed graph using the kNN algorithm, the graph merging process is performed by iteratively traversing the directed edges. During this process, the number of clusters is identified, and the clustering results of the denoised dataset are obtained. Finally, by incorporating density information into the noise clustering, the final clustering results are obtained. A series of experiments conducted on 12 synthetic datasets and 8 real datasets demonstrate that, compared to seven other benchmark algorithms, the RHCAIC algorithm not only accurately identifies the number of clusters in the dataset but also produces better clustering results. |
|---|---|
| AbstractList | Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing hierarchical clustering methods can identify the number of clusters in a dataset, most are only effective for well-separated clusters and struggle to identify the number of clusters in complex datasets, particularly non-convex noisy datasets. To address these shortcomings, this paper proposes a robust hierarchical clustering algorithm for automatic identification of clusters(RHCAIC), which can identify the optimal number of clusters while providing reliable clustering results. To reduce the impact of noise in clustering, the method first calculates reverse density and designs a dynamic noise discriminator to denoise the dataset. Based on the fact that more similar points have a higher probability of being clustered into the same cluster among multiple results of hierarchical clustering, a robust solution was designed. After constructing a directed graph using the kNN algorithm, the graph merging process is performed by iteratively traversing the directed edges. During this process, the number of clusters is identified, and the clustering results of the denoised dataset are obtained. Finally, by incorporating density information into the noise clustering, the final clustering results are obtained. A series of experiments conducted on 12 synthetic datasets and 8 real datasets demonstrate that, compared to seven other benchmark algorithms, the RHCAIC algorithm not only accurately identifies the number of clusters in the dataset but also produces better clustering results. |
| ArticleNumber | 497 |
| Author | Liu, Luping Wang, Qiang Long, Jianwu |
| Author_xml | – sequence: 1 givenname: Jianwu surname: Long fullname: Long, Jianwu – sequence: 2 givenname: Qiang orcidid: 0009-0004-4325-6281 surname: Wang fullname: Wang, Qiang – sequence: 3 givenname: Luping surname: Liu fullname: Liu, Luping |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uTzebrWIpfUPCggreQZpM2ZbupSXrw37u2evFQGBgY3meGeSZo1MfeIXRN4JYAiLtMoJGqgppVwKnglThDY8IErUSjxAiNQdVNxbn6uECTnDcAQCmQMXqd4RSX-1zwOrhkkl0Hazpsu2HkUuhX2HSrmEJZb7GPCZt9iVtTgsWhdX0JfoiXEHsc_R-UL9G5N112V799it4f7t_mT9Xi5fF5PltUtqa0VL41rvWWUseEVfXSKSaVFZ4R46nnsvXEu6USDThDlWTOg-FCcm5aYIx5OkU3x727FD_3Lhe9ifvUDyc1JYpQJgmXp1NiKCCyGVLymLIp5pyc1zaUw2clmdBpAvpHtD6K1oNofRCtxYDW_9BdCluTvk5B3wqgg9c |
| CitedBy_id | crossref_primary_10_1016_j_dwt_2025_101404 |
| Cites_doi | 10.1109/34.868688 10.1016/j.crfs.2023.100522 10.1016/j.knosys.2020.106532 10.1016/j.patcog.2023.109300 10.1109/TNNLS.2018.2853710 10.1016/j.is.2020.101504 10.1016/j.knosys.2019.105102 10.1016/j.knosys.2020.106028 10.1109/TNNLS.2016.2608001 10.1016/j.knosys.2021.107295 10.1109/TPAMI.1979.4766909 10.1007/s10489-021-02389-0 10.1109/TIM.2020.3016408 10.1016/j.ins.2018.03.031 10.1016/j.knosys.2013.02.009 10.1016/j.ins.2023.03.012 10.1007/s10489-022-03493-5 10.1109/ACCESS.2020.2988796 10.1016/j.knosys.2019.01.026 10.1109/TIP.2010.2040763 10.1016/0377-0427(87)90125-7 10.1109/COMPSAC51774.2021.00047 10.1109/TKDE.2017.2701825 10.1016/0098-3004(84)90020-7 10.1007/s13042-023-01968-6 10.1016/j.eswa.2023.120633 10.1016/j.ins.2011.04.013 10.1016/j.patcog.2022.109255 10.1080/01621459.1983.10478008 10.1016/j.ins.2024.120811 10.1109/TSMC.2021.3049490 10.1007/s12559-017-9462-8 10.1016/j.ins.2018.01.001 10.1016/j.patcog.2016.04.015 10.1016/j.patcog.2023.109517 10.1016/j.patcog.2021.108177 10.1126/science.1242072 10.1016/j.patrec.2016.05.007 10.1016/j.eswa.2014.09.054 10.1016/j.automatica.2022.110739 10.1145/1553374.1553511 10.1016/j.eswa.2023.120377 |
| ContentType | Journal Article |
| Copyright | Copyright Springer Nature B.V. Apr 2025 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: Copyright Springer Nature B.V. Apr 2025 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10489-025-06376-7 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| ExternalDocumentID | 10_1007_s10489_025_06376_7 |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77I 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~A9 ~EX 7SC 8FD AESKC JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c233t-fdaedfc33e57c92be9589c7f51af3f68df1feb9740ea3985ef0a67866ad0555f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001436213600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:58:15 EST 2025 Wed Nov 05 14:54:34 EST 2025 Tue Nov 18 20:53:55 EST 2025 Sat Nov 29 07:26:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c233t-fdaedfc33e57c92be9589c7f51af3f68df1feb9740ea3985ef0a67866ad0555f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-4325-6281 |
| PQID | 3173170184 |
| PQPubID | 326365 |
| ParticipantIDs | proquest_journals_3191358168 proquest_journals_3173170184 crossref_citationtrail_10_1007_s10489_025_06376_7 crossref_primary_10_1007_s10489_025_06376_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20250501 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 20250501 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | EB Fowlkes (6376_CR45) 1983; 78 W Wang (6376_CR25) 2023; 147 Y Zhang (6376_CR40) 2021; 51 H Yu (6376_CR2) 2021; 211 B Yu (6376_CR26) 2023; 632 LT Li (6376_CR34) 2020; 91 R Liu (6376_CR16) 2018; 450 J Chen (6376_CR4) 2018; 435 D Cheng (6376_CR32) 2019; 30 X Han (6376_CR41) 2023; 139 6376_CR33 KP Sinaga (6376_CR1) 2020; 8 WB Xie (6376_CR28) 2024; 676 K Chu (6376_CR36) 2024; 15 6376_CR37 ND Thanh (6376_CR5) 2017; 9 C Wu (6376_CR38) 2021; 228 Z Kang (6376_CR19) 2020; 189 6376_CR8 M Zhang (6376_CR15) 2023; 230 C Zhong (6376_CR23) 2011; 181 J Xia (6376_CR35) 2022; 121 A Bouguettaya (6376_CR13) 2015; 42 C Ge (6376_CR7) 2021; 70 X Xu (6376_CR18) 2020; 200 Q Huang (6376_CR24) 2023; 136 S Zhou (6376_CR31) 2017; 28 JC Bezdek (6376_CR9) 1984; 10 P Zhou (6376_CR3) 2023; 53 Q Zhu (6376_CR42) 2016; 80 S Zhou (6376_CR14) 2017; 28 J Hou (6376_CR6) 2016; 60 A Rodriguez (6376_CR17) 2014; 344 PJ Rousseeuw (6376_CR30) 1987; 20 A Gere (6376_CR39) 2023; 6 SE Hashemi (6376_CR10) 2023; 227 6376_CR44 E Rashedi (6376_CR12) 2013; 45 J Shi (6376_CR22) 2000; 22 DL Davies (6376_CR29) 1979; 1 S Krinidis (6376_CR11) 2010; 19 Y Yang (6376_CR43) 2017; 29 X Tao (6376_CR20) 2019; 170 T Qiu (6376_CR27) 2023; 137 D Cheng (6376_CR21) 2022; 52 |
| References_xml | – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 6376_CR22 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 – volume: 6 start-page: 100522 year: 2023 ident: 6376_CR39 publication-title: Curr Res Food Sci doi: 10.1016/j.crfs.2023.100522 – volume: 211 start-page: 106532 year: 2021 ident: 6376_CR2 publication-title: Know Based Syst doi: 10.1016/j.knosys.2020.106532 – volume: 137 start-page: 109300 year: 2023 ident: 6376_CR27 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2023.109300 – ident: 6376_CR33 – volume: 30 start-page: 985 issue: 4 year: 2019 ident: 6376_CR32 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2853710 – volume: 91 start-page: 101504 year: 2020 ident: 6376_CR34 publication-title: Inf Syst doi: 10.1016/j.is.2020.101504 – volume: 189 start-page: 105102 year: 2020 ident: 6376_CR19 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.105102 – volume: 200 start-page: 106028 year: 2020 ident: 6376_CR18 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.106028 – volume: 28 start-page: 3007 issue: 12 year: 2017 ident: 6376_CR14 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2608001 – volume: 228 start-page: 107295 year: 2021 ident: 6376_CR38 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107295 – volume: 1 start-page: 224 issue: 2 year: 1979 ident: 6376_CR29 publication-title: IEEE Trans Pattern Anal Mach Intell PAMI doi: 10.1109/TPAMI.1979.4766909 – volume: 51 start-page: 8399 year: 2021 ident: 6376_CR40 publication-title: Appl Intell doi: 10.1007/s10489-021-02389-0 – volume: 70 start-page: 1 year: 2021 ident: 6376_CR7 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2020.3016408 – volume: 450 start-page: 200 year: 2018 ident: 6376_CR16 publication-title: Inf Sci doi: 10.1016/j.ins.2018.03.031 – volume: 45 start-page: 83 year: 2013 ident: 6376_CR12 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2013.02.009 – ident: 6376_CR8 – volume: 632 start-page: 232 year: 2023 ident: 6376_CR26 publication-title: Inf Sci doi: 10.1016/j.ins.2023.03.012 – volume: 53 start-page: 1254 issue: 2 year: 2023 ident: 6376_CR3 publication-title: Appl Intell doi: 10.1007/s10489-022-03493-5 – volume: 8 start-page: 80716 year: 2020 ident: 6376_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988796 – volume: 170 start-page: 26 year: 2019 ident: 6376_CR20 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.01.026 – volume: 19 start-page: 1328 issue: 5 year: 2010 ident: 6376_CR11 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2040763 – volume: 20 start-page: 53 year: 1987 ident: 6376_CR30 publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – ident: 6376_CR37 doi: 10.1109/COMPSAC51774.2021.00047 – volume: 29 start-page: 1834 issue: 9 year: 2017 ident: 6376_CR43 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2701825 – volume: 10 start-page: 191 issue: 2 year: 1984 ident: 6376_CR9 publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume: 15 start-page: 1295 issue: 4 year: 2024 ident: 6376_CR36 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-023-01968-6 – volume: 230 start-page: 120633 year: 2023 ident: 6376_CR15 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120633 – volume: 181 start-page: 3397 issue: 16 year: 2011 ident: 6376_CR23 publication-title: Inf Sci doi: 10.1016/j.ins.2011.04.013 – volume: 136 start-page: 109255 year: 2023 ident: 6376_CR24 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.109255 – volume: 78 start-page: 553 issue: 383 year: 1983 ident: 6376_CR45 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1983.10478008 – volume: 676 start-page: 120811 year: 2024 ident: 6376_CR28 publication-title: Inf Sci doi: 10.1016/j.ins.2024.120811 – volume: 52 start-page: 2348 issue: 4 year: 2022 ident: 6376_CR21 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2021.3049490 – volume: 9 start-page: 526 year: 2017 ident: 6376_CR5 publication-title: Cognit Comput doi: 10.1007/s12559-017-9462-8 – volume: 435 start-page: 124 year: 2018 ident: 6376_CR4 publication-title: Inf Sci doi: 10.1016/j.ins.2018.01.001 – volume: 60 start-page: 25 year: 2016 ident: 6376_CR6 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.04.015 – volume: 28 start-page: 3007 issue: 12 year: 2017 ident: 6376_CR31 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2608001 – volume: 139 start-page: 109517 year: 2023 ident: 6376_CR41 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2023.109517 – volume: 121 start-page: 108177 year: 2022 ident: 6376_CR35 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2021.108177 – volume: 344 start-page: 1492 issue: 6191 year: 2014 ident: 6376_CR17 publication-title: Science doi: 10.1126/science.1242072 – volume: 80 start-page: 30 year: 2016 ident: 6376_CR42 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2016.05.007 – volume: 42 start-page: 2785 issue: 5 year: 2015 ident: 6376_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.09.054 – volume: 147 start-page: 110739 year: 2023 ident: 6376_CR25 publication-title: Automatica doi: 10.1016/j.automatica.2022.110739 – ident: 6376_CR44 doi: 10.1145/1553374.1553511 – volume: 227 start-page: 120377 year: 2023 ident: 6376_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120377 |
| SSID | ssj0003301 |
| Score | 2.3905563 |
| Snippet | Aggregation-based hierarchical clustering algorithms are widely used in data analysis due to their robust clustering performance. Although some existing... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 497 |
| SubjectTerms | Algorithms Cluster analysis Clustering Data analysis Datasets Density Graph theory K-nearest neighbors algorithm Noise reduction Robustness (mathematics) Synthetic data |
| Title | A robust hierarchical clustering algorithm for automatic identification of clusters |
| URI | https://www.proquest.com/docview/3173170184 https://www.proquest.com/docview/3191358168 |
| Volume | 55 |
| WOSCitedRecordID | wos001436213600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1j-OCL8xOnU_LgmwbWJE2TxyEOH2SI07G3kuZDB3OVfvj7TbJuMnDCntu05Z4mJ5fcew4AN_1IYi4FQ0xGMaJYUySoV0Y0lGtruc6CWPXkKRmN-HQqnlvgbusJvm9yo76sB8fI0WnCkG8djxj2dgUv48l62XWJebDHcwkFYkxMmw6Zvx-xyUKbi3BglmFnt286BAfNDhIOlpAfgZZZHIPOyp0BNpP1BIwHsMizuqygt7sOBwYOD6jmtddGcIwF5fw9L2bVxyd0O1co6yoP-q1wppsSooAazO1qUHkK3oYPr_ePqLFQQAoTUiGrpdFWEWLiRAmcGRFzoRIbR9ISyxwckTWZyyn6RhLBY2P70tEXY1J7JTBLzkB7kS_MOYCOxSSWynpFMaozkUU0kQlWiaYko9p0QbQKaaoafXFvczFPf5WRfdRSF7U0RC1NuuB2PeZrqa7x7929FVJpM9PK1O1_iNeU53TLZRF5iTfGL3Z61yXYxwFeX9rYA-2qqM0V2FPf1awsrsOf9wN9HtAk |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+hierarchical+clustering+algorithm+for+automatic+identification+of+clusters&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Long%2C+Jianwu&rft.au=Wang%2C+Qiang&rft.au=Liu%2C+Luping&rft.date=2025-05-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=7&rft_id=info:doi/10.1007%2Fs10489-025-06376-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_025_06376_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |