Generalized Hermite–Hadamard type inequalities for generalized F-convex function via local fractional integrals

In this paper, we will present the new generalized F-convexity and related integral inequalities on fractal sets Rς (0<ς≤1). These developments allow us to develop new bounds for integral inequalities. We will give new generalized Hermite–Hadamard type inequalities in the fractals sense. In this...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals Vol. 168; p. 113172
Main Authors: Razzaq, Arslan, Rasheed, Tahir, Shaokat, Shahid
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2023
Subjects:
ISSN:0960-0779
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we will present the new generalized F-convexity and related integral inequalities on fractal sets Rς (0<ς≤1). These developments allow us to develop new bounds for integral inequalities. We will give new generalized Hermite–Hadamard type inequalities in the fractals sense. In this work, we present some new results by employing local fractional calculus for twice differentiable functions along with some new definitions. For the development of these new integral inequalities, we will use generalized Hölder-integral inequality and power mean integral inequality by using local fractional calculus. Moreover, we give some new inequalities for midpoint and trapezoid formula for a new class of local fractional calculus. The results raised in this paper provide significant extensions and generalizations of other related results given in earlier works.
AbstractList In this paper, we will present the new generalized F-convexity and related integral inequalities on fractal sets Rς (0<ς≤1). These developments allow us to develop new bounds for integral inequalities. We will give new generalized Hermite–Hadamard type inequalities in the fractals sense. In this work, we present some new results by employing local fractional calculus for twice differentiable functions along with some new definitions. For the development of these new integral inequalities, we will use generalized Hölder-integral inequality and power mean integral inequality by using local fractional calculus. Moreover, we give some new inequalities for midpoint and trapezoid formula for a new class of local fractional calculus. The results raised in this paper provide significant extensions and generalizations of other related results given in earlier works.
ArticleNumber 113172
Author Shaokat, Shahid
Razzaq, Arslan
Rasheed, Tahir
Author_xml – sequence: 1
  givenname: Arslan
  surname: Razzaq
  fullname: Razzaq, Arslan
  email: arslanrazzaq0125@gmail.com
– sequence: 2
  givenname: Tahir
  surname: Rasheed
  fullname: Rasheed, Tahir
  email: tahirtishna24@gmail.com
– sequence: 3
  givenname: Shahid
  surname: Shaokat
  fullname: Shaokat, Shahid
  email: shahidshoukat215@gmail.com
BookMark eNqFkL9OwzAQhz0UiRZ4Aha_QIL_JHEyMKCKtkiVWGC2HOdcXKVOa7sVZeIdeEOehLRlQAww_U6n-0533wgNXOcAoWtKUkpocbNM9YvqQsoI4ymlnAo2QENSFSQhQlTnaBTCkhBCScGGaDMFB1619g0aPAO_shE-3z9mqlEr5Rsc92vA1sFm289ECwGbzuPFD2iS6M7t4BWbrdPRdg7vrMJtp1WLjVfHVl9aF2HRM-ESnZk-4Oo7L9Dz5P5pPEvmj9OH8d080YzzmAATuclLLUpguirzOleN4aoCSjNmskIoUbKs5k2eCVOXnNAs001VsbxmhkDGL1B12qt9F4IHI7WN6nBN9Mq2khJ58CWX8uhLHnzJk6-e5b_Ytbe9j_0_1O2Jgv6tnQUvg7bgNDTWg46y6eyf_Bctwoz_
CitedBy_id crossref_primary_10_1002_mma_9598
crossref_primary_10_1016_j_jmaa_2024_128876
crossref_primary_10_1109_ACCESS_2024_3420108
crossref_primary_10_1016_j_cam_2025_116842
crossref_primary_10_3390_fractalfract9090578
crossref_primary_10_3390_fractalfract7090689
Cites_doi 10.1016/S0252-9602(13)60081-8
10.1287/moor.8.2.231
10.3390/fractalfract6030167
10.2989/16073606.2018.1509242
10.1007/978-3-642-20545-3
10.1016/j.mcm.2011.05.026
10.7153/jmi-2020-14-56
10.1007/BF02567770
10.22436/jnsa.010.11.24
10.1002/mma.7081
10.15446/recolma.v50n2.62207
10.22199/issn.0717-6279-2020-01-0001
10.7153/mia-19-94
10.1016/j.camwa.2009.08.002
10.1016/S0045-7825(01)00241-9
10.1002/mma.6319
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2023.113172
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
ExternalDocumentID 10_1016_j_chaos_2023_113172
S0960077923000735
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c233t-e275f58c78e2c985b5adf3a9e1142f467a7824b3d547fb830144cd9925b2f0e43
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001013860500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Tue Nov 18 21:09:03 EST 2025
Sat Nov 29 07:07:59 EST 2025
Tue Dec 03 03:45:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Power mean inequality
Convex functions
Hermite–Hadamard inequality
Hölder’s inequality
Modulus function
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c233t-e275f58c78e2c985b5adf3a9e1142f467a7824b3d547fb830144cd9925b2f0e43
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2023_113172
crossref_primary_10_1016_j_chaos_2023_113172
elsevier_sciencedirect_doi_10_1016_j_chaos_2023_113172
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Carpinteri, China, Cornetti (b16) 2001; 191
Anac (b19) 2022; 6
Yang (b12) 2012
Set, Noor, Awan, Gözpinar (b4) 2017; 169
Omotoyinbo, Mogbodemu (b3) 2014; 1
Adamek (b6) 2020; 14
Mo, Sui, Yu (b18) 2014
Zhang, Chu, Zhang (b5) 2010; 11
Zhao, Cheng, Yang (b17) 2013
Das (b11) 2011
Sarikaya, Aktan (b30) 2011; 54
Yang (b26) 2011
Alomari, Darus, Kirmaci (b2) 2010; 59
Wenbing, Liu (b23) 2020; 43
Adamek (b29) 2016; 19
Wenbing (b21) 2021; 44
Wenbing (b20) 2019; 42
Nikodem, Pales (b9) 2004; 29
Vivas, Hernandez, Merentes (b13) 2016; 50
Wenbing (b24) 2021; 29
Vial (b7) 1983; 8
Alberti, Ambrosio, Cannarsa (b10) 1992; 76
Erden, Sarikaya (b27) 2016; 274
Sanchez, Sanabria (b28) 2020; 39
Sun (b14) 2017; 10
ö zdemir, Ragomir, Yildiz (b15) 2013; 33
Wenbing (b22) 2021; 29
Ngai, Luc, Thera (b8) 2000; 1
Mo (b25) 2014
Dragomir, Pearce (b1) 2000
Mo (10.1016/j.chaos.2023.113172_b18) 2014
Wenbing (10.1016/j.chaos.2023.113172_b23) 2020; 43
Carpinteri (10.1016/j.chaos.2023.113172_b16) 2001; 191
Sun (10.1016/j.chaos.2023.113172_b14) 2017; 10
Ngai (10.1016/j.chaos.2023.113172_b8) 2000; 1
Erden (10.1016/j.chaos.2023.113172_b27) 2016; 274
Zhang (10.1016/j.chaos.2023.113172_b5) 2010; 11
Sarikaya (10.1016/j.chaos.2023.113172_b30) 2011; 54
Vial (10.1016/j.chaos.2023.113172_b7) 1983; 8
Wenbing (10.1016/j.chaos.2023.113172_b24) 2021; 29
Alomari (10.1016/j.chaos.2023.113172_b2) 2010; 59
Zhao (10.1016/j.chaos.2023.113172_b17) 2013
Wenbing (10.1016/j.chaos.2023.113172_b20) 2019; 42
Wenbing (10.1016/j.chaos.2023.113172_b21) 2021; 44
Nikodem (10.1016/j.chaos.2023.113172_b9) 2004; 29
Yang (10.1016/j.chaos.2023.113172_b26) 2011
Omotoyinbo (10.1016/j.chaos.2023.113172_b3) 2014; 1
Anac (10.1016/j.chaos.2023.113172_b19) 2022; 6
Dragomir (10.1016/j.chaos.2023.113172_b1) 2000
Adamek (10.1016/j.chaos.2023.113172_b29) 2016; 19
Adamek (10.1016/j.chaos.2023.113172_b6) 2020; 14
ö zdemir (10.1016/j.chaos.2023.113172_b15) 2013; 33
Wenbing (10.1016/j.chaos.2023.113172_b22) 2021; 29
Mo (10.1016/j.chaos.2023.113172_b25) 2014
Das (10.1016/j.chaos.2023.113172_b11) 2011
Yang (10.1016/j.chaos.2023.113172_b12) 2012
Alberti (10.1016/j.chaos.2023.113172_b10) 1992; 76
Set (10.1016/j.chaos.2023.113172_b4) 2017; 169
Vivas (10.1016/j.chaos.2023.113172_b13) 2016; 50
Sanchez (10.1016/j.chaos.2023.113172_b28) 2020; 39
References_xml – volume: 42
  start-page: 1159
  year: 2019
  end-page: 1183
  ident: b20
  article-title: On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals
  publication-title: Quaest Math
– volume: 1
  start-page: 155
  year: 2000
  end-page: 176
  ident: b8
  article-title: Approximate convex functions
  publication-title: J Nonlinear Convex Anal
– year: 2011
  ident: b26
  article-title: Local fractional functional analysis and its applications
– year: 2011
  ident: b11
  article-title: Functional fractional calculus
– volume: 274
  start-page: 282
  year: 2016
  end-page: 291
  ident: b27
  article-title: Generalized Pompeiu type inequalities for local fractional integrals and its applications
  publication-title: Appl Math Comput
– volume: 191
  start-page: 3
  year: 2001
  end-page: 19
  ident: b16
  article-title: Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
  publication-title: Comput Methods Appl Mech Eng
– volume: 29
  start-page: 219
  year: 2004
  end-page: 228
  ident: b9
  article-title: On
  publication-title: Banach J Math Anal
– volume: 19
  start-page: 1287
  year: 2016
  end-page: 1293
  ident: b29
  article-title: On a problem connected with strongly convex functions
  publication-title: Math Inequalities Appl
– volume: 33
  start-page: 1293
  year: 2013
  end-page: 1299
  ident: b15
  article-title: The Hadamard inequality for convex function via fractional integrals
  publication-title: Acta Math Sci
– volume: 54
  start-page: 2175
  year: 2011
  end-page: 2182
  ident: b30
  article-title: On the generalization of some integral inequalities and their applications
  publication-title: Math Comput Model Dyn Syst
– volume: 10
  start-page: 5869
  year: 2017
  end-page: 5880
  ident: b14
  article-title: Generalized harmonically convex functions on fractal sets and related Hermite–Hadamard type inequalities
  publication-title: J Nonlinear Sci Appl
– year: 2014
  ident: b18
  article-title: Generalized convex functions and some inequalities on fractal sets
– year: 2012
  ident: b12
  article-title: Advanced local fractional calculus and its applications
– volume: 1
  start-page: 1
  year: 2014
  end-page: 12
  ident: b3
  article-title: Some new Hermite–Hadamard integral inequalities for convex functions
  publication-title: Int J Sci Innov Tech
– volume: 169
  start-page: 1
  year: 2017
  end-page: 10
  ident: b4
  article-title: Generalized Hermite–Hadamard type inequalities involving fractional integral operators
  publication-title: J Inequal Appl
– volume: 39
  start-page: 1
  year: 2020
  end-page: 13
  ident: b28
  article-title: Strongly convexity on fractal sets and some inequalities
  publication-title: Proyecciones
– year: 2000
  ident: b1
  publication-title: Selected topics on Hermite–Hadamard inequalities and applications
– volume: 76
  start-page: 421
  year: 1992
  end-page: 435
  ident: b10
  article-title: On the singularities of convex functions
  publication-title: Manuscripta Math
– volume: 29
  year: 2021
  ident: b24
  article-title: Local fractional Ostrowski-type inequalities involving generalized h-convex functions and some applications for generalized moments
  publication-title: Fractals
– volume: 11
  start-page: 507
  year: 2010
  end-page: 560
  ident: b5
  article-title: The Hermite–Hadamard type inequality of
  publication-title: J Inequal Appl
– volume: 8
  start-page: 231
  year: 1983
  end-page: 259
  ident: b7
  article-title: Strong and weak convexity of sets and functions
  publication-title: Math Oper Res
– volume: 29
  year: 2021
  ident: b22
  article-title: Hermite–Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization
  publication-title: Fractals
– volume: 6
  start-page: 167
  year: 2022
  ident: b19
  article-title: A local fractional Elzaki transform decomposition method for the nonlinear system of local fractional partial differential equations
  publication-title: Fractal Fract
– volume: 59
  start-page: 225
  year: 2010
  end-page: 232
  ident: b2
  article-title: Refinements of Hadamard-type inequalities for quasi–convex functions with applications to trapezoidal formula and to special means
  publication-title: Comput Math Appl
– volume: 50
  start-page: 145
  year: 2016
  end-page: 164
  ident: b13
  article-title: New Hermite–Hadamard and Jensen type inequalities for h-convex functions on fractal sets
  publication-title: Revista Colombiana de Matematicas
– volume: 44
  start-page: 4985
  year: 2021
  end-page: 4998
  ident: b21
  article-title: Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag-Leffler kernel
  publication-title: Math Methods Appl Sci
– start-page: 291
  year: 2013
  end-page: 386
  ident: b17
  article-title: Approximation solutions for local fractional Schrordinger equation in the one-dimensional Cantorian system
  publication-title: Adv Math Phys
– volume: 43
  start-page: 5776
  year: 2020
  end-page: 5787
  ident: b23
  article-title: Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications
  publication-title: Math Methods Appl Sci
– year: 2014
  ident: b25
  article-title: Generalized Hermite–Hadamard inequalities involving local fractional integrals
– volume: 14
  start-page: 867
  year: 2020
  end-page: 874
  ident: b6
  article-title: On Hermite–Hadamard type inequalities for F-convex function
  publication-title: J Math Inequal
– volume: 29
  issue: 01
  year: 2021
  ident: 10.1016/j.chaos.2023.113172_b24
  article-title: Local fractional Ostrowski-type inequalities involving generalized h-convex functions and some applications for generalized moments
  publication-title: Fractals
– volume: 33
  start-page: 1293
  issue: 5
  year: 2013
  ident: 10.1016/j.chaos.2023.113172_b15
  article-title: The Hadamard inequality for convex function via fractional integrals
  publication-title: Acta Math Sci
  doi: 10.1016/S0252-9602(13)60081-8
– volume: 8
  start-page: 231
  issue: 2
  year: 1983
  ident: 10.1016/j.chaos.2023.113172_b7
  article-title: Strong and weak convexity of sets and functions
  publication-title: Math Oper Res
  doi: 10.1287/moor.8.2.231
– volume: 6
  start-page: 167
  issue: 3
  year: 2022
  ident: 10.1016/j.chaos.2023.113172_b19
  article-title: A local fractional Elzaki transform decomposition method for the nonlinear system of local fractional partial differential equations
  publication-title: Fractal Fract
  doi: 10.3390/fractalfract6030167
– start-page: 291
  year: 2013
  ident: 10.1016/j.chaos.2023.113172_b17
  article-title: Approximation solutions for local fractional Schrordinger equation in the one-dimensional Cantorian system
  publication-title: Adv Math Phys
– volume: 42
  start-page: 1159
  issue: 9
  year: 2019
  ident: 10.1016/j.chaos.2023.113172_b20
  article-title: On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals
  publication-title: Quaest Math
  doi: 10.2989/16073606.2018.1509242
– volume: 11
  start-page: 507
  year: 2010
  ident: 10.1016/j.chaos.2023.113172_b5
  article-title: The Hermite–Hadamard type inequality of GA-convex functions and its applications
  publication-title: J Inequal Appl
– year: 2011
  ident: 10.1016/j.chaos.2023.113172_b11
  doi: 10.1007/978-3-642-20545-3
– year: 2014
  ident: 10.1016/j.chaos.2023.113172_b25
– volume: 169
  start-page: 1
  year: 2017
  ident: 10.1016/j.chaos.2023.113172_b4
  article-title: Generalized Hermite–Hadamard type inequalities involving fractional integral operators
  publication-title: J Inequal Appl
– volume: 274
  start-page: 282
  year: 2016
  ident: 10.1016/j.chaos.2023.113172_b27
  article-title: Generalized Pompeiu type inequalities for local fractional integrals and its applications
  publication-title: Appl Math Comput
– volume: 54
  start-page: 2175
  year: 2011
  ident: 10.1016/j.chaos.2023.113172_b30
  article-title: On the generalization of some integral inequalities and their applications
  publication-title: Math Comput Model Dyn Syst
  doi: 10.1016/j.mcm.2011.05.026
– volume: 14
  start-page: 867
  issue: 3
  year: 2020
  ident: 10.1016/j.chaos.2023.113172_b6
  article-title: On Hermite–Hadamard type inequalities for F-convex function
  publication-title: J Math Inequal
  doi: 10.7153/jmi-2020-14-56
– volume: 76
  start-page: 421
  issue: 34
  year: 1992
  ident: 10.1016/j.chaos.2023.113172_b10
  article-title: On the singularities of convex functions
  publication-title: Manuscripta Math
  doi: 10.1007/BF02567770
– volume: 29
  issue: 04
  year: 2021
  ident: 10.1016/j.chaos.2023.113172_b22
  article-title: Hermite–Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization
  publication-title: Fractals
– volume: 1
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.chaos.2023.113172_b3
  article-title: Some new Hermite–Hadamard integral inequalities for convex functions
  publication-title: Int J Sci Innov Tech
– volume: 10
  start-page: 5869
  issue: 11
  year: 2017
  ident: 10.1016/j.chaos.2023.113172_b14
  article-title: Generalized harmonically convex functions on fractal sets and related Hermite–Hadamard type inequalities
  publication-title: J Nonlinear Sci Appl
  doi: 10.22436/jnsa.010.11.24
– volume: 1
  start-page: 155
  issue: 2
  year: 2000
  ident: 10.1016/j.chaos.2023.113172_b8
  article-title: Approximate convex functions
  publication-title: J Nonlinear Convex Anal
– year: 2000
  ident: 10.1016/j.chaos.2023.113172_b1
– volume: 44
  start-page: 4985
  issue: 6
  year: 2021
  ident: 10.1016/j.chaos.2023.113172_b21
  article-title: Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag-Leffler kernel
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.7081
– volume: 50
  start-page: 145
  issue: 2
  year: 2016
  ident: 10.1016/j.chaos.2023.113172_b13
  article-title: New Hermite–Hadamard and Jensen type inequalities for h-convex functions on fractal sets
  publication-title: Revista Colombiana de Matematicas
  doi: 10.15446/recolma.v50n2.62207
– volume: 39
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.chaos.2023.113172_b28
  article-title: Strongly convexity on fractal sets and some inequalities
  publication-title: Proyecciones
  doi: 10.22199/issn.0717-6279-2020-01-0001
– volume: 19
  start-page: 1287
  issue: 4
  year: 2016
  ident: 10.1016/j.chaos.2023.113172_b29
  article-title: On a problem connected with strongly convex functions
  publication-title: Math Inequalities Appl
  doi: 10.7153/mia-19-94
– volume: 29
  start-page: 219
  issue: 1
  year: 2004
  ident: 10.1016/j.chaos.2023.113172_b9
  article-title: On t-convex functions
  publication-title: Banach J Math Anal
– volume: 59
  start-page: 225
  year: 2010
  ident: 10.1016/j.chaos.2023.113172_b2
  article-title: Refinements of Hadamard-type inequalities for quasi–convex functions with applications to trapezoidal formula and to special means
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2009.08.002
– volume: 191
  start-page: 3
  year: 2001
  ident: 10.1016/j.chaos.2023.113172_b16
  article-title: Static-kinematic duality and the principle of virtual work in the mechanics of fractal media
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00241-9
– volume: 43
  start-page: 5776
  issue: 9
  year: 2020
  ident: 10.1016/j.chaos.2023.113172_b23
  article-title: Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.6319
– year: 2014
  ident: 10.1016/j.chaos.2023.113172_b18
– year: 2012
  ident: 10.1016/j.chaos.2023.113172_b12
– year: 2011
  ident: 10.1016/j.chaos.2023.113172_b26
SSID ssj0001062
Score 2.4681344
Snippet In this paper, we will present the new generalized F-convexity and related integral inequalities on fractal sets Rς (0<ς≤1). These developments allow us to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113172
SubjectTerms Convex functions
Hermite–Hadamard inequality
Hölder’s inequality
Modulus function
Power mean inequality
Title Generalized Hermite–Hadamard type inequalities for generalized F-convex function via local fractional integrals
URI https://dx.doi.org/10.1016/j.chaos.2023.113172
Volume 168
WOSCitedRecordID wos001013860500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001062
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEC0gChTtgQMoOLLXzz1WVaOCRIVEkHKzdjdrkjaYYocoyolrz_2H_JLOvmwDVUQPXCzL2p3Yni8zs-NvZhF6xZUb5ZJ6oeQRLFDE1MuioPB8IQBRwg9kxPVmE-npaTaZ0I-93qWrhVkt0rLM1mt68V9VDddA2ap09hbqboTCBTgHpcMR1A7Hf1K8bSQ930AoeaKoLkvpGA0h2Bn2VSUOdOYVAkxTUwmrZU03_NKZOhp4mpG-HijXp1GymrOB9n2DojL1ELpjh-43sai7Ye7RjBn6Xq3odYqNo_LzepYbqb8tbTbsu7ZOFSCzrUlj9UyaJOyYzeYNffgTSD1n2mvA6cxy8W3KgoQtZ8vlHhPf81Ozi0xjhs32OtaQBgEENuRGG2_SDWdDoR5lqOQP29G_d9T-w9M1_ENHbTvLtZBcCcmNkDtoh6Qxzfpo5_Dd8eR949Zh7aw_Sbl7dy2sNFnwr3u5OczphC7jh-iBXXPgQ4OVXdST5R66_6Fp2FvvoV1r42v82uLnzSNUdaCELZR-_bxyIMIKRLgLIgwgwh0Q4RG2IMIORBhAhDWIcAsi3IDoMfo8Oh4fnXh2jw5PkDBcehJeVhFnIs0kETSLecymRcioVDXaBXhhBiFoxMNpHKUFz_QCXkwpJTEnhS-j8Anql99K-RThKAFrEvih4KmIfC6yhLFAFCSBCDZNE7qPiHulubAN7NU-Kot8izr30dtm0oXp37J9eOJ0ldsQ1ISWOaBv28Rnt_ud5-he-8d4gfrL6oc8QHfFajmvq5cWetfSk6tO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Hermite%E2%80%93Hadamard+type+inequalities+for+generalized+F+-convex+function+via+local+fractional+integrals&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Razzaq%2C+Arslan&rft.au=Rasheed%2C+Tahir&rft.au=Shaokat%2C+Shahid&rft.date=2023-03-01&rft.issn=0960-0779&rft.volume=168&rft.spage=113172&rft_id=info:doi/10.1016%2Fj.chaos.2023.113172&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2023_113172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon