Square-root cubature Kalman filter based power system dynamic state estimation
The state estimator’s real-time state information plays a vital role in monitoring and control of the power system. As a result, one of the primary requirements of the estimator is to provide accurate state estimates with good convergence under varied system operating conditions. In this context, dy...
Saved in:
| Published in: | Sustainable Energy, Grids and Networks Vol. 31; p. 100712 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2022
|
| Subjects: | |
| ISSN: | 2352-4677, 2352-4677 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The state estimator’s real-time state information plays a vital role in monitoring and control of the power system. As a result, one of the primary requirements of the estimator is to provide accurate state estimates with good convergence under varied system operating conditions. In this context, dynamic state estimation (DSE) consistently tracks the power system dynamics and delivers real-time system state evolution. In literature, this dynamic state estimation (SE) problem is generally solved using an extended Kalman filter (EKF). The EKF approach neglects the non-linear mathematical functions of network equations by linearly approximating the measurement equations. This leads to degradation of SE accuracy during a sudden change in load conditions. In this paper, a new derivative-free method based on square-root cubature Kalman filter (SCKF) is proposed to overcome the limitations of the EKF technique and achieves improved performance. The proposed SCKF technique has been tested on IEEE 14-bus, IEEE 30-bus, and IEEE 57-bus systems under various operating conditions. The effectiveness of the SCKF technique has been compared with the traditional EKF and cubature Kalman filter (CKF) techniques using different performance indices. The obtained results demonstrate the versatility of the proposed SCKF technique. |
|---|---|
| AbstractList | The state estimator’s real-time state information plays a vital role in monitoring and control of the power system. As a result, one of the primary requirements of the estimator is to provide accurate state estimates with good convergence under varied system operating conditions. In this context, dynamic state estimation (DSE) consistently tracks the power system dynamics and delivers real-time system state evolution. In literature, this dynamic state estimation (SE) problem is generally solved using an extended Kalman filter (EKF). The EKF approach neglects the non-linear mathematical functions of network equations by linearly approximating the measurement equations. This leads to degradation of SE accuracy during a sudden change in load conditions. In this paper, a new derivative-free method based on square-root cubature Kalman filter (SCKF) is proposed to overcome the limitations of the EKF technique and achieves improved performance. The proposed SCKF technique has been tested on IEEE 14-bus, IEEE 30-bus, and IEEE 57-bus systems under various operating conditions. The effectiveness of the SCKF technique has been compared with the traditional EKF and cubature Kalman filter (CKF) techniques using different performance indices. The obtained results demonstrate the versatility of the proposed SCKF technique. |
| ArticleNumber | 100712 |
| Author | Shiva, Chandan Kumar Chandel, Ashwani Kumar Basetti, Vedik |
| Author_xml | – sequence: 1 givenname: Vedik surname: Basetti fullname: Basetti, Vedik email: b.vedik@gmail.com organization: Electrical and Electronics Engineering Department, SR University, Warangal, T.S., 506371, India – sequence: 2 givenname: Ashwani Kumar surname: Chandel fullname: Chandel, Ashwani Kumar organization: Electrical Engineering Department, National Institute of Technology-Hamirpur, H.P., 177005, India – sequence: 3 givenname: Chandan Kumar surname: Shiva fullname: Shiva, Chandan Kumar organization: Electrical and Electronics Engineering Department, SR University, Warangal, T.S., 506371, India |
| BookMark | eNqFkMtOwzAQRS1UJErpF7DxD6T4kcTNggWqeIkKFsDamjgT5Cqxi-2C-vekLQvEAlZzNdIZ3TmnZOS8Q0LOOZtxxsuL1SziG7iZYEIMG6a4OCJjIQuR5aVSox_5hExjXDHGRFGVpSrG5PH5fQMBs-B9omZTQ9oEpA_Q9eBoa7uEgdYQsaFr_znkuI0Je9psHfTW0JggIcWYbA_JendGjlvoIk6_54S83ly_LO6y5dPt_eJqmRkhZcpqlC2vEeeqroq2YCzPsRLzohRtJWvVNtwgy6WB4RtVqzk0oLgBU0nIGYNKTog83DXBxxiw1eswVAhbzZneWdErvbeid1b0wcpAVb8oY9O-dwpgu3_YywOLw1sfFoOOxqIz2NiAJunG2z_5Lw3ogeA |
| CitedBy_id | crossref_primary_10_1109_TIA_2023_3296576 crossref_primary_10_1177_01423312231160202 crossref_primary_10_1002_rnc_70035 crossref_primary_10_3390_en17194806 crossref_primary_10_1016_j_eswa_2024_123994 crossref_primary_10_1109_TTE_2023_3274548 crossref_primary_10_1155_2023_1820478 crossref_primary_10_1088_1361_6501_accebe crossref_primary_10_1088_1742_6596_2474_1_012058 crossref_primary_10_1016_j_ejcon_2023_100805 crossref_primary_10_1016_j_seta_2022_102765 |
| Cites_doi | 10.1049/iet-gtd.2010.0210 10.1109/59.982205 10.1109/TPWRS.2003.818726 10.1109/JSEN.2020.3017920 10.1016/j.cja.2014.09.007 10.1109/TPWRS.2011.2175255 10.1109/MIS.2015.52 10.1109/TPWRS.1987.4335300 10.1049/ip-gtd:19971168 10.1109/TIM.2020.2999757 10.1109/59.535702 10.1016/j.ijepes.2014.09.024 10.1016/j.epsr.2011.03.013 10.1109/CJECE.2016.2629981 10.1109/JSEN.2018.2789353 10.1109/TPWRS.2009.2030297 10.3906/elk-1507-226 10.1109/JSEN.2019.2959663 10.1109/TPWRS.2019.2894769 10.1109/TPWRS.2020.3028047 10.1109/TIM.2017.2677698 10.1109/TIM.2013.2278595 10.1080/15325000903376925 10.1145/769953.769976 10.1109/TPWRS.2016.2628344 10.1049/ip-c.1982.0032 10.1109/JSTSP.2018.2827261 10.1109/TAC.2009.2019800 10.1109/TPWRS.2019.2936141 10.1109/TPWRS.2009.2030295 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.segan.2022.100712 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2352-4677 |
| ExternalDocumentID | 10_1016_j_segan_2022_100712 S2352467722000571 |
| GroupedDBID | --M 0R~ 4.4 457 AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO AAYFN ABBOA ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSR SST SSV SSW SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACLOT AEIPS AFJKZ AIIUN ANKPU APXCP CITATION EFKBS |
| ID | FETCH-LOGICAL-c233t-be3f1bee87b95f50044e928562f93b7fd1ce043ca0077b78ada71cac93a400a93 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795153800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-4677 |
| IngestDate | Thu Nov 13 04:15:07 EST 2025 Tue Nov 18 21:57:34 EST 2025 Fri Feb 23 02:40:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dynamic state estimation Brown’s double exponential smoothing Square-root cubature Kalman filter Power systems |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c233t-be3f1bee87b95f50044e928562f93b7fd1ce043ca0077b78ada71cac93a400a93 |
| ParticipantIDs | crossref_primary_10_1016_j_segan_2022_100712 crossref_citationtrail_10_1016_j_segan_2022_100712 elsevier_sciencedirect_doi_10_1016_j_segan_2022_100712 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Sustainable Energy, Grids and Networks |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhao, Mili (b15) 2018; 12 Sharma, Srivastava, Chakrabarti (b16) 2017; 66 Mohammed, Geetha, Shinde, Rajawat, Chakrabarti (b26) 2020; 20 Kim, Bang (b37) 2018 Christie (b33) 1999 Zhao, Gomez-Exposito, Netto (b36) 2019; 34 Da Silva, Do Coutto Filho, Cantera (b5) 1987; 2 Zhao, Netto, Mili (b14) 2016; 32 Valverde, Terzija (b2) 2011; 5 Qing, Karimi, Niu, Wang (b4) 2015; 65 Wang, Sun, Dinavahi (b28) 2020; 35 Lacey (b38) 1998 Souza, Da Silva, Da Silva (b6) 1996; 11 Zhao, Netto, Huang, Yu, Gomez-Exposito, Wang, Kamwa, Akhlaghi, Mili, Terzija, Meliopoulos, Pal, Singh, Abur, Bi, Rouhani (b1) 2021; 36 Do Coutto Filho, de Souza, Freund (b30) 2009; 24 Huang, Lin (b9) 2004; 19 Geetha, Chakrabarti, Rajawat (b25) 2021; 21 Sharma, Srivastava, Chakrabarti (b11) 2015; 30 Liu, Dong, Wang, Liu, He, Pan (b23) 2014; 27 Johngalt the forcast xperts, Brown’s double exponential smoothing. [Online] Wang, Gao, Meliopoulos (b10) 2011; 27 Dang, Chen, Wang, Ma, Ren (b27) 2020; 69 Sharma, Samantaray (b17) 2018; 18 J.J. LaViola, Double exponential smoothing: An alternative to Kalman filter-based predictive tracking, in: In Proc 2003. the Workshop on Virtual Environments ACM, 2003, pp. 199-206. Abdi, Lak, Seyfari (b22) 2017; 25 Da Silva, Do Coutto Filho, De Queiroz (b12) 1983; 130 Zhao, Wang, Yu, Jian, Liu (b24) 2015; 256 Korres, Manousakis (b34) 2011; 81 Arasaratnam, Haykin (b21) 2009; 54 . Li, Hu, Zheng, Li, Chen, Fernando, Iu, Wang, Liu (b18) 2019; 66 Souza, Da Silva, Da Silva (b7) 1977; 144 Aminifar, Shahidehpour, Fotuhi-Firuzabad, Kamalinia (b3) 2014; 63 Sodhi, Srivastava, Singh (b35) 2010; 38 Khosravi, Banejad, Shandiz (b20) 2018; 41 Wang, Sun, Dinavahi, Cao, Hou (b19) 2019; 7 Do Coutto Filho, de Souza (b29) 2009; 24 Shih, Huang (b8) 2002; 17 Nishiya, Hasegawa, Koike (b13) 1982; 129C Zhao (10.1016/j.segan.2022.100712_b1) 2021; 36 10.1016/j.segan.2022.100712_b32 10.1016/j.segan.2022.100712_b31 Zhao (10.1016/j.segan.2022.100712_b24) 2015; 256 Liu (10.1016/j.segan.2022.100712_b23) 2014; 27 Aminifar (10.1016/j.segan.2022.100712_b3) 2014; 63 Zhao (10.1016/j.segan.2022.100712_b15) 2018; 12 Dang (10.1016/j.segan.2022.100712_b27) 2020; 69 Kim (10.1016/j.segan.2022.100712_b37) 2018 Korres (10.1016/j.segan.2022.100712_b34) 2011; 81 Huang (10.1016/j.segan.2022.100712_b9) 2004; 19 Khosravi (10.1016/j.segan.2022.100712_b20) 2018; 41 Zhao (10.1016/j.segan.2022.100712_b14) 2016; 32 Wang (10.1016/j.segan.2022.100712_b28) 2020; 35 Nishiya (10.1016/j.segan.2022.100712_b13) 1982; 129C Arasaratnam (10.1016/j.segan.2022.100712_b21) 2009; 54 Zhao (10.1016/j.segan.2022.100712_b36) 2019; 34 Qing (10.1016/j.segan.2022.100712_b4) 2015; 65 Da Silva (10.1016/j.segan.2022.100712_b12) 1983; 130 Mohammed (10.1016/j.segan.2022.100712_b26) 2020; 20 Shih (10.1016/j.segan.2022.100712_b8) 2002; 17 Sharma (10.1016/j.segan.2022.100712_b17) 2018; 18 Sharma (10.1016/j.segan.2022.100712_b11) 2015; 30 Christie (10.1016/j.segan.2022.100712_b33) 1999 Li (10.1016/j.segan.2022.100712_b18) 2019; 66 Sharma (10.1016/j.segan.2022.100712_b16) 2017; 66 Da Silva (10.1016/j.segan.2022.100712_b5) 1987; 2 Souza (10.1016/j.segan.2022.100712_b6) 1996; 11 Abdi (10.1016/j.segan.2022.100712_b22) 2017; 25 Geetha (10.1016/j.segan.2022.100712_b25) 2021; 21 Wang (10.1016/j.segan.2022.100712_b10) 2011; 27 Wang (10.1016/j.segan.2022.100712_b19) 2019; 7 Do Coutto Filho (10.1016/j.segan.2022.100712_b30) 2009; 24 Sodhi (10.1016/j.segan.2022.100712_b35) 2010; 38 Do Coutto Filho (10.1016/j.segan.2022.100712_b29) 2009; 24 Lacey (10.1016/j.segan.2022.100712_b38) 1998 Valverde (10.1016/j.segan.2022.100712_b2) 2011; 5 Souza (10.1016/j.segan.2022.100712_b7) 1977; 144 |
| References_xml | – volume: 69 start-page: 8797 year: 2020 end-page: 8808 ident: b27 article-title: Robust power system state estimation with minimum error entropy unscented Kalman filter publication-title: IEEE Trans. Instrum. Meas. – reference: J.J. LaViola, Double exponential smoothing: An alternative to Kalman filter-based predictive tracking, in: In Proc 2003. the Workshop on Virtual Environments ACM, 2003, pp. 199-206. – volume: 17 start-page: 141 year: 2002 end-page: 147 ident: b8 article-title: Application of a robust algorithm for dynamic state estimation of a power system publication-title: IEEE Trans. Power Syst. – volume: 32 start-page: 3205 year: 2016 end-page: 3216 ident: b14 article-title: A robust iterated extended Kalman filter for power system dynamic state estimation publication-title: IEEE Trans. Power Syst. – volume: 36 start-page: 2462 year: 2021 end-page: 2472 ident: b1 article-title: Roles of dynamic state estimation in power system modeling, monitoring and operation publication-title: IEEE Trans. Power Syst. – volume: 130 start-page: 237 year: 1983 end-page: 244 ident: b12 article-title: State forecasting in electric power systems publication-title: Proc. Inst. Elect. Eng. C – volume: 256 start-page: 352 year: 2015 end-page: 367 ident: b24 article-title: Design of adaptive robust square-root cubature Kalman filter with noise statistic estimator publication-title: Appl. Math. Comput. – volume: 41 start-page: 64 year: 2018 end-page: 76 ident: b20 article-title: Robust dynamic state estimation of power system using imperialist competitive algorithm publication-title: Can. J. Electr. Comput. Eng. – reference: Johngalt the forcast xperts, Brown’s double exponential smoothing. [Online], – year: 1999 ident: b33 article-title: Power System Test Archive, Aug. 1999. [Online] – volume: 20 start-page: 3946 year: 2020 end-page: 3955 ident: b26 article-title: Modified re-iterated Kalman filter for handling delayed and lost measurements in power system state estimation publication-title: IEEE Sens. J. – volume: 5 start-page: 29 year: 2011 end-page: 37 ident: b2 article-title: Unscented Kalman filter for power system dynamic state estimation publication-title: IET Gener. Transm. Distrib. – volume: 34 start-page: 3188 year: 2019 end-page: 3198 ident: b36 article-title: Power system dynamic state estimation: motivations, definitions, methodologies and future work publication-title: IEEE Trans. Power Syst. – volume: 11 start-page: 1592 year: 1996 end-page: 1599 ident: b6 article-title: Data debugging for real-time power system monitoring based on pattern analysis publication-title: IEEE Trans. Power Syst. – volume: 2 start-page: 1050 year: 1987 end-page: 1058 ident: b5 article-title: An efficient dynamic state estimation algorithm including bad data processing publication-title: IEEE Trans. Power Syst. – volume: 25 start-page: 209 year: 2017 end-page: 221 ident: b22 article-title: GICA: IMperialist competitive algorithm with globalization mechanism for optimization problems publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 21 start-page: 2124 year: 2021 end-page: 2133 ident: b25 article-title: Asynchronous hierarchical forecasting-aided state estimator with sub-area data validation for power systems publication-title: IEEE Sens. J. – volume: 129C start-page: 192 year: 1982 end-page: 198 ident: b13 article-title: Dynamic state estimation including anomaly detection and identification for power systems publication-title: IEE. Proc. Gener. Transm. Distrib. – volume: 54 start-page: 1254 year: 2009 end-page: 1269 ident: b21 article-title: Cubature kalman filters publication-title: IEEE Trans. Automat. Control – volume: 38 start-page: 533 year: 2010 end-page: 544 ident: b35 article-title: Phasor-assisted hybrid state estimator publication-title: Electr. Power Compon. Syst. – year: 2018 ident: b37 article-title: Introduction to Kalman filter and its applications. introduction and implementations of the kalman filter, 1, 1-16 – start-page: 133 year: 1998 end-page: 140 ident: b38 article-title: Tutorial: The Kalman filter – volume: 63 start-page: 352 year: 2014 end-page: 363 ident: b3 article-title: Power system dynamic state estimation with synchronized phasor measurements publication-title: IEEE Trans. Instrum. Meas. – volume: 19 start-page: 610 year: 2004 end-page: 619 ident: b9 article-title: Enhancement of anomalous data mining in power system predicting-aided state estimation publication-title: IEEE Trans. Power Syst. – volume: 144 start-page: 445 year: 1977 end-page: 455 ident: b7 article-title: Data visualisation and identification of anomalies in power system state estimation using artificial neural networks publication-title: IEE Proc., Gener. Transm. Distrib. – volume: 27 start-page: 942 year: 2011 end-page: 950 ident: b10 article-title: An alternative method for power system dynamic state estimation based on unscented transform publication-title: IEEE Trans. Power Syst. – volume: 35 start-page: 691 year: 2020 end-page: 702 ident: b28 article-title: Robust forecasting-aided state estimation for power system against uncertainties publication-title: IEEE Trans. Power Syst. – volume: 27 start-page: 1242 year: 2014 end-page: 1250 ident: b23 article-title: Adaptive Gaussian sum squared-root cubature Kalman filter with split-merge scheme for state estimation publication-title: Chin. J. Aeronaut. – volume: 7 year: 2019 ident: b19 article-title: Adaptive robust cubature Kalman filter for power system dynamic state estimation against outliers publication-title: IEEE Access – volume: 66 start-page: 1552 year: 2019 end-page: 1556 ident: b18 article-title: Stochastic event-triggered cubature Kalman filter for power system dynamic state estimation publication-title: IEEE Trans. Circuits Syst. II – reference: . – volume: 65 start-page: 26 year: 2015 end-page: 33 ident: b4 article-title: Decentralized unscented Kalman filter based on a consensus algorithm for multi-area dynamic state estimation in power systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 66 start-page: 2036 year: 2017 end-page: 2045 ident: b16 article-title: A cubature Kalman filter based power system dynamic state estimator publication-title: IEEE Trans. Instrum. Meas. – volume: 81 start-page: 1514 year: 2011 end-page: 1524 ident: b34 article-title: State estimation and bad data processing for systems including PMU and SCADA measurements publication-title: Electr. Power Syst. Res. – volume: 24 start-page: 1667 year: 2009 end-page: 1677 ident: b29 article-title: Forecasting-aided state estimation—Part I: Panorama publication-title: IEEE Trans. Power Syst. – volume: 24 start-page: 1678 year: 2009 end-page: 1685 ident: b30 article-title: Forecasting-aided state estimation—Part II: Implementation publication-title: IEEE Trans. Power Syst. – volume: 18 start-page: 2107 year: 2018 end-page: 2116 ident: b17 article-title: Power system tracking state estimator for smart grid under unreliable PMU data communication network publication-title: IEEE Sens. J. – volume: 30 start-page: 52 year: 2015 end-page: 59 ident: b11 article-title: A multi-agent-based power system hybrid dynamic state estimator publication-title: IEEE Intell. Syst. – volume: 12 start-page: 578 year: 2018 end-page: 592 ident: b15 article-title: A robust generalized-maximum likelihood unscented Kalman filter for power system dynamic state estimation publication-title: IEEE J. Sel. Top. Sign. Proces. – volume: 5 start-page: 29 issue: 1 year: 2011 ident: 10.1016/j.segan.2022.100712_b2 article-title: Unscented Kalman filter for power system dynamic state estimation publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2010.0210 – volume: 17 start-page: 141 issue: 1 year: 2002 ident: 10.1016/j.segan.2022.100712_b8 article-title: Application of a robust algorithm for dynamic state estimation of a power system publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.982205 – volume: 19 start-page: 610 issue: 1 year: 2004 ident: 10.1016/j.segan.2022.100712_b9 article-title: Enhancement of anomalous data mining in power system predicting-aided state estimation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2003.818726 – volume: 21 start-page: 2124 issue: 2 year: 2021 ident: 10.1016/j.segan.2022.100712_b25 article-title: Asynchronous hierarchical forecasting-aided state estimator with sub-area data validation for power systems publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3017920 – volume: 27 start-page: 1242 issue: 5 year: 2014 ident: 10.1016/j.segan.2022.100712_b23 article-title: Adaptive Gaussian sum squared-root cubature Kalman filter with split-merge scheme for state estimation publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2014.09.007 – volume: 27 start-page: 942 issue: 2 year: 2011 ident: 10.1016/j.segan.2022.100712_b10 article-title: An alternative method for power system dynamic state estimation based on unscented transform publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2175255 – volume: 30 start-page: 52 issue: 3 year: 2015 ident: 10.1016/j.segan.2022.100712_b11 article-title: A multi-agent-based power system hybrid dynamic state estimator publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2015.52 – volume: 2 start-page: 1050 issue: 4 year: 1987 ident: 10.1016/j.segan.2022.100712_b5 article-title: An efficient dynamic state estimation algorithm including bad data processing publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.1987.4335300 – volume: 144 start-page: 445 issue: 5 year: 1977 ident: 10.1016/j.segan.2022.100712_b7 article-title: Data visualisation and identification of anomalies in power system state estimation using artificial neural networks publication-title: IEE Proc., Gener. Transm. Distrib. doi: 10.1049/ip-gtd:19971168 – volume: 69 start-page: 8797 issue: 11 year: 2020 ident: 10.1016/j.segan.2022.100712_b27 article-title: Robust power system state estimation with minimum error entropy unscented Kalman filter publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2999757 – year: 2018 ident: 10.1016/j.segan.2022.100712_b37 – volume: 11 start-page: 1592 issue: 3 year: 1996 ident: 10.1016/j.segan.2022.100712_b6 article-title: Data debugging for real-time power system monitoring based on pattern analysis publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.535702 – volume: 65 start-page: 26 year: 2015 ident: 10.1016/j.segan.2022.100712_b4 article-title: Decentralized unscented Kalman filter based on a consensus algorithm for multi-area dynamic state estimation in power systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.09.024 – volume: 81 start-page: 1514 issue: 7 year: 2011 ident: 10.1016/j.segan.2022.100712_b34 article-title: State estimation and bad data processing for systems including PMU and SCADA measurements publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2011.03.013 – volume: 130 start-page: 237 issue: 5 year: 1983 ident: 10.1016/j.segan.2022.100712_b12 article-title: State forecasting in electric power systems publication-title: Proc. Inst. Elect. Eng. C – volume: 41 start-page: 64 issue: 2 year: 2018 ident: 10.1016/j.segan.2022.100712_b20 article-title: Robust dynamic state estimation of power system using imperialist competitive algorithm publication-title: Can. J. Electr. Comput. Eng. doi: 10.1109/CJECE.2016.2629981 – volume: 18 start-page: 2107 issue: 5 year: 2018 ident: 10.1016/j.segan.2022.100712_b17 article-title: Power system tracking state estimator for smart grid under unreliable PMU data communication network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2789353 – volume: 24 start-page: 1678 issue: 4 year: 2009 ident: 10.1016/j.segan.2022.100712_b30 article-title: Forecasting-aided state estimation—Part II: Implementation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2030297 – volume: 25 start-page: 209 issue: 1 year: 2017 ident: 10.1016/j.segan.2022.100712_b22 article-title: GICA: IMperialist competitive algorithm with globalization mechanism for optimization problems publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1507-226 – volume: 20 start-page: 3946 issue: 7 year: 2020 ident: 10.1016/j.segan.2022.100712_b26 article-title: Modified re-iterated Kalman filter for handling delayed and lost measurements in power system state estimation publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2959663 – volume: 34 start-page: 3188 issue: 4 year: 2019 ident: 10.1016/j.segan.2022.100712_b36 article-title: Power system dynamic state estimation: motivations, definitions, methodologies and future work publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2894769 – volume: 36 start-page: 2462 issue: 3 year: 2021 ident: 10.1016/j.segan.2022.100712_b1 article-title: Roles of dynamic state estimation in power system modeling, monitoring and operation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3028047 – volume: 66 start-page: 2036 issue: 8 year: 2017 ident: 10.1016/j.segan.2022.100712_b16 article-title: A cubature Kalman filter based power system dynamic state estimator publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2677698 – volume: 256 start-page: 352 year: 2015 ident: 10.1016/j.segan.2022.100712_b24 article-title: Design of adaptive robust square-root cubature Kalman filter with noise statistic estimator publication-title: Appl. Math. Comput. – volume: 63 start-page: 352 issue: 2 year: 2014 ident: 10.1016/j.segan.2022.100712_b3 article-title: Power system dynamic state estimation with synchronized phasor measurements publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2013.2278595 – volume: 38 start-page: 533 issue: 5 year: 2010 ident: 10.1016/j.segan.2022.100712_b35 article-title: Phasor-assisted hybrid state estimator publication-title: Electr. Power Compon. Syst. doi: 10.1080/15325000903376925 – ident: 10.1016/j.segan.2022.100712_b31 doi: 10.1145/769953.769976 – start-page: 133 year: 1998 ident: 10.1016/j.segan.2022.100712_b38 – volume: 32 start-page: 3205 issue: 4 year: 2016 ident: 10.1016/j.segan.2022.100712_b14 article-title: A robust iterated extended Kalman filter for power system dynamic state estimation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2016.2628344 – volume: 129C start-page: 192 issue: 5 year: 1982 ident: 10.1016/j.segan.2022.100712_b13 article-title: Dynamic state estimation including anomaly detection and identification for power systems publication-title: IEE. Proc. Gener. Transm. Distrib. doi: 10.1049/ip-c.1982.0032 – volume: 12 start-page: 578 issue: 4 year: 2018 ident: 10.1016/j.segan.2022.100712_b15 article-title: A robust generalized-maximum likelihood unscented Kalman filter for power system dynamic state estimation publication-title: IEEE J. Sel. Top. Sign. Proces. doi: 10.1109/JSTSP.2018.2827261 – volume: 54 start-page: 1254 issue: 6 year: 2009 ident: 10.1016/j.segan.2022.100712_b21 article-title: Cubature kalman filters publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2009.2019800 – volume: 66 start-page: 1552 issue: 9 year: 2019 ident: 10.1016/j.segan.2022.100712_b18 article-title: Stochastic event-triggered cubature Kalman filter for power system dynamic state estimation publication-title: IEEE Trans. Circuits Syst. II – year: 1999 ident: 10.1016/j.segan.2022.100712_b33 – volume: 35 start-page: 691 issue: 1 year: 2020 ident: 10.1016/j.segan.2022.100712_b28 article-title: Robust forecasting-aided state estimation for power system against uncertainties publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2936141 – volume: 7 year: 2019 ident: 10.1016/j.segan.2022.100712_b19 article-title: Adaptive robust cubature Kalman filter for power system dynamic state estimation against outliers publication-title: IEEE Access – volume: 24 start-page: 1667 issue: 4 year: 2009 ident: 10.1016/j.segan.2022.100712_b29 article-title: Forecasting-aided state estimation—Part I: Panorama publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2030295 – ident: 10.1016/j.segan.2022.100712_b32 |
| SSID | ssj0002596675 |
| Score | 2.329075 |
| Snippet | The state estimator’s real-time state information plays a vital role in monitoring and control of the power system. As a result, one of the primary... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100712 |
| SubjectTerms | Brown’s double exponential smoothing Dynamic state estimation Power systems Square-root cubature Kalman filter |
| Title | Square-root cubature Kalman filter based power system dynamic state estimation |
| URI | https://dx.doi.org/10.1016/j.segan.2022.100712 |
| Volume | 31 |
| WOSCitedRecordID | wos000795153800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 2352-4677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002596675 issn: 2352-4677 databaseCode: AIEXJ dateStart: 20150301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFLamQw_lgLqKrZUPvYVUkziLfURoqm4aVSqguUXeUoKGMEAY-Av8a56XJNOCRuXQSxQ5iWPlffJ7fvneZ4Q-Kghpk5HIQgFgCpNck1BIAoFcoimXhKXKKt4c_8gnEzqdsp-DwV1bC7OY5XVNb2_Z_L-aGtrA2KZ09gnm7jqFBjgHo8MRzA7HfzL8rwuwug4hIm4CeS2scGfwnc9Msr6szM_xwLguFczNBmleyjlQbmf6wBYYBUZ646y32WlbNdIXW41tzaCrcqmUE3qeOEp5n3iH1zSOLnAMPrKrCTIVDcqzA65ObnhdBZbp3WV7TqoF91yAWsGw-6s-PwFL25aA5aexGEK8EKZj51b1I21-HvbewE2khrzh-NUP5niXbjAl-b-5UbCN40_93X8qav_l6Tr-YUttOy1sJ4XppHCdPENrcZ4yOkRr-1_H029dwg7WiVlmhZu70bcqVpYv-GA4j0c6S9HL4Uu04ZcdeN_B5RUa6Po1Wl8So3yDJkvAwS1wsAMOdsDBFjjYAgc74GAPHGyBg3vgvEVHn8eHB19Cv9tGKGNCmlBoUkZCa5oLlpap-dOvWUwhPi4ZEXmpIqlHCZHcKECJnHLF80hyyQgHP8AZeYeG9XmtNxGWgnIWKUFHRCQ6ojylJBPcBEssEkJsobj9MoX0UvRmR5RZscIwW2ive2julFhW3561n7zwwaQLEgvA0aoHt5_2nh30okf9Lho2l9f6PXouF011dfnBg-gesIGXBA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Square-root+cubature+Kalman+filter+based+power+system+dynamic+state+estimation&rft.jtitle=Sustainable+Energy%2C+Grids+and+Networks&rft.au=Basetti%2C+Vedik&rft.au=Chandel%2C+Ashwani+Kumar&rft.au=Shiva%2C+Chandan+Kumar&rft.date=2022-09-01&rft.issn=2352-4677&rft.eissn=2352-4677&rft.volume=31&rft.spage=100712&rft_id=info:doi/10.1016%2Fj.segan.2022.100712&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_segan_2022_100712 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4677&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4677&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4677&client=summon |