Square-root cubature Kalman filter based power system dynamic state estimation

The state estimator’s real-time state information plays a vital role in monitoring and control of the power system. As a result, one of the primary requirements of the estimator is to provide accurate state estimates with good convergence under varied system operating conditions. In this context, dy...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sustainable Energy, Grids and Networks Ročník 31; s. 100712
Hlavní autori: Basetti, Vedik, Chandel, Ashwani Kumar, Shiva, Chandan Kumar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.09.2022
Predmet:
ISSN:2352-4677, 2352-4677
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The state estimator’s real-time state information plays a vital role in monitoring and control of the power system. As a result, one of the primary requirements of the estimator is to provide accurate state estimates with good convergence under varied system operating conditions. In this context, dynamic state estimation (DSE) consistently tracks the power system dynamics and delivers real-time system state evolution. In literature, this dynamic state estimation (SE) problem is generally solved using an extended Kalman filter (EKF). The EKF approach neglects the non-linear mathematical functions of network equations by linearly approximating the measurement equations. This leads to degradation of SE accuracy during a sudden change in load conditions. In this paper, a new derivative-free method based on square-root cubature Kalman filter (SCKF) is proposed to overcome the limitations of the EKF technique and achieves improved performance. The proposed SCKF technique has been tested on IEEE 14-bus, IEEE 30-bus, and IEEE 57-bus systems under various operating conditions. The effectiveness of the SCKF technique has been compared with the traditional EKF and cubature Kalman filter (CKF) techniques using different performance indices. The obtained results demonstrate the versatility of the proposed SCKF technique.
AbstractList The state estimator’s real-time state information plays a vital role in monitoring and control of the power system. As a result, one of the primary requirements of the estimator is to provide accurate state estimates with good convergence under varied system operating conditions. In this context, dynamic state estimation (DSE) consistently tracks the power system dynamics and delivers real-time system state evolution. In literature, this dynamic state estimation (SE) problem is generally solved using an extended Kalman filter (EKF). The EKF approach neglects the non-linear mathematical functions of network equations by linearly approximating the measurement equations. This leads to degradation of SE accuracy during a sudden change in load conditions. In this paper, a new derivative-free method based on square-root cubature Kalman filter (SCKF) is proposed to overcome the limitations of the EKF technique and achieves improved performance. The proposed SCKF technique has been tested on IEEE 14-bus, IEEE 30-bus, and IEEE 57-bus systems under various operating conditions. The effectiveness of the SCKF technique has been compared with the traditional EKF and cubature Kalman filter (CKF) techniques using different performance indices. The obtained results demonstrate the versatility of the proposed SCKF technique.
ArticleNumber 100712
Author Shiva, Chandan Kumar
Chandel, Ashwani Kumar
Basetti, Vedik
Author_xml – sequence: 1
  givenname: Vedik
  surname: Basetti
  fullname: Basetti, Vedik
  email: b.vedik@gmail.com
  organization: Electrical and Electronics Engineering Department, SR University, Warangal, T.S., 506371, India
– sequence: 2
  givenname: Ashwani Kumar
  surname: Chandel
  fullname: Chandel, Ashwani Kumar
  organization: Electrical Engineering Department, National Institute of Technology-Hamirpur, H.P., 177005, India
– sequence: 3
  givenname: Chandan Kumar
  surname: Shiva
  fullname: Shiva, Chandan Kumar
  organization: Electrical and Electronics Engineering Department, SR University, Warangal, T.S., 506371, India
BookMark eNqFkMtOwzAQRS1UJErpF7DxD6T4kcTNggWqeIkKFsDamjgT5Cqxi-2C-vekLQvEAlZzNdIZ3TmnZOS8Q0LOOZtxxsuL1SziG7iZYEIMG6a4OCJjIQuR5aVSox_5hExjXDHGRFGVpSrG5PH5fQMBs-B9omZTQ9oEpA_Q9eBoa7uEgdYQsaFr_znkuI0Je9psHfTW0JggIcWYbA_JendGjlvoIk6_54S83ly_LO6y5dPt_eJqmRkhZcpqlC2vEeeqroq2YCzPsRLzohRtJWvVNtwgy6WB4RtVqzk0oLgBU0nIGYNKTog83DXBxxiw1eswVAhbzZneWdErvbeid1b0wcpAVb8oY9O-dwpgu3_YywOLw1sfFoOOxqIz2NiAJunG2z_5Lw3ogeA
CitedBy_id crossref_primary_10_1109_TIA_2023_3296576
crossref_primary_10_1177_01423312231160202
crossref_primary_10_1002_rnc_70035
crossref_primary_10_3390_en17194806
crossref_primary_10_1016_j_eswa_2024_123994
crossref_primary_10_1109_TTE_2023_3274548
crossref_primary_10_1155_2023_1820478
crossref_primary_10_1088_1361_6501_accebe
crossref_primary_10_1088_1742_6596_2474_1_012058
crossref_primary_10_1016_j_ejcon_2023_100805
crossref_primary_10_1016_j_seta_2022_102765
Cites_doi 10.1049/iet-gtd.2010.0210
10.1109/59.982205
10.1109/TPWRS.2003.818726
10.1109/JSEN.2020.3017920
10.1016/j.cja.2014.09.007
10.1109/TPWRS.2011.2175255
10.1109/MIS.2015.52
10.1109/TPWRS.1987.4335300
10.1049/ip-gtd:19971168
10.1109/TIM.2020.2999757
10.1109/59.535702
10.1016/j.ijepes.2014.09.024
10.1016/j.epsr.2011.03.013
10.1109/CJECE.2016.2629981
10.1109/JSEN.2018.2789353
10.1109/TPWRS.2009.2030297
10.3906/elk-1507-226
10.1109/JSEN.2019.2959663
10.1109/TPWRS.2019.2894769
10.1109/TPWRS.2020.3028047
10.1109/TIM.2017.2677698
10.1109/TIM.2013.2278595
10.1080/15325000903376925
10.1145/769953.769976
10.1109/TPWRS.2016.2628344
10.1049/ip-c.1982.0032
10.1109/JSTSP.2018.2827261
10.1109/TAC.2009.2019800
10.1109/TPWRS.2019.2936141
10.1109/TPWRS.2009.2030295
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.segan.2022.100712
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-4677
ExternalDocumentID 10_1016_j_segan_2022_100712
S2352467722000571
GroupedDBID --M
0R~
4.4
457
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
AAYFN
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSR
SST
SSV
SSW
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
AEIPS
AFJKZ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c233t-be3f1bee87b95f50044e928562f93b7fd1ce043ca0077b78ada71cac93a400a93
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795153800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4677
IngestDate Thu Nov 13 04:15:07 EST 2025
Tue Nov 18 21:57:34 EST 2025
Fri Feb 23 02:40:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic state estimation
Brown’s double exponential smoothing
Square-root cubature Kalman filter
Power systems
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c233t-be3f1bee87b95f50044e928562f93b7fd1ce043ca0077b78ada71cac93a400a93
ParticipantIDs crossref_primary_10_1016_j_segan_2022_100712
crossref_citationtrail_10_1016_j_segan_2022_100712
elsevier_sciencedirect_doi_10_1016_j_segan_2022_100712
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Sustainable Energy, Grids and Networks
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Mili (b15) 2018; 12
Sharma, Srivastava, Chakrabarti (b16) 2017; 66
Mohammed, Geetha, Shinde, Rajawat, Chakrabarti (b26) 2020; 20
Kim, Bang (b37) 2018
Christie (b33) 1999
Zhao, Gomez-Exposito, Netto (b36) 2019; 34
Da Silva, Do Coutto Filho, Cantera (b5) 1987; 2
Zhao, Netto, Mili (b14) 2016; 32
Valverde, Terzija (b2) 2011; 5
Qing, Karimi, Niu, Wang (b4) 2015; 65
Wang, Sun, Dinavahi (b28) 2020; 35
Lacey (b38) 1998
Souza, Da Silva, Da Silva (b6) 1996; 11
Zhao, Netto, Huang, Yu, Gomez-Exposito, Wang, Kamwa, Akhlaghi, Mili, Terzija, Meliopoulos, Pal, Singh, Abur, Bi, Rouhani (b1) 2021; 36
Do Coutto Filho, de Souza, Freund (b30) 2009; 24
Huang, Lin (b9) 2004; 19
Geetha, Chakrabarti, Rajawat (b25) 2021; 21
Sharma, Srivastava, Chakrabarti (b11) 2015; 30
Liu, Dong, Wang, Liu, He, Pan (b23) 2014; 27
Johngalt the forcast xperts, Brown’s double exponential smoothing. [Online]
Wang, Gao, Meliopoulos (b10) 2011; 27
Dang, Chen, Wang, Ma, Ren (b27) 2020; 69
Sharma, Samantaray (b17) 2018; 18
J.J. LaViola, Double exponential smoothing: An alternative to Kalman filter-based predictive tracking, in: In Proc 2003. the Workshop on Virtual Environments ACM, 2003, pp. 199-206.
Abdi, Lak, Seyfari (b22) 2017; 25
Da Silva, Do Coutto Filho, De Queiroz (b12) 1983; 130
Zhao, Wang, Yu, Jian, Liu (b24) 2015; 256
Korres, Manousakis (b34) 2011; 81
Arasaratnam, Haykin (b21) 2009; 54
.
Li, Hu, Zheng, Li, Chen, Fernando, Iu, Wang, Liu (b18) 2019; 66
Souza, Da Silva, Da Silva (b7) 1977; 144
Aminifar, Shahidehpour, Fotuhi-Firuzabad, Kamalinia (b3) 2014; 63
Sodhi, Srivastava, Singh (b35) 2010; 38
Khosravi, Banejad, Shandiz (b20) 2018; 41
Wang, Sun, Dinavahi, Cao, Hou (b19) 2019; 7
Do Coutto Filho, de Souza (b29) 2009; 24
Shih, Huang (b8) 2002; 17
Nishiya, Hasegawa, Koike (b13) 1982; 129C
Zhao (10.1016/j.segan.2022.100712_b1) 2021; 36
10.1016/j.segan.2022.100712_b32
10.1016/j.segan.2022.100712_b31
Zhao (10.1016/j.segan.2022.100712_b24) 2015; 256
Liu (10.1016/j.segan.2022.100712_b23) 2014; 27
Aminifar (10.1016/j.segan.2022.100712_b3) 2014; 63
Zhao (10.1016/j.segan.2022.100712_b15) 2018; 12
Dang (10.1016/j.segan.2022.100712_b27) 2020; 69
Kim (10.1016/j.segan.2022.100712_b37) 2018
Korres (10.1016/j.segan.2022.100712_b34) 2011; 81
Huang (10.1016/j.segan.2022.100712_b9) 2004; 19
Khosravi (10.1016/j.segan.2022.100712_b20) 2018; 41
Zhao (10.1016/j.segan.2022.100712_b14) 2016; 32
Wang (10.1016/j.segan.2022.100712_b28) 2020; 35
Nishiya (10.1016/j.segan.2022.100712_b13) 1982; 129C
Arasaratnam (10.1016/j.segan.2022.100712_b21) 2009; 54
Zhao (10.1016/j.segan.2022.100712_b36) 2019; 34
Qing (10.1016/j.segan.2022.100712_b4) 2015; 65
Da Silva (10.1016/j.segan.2022.100712_b12) 1983; 130
Mohammed (10.1016/j.segan.2022.100712_b26) 2020; 20
Shih (10.1016/j.segan.2022.100712_b8) 2002; 17
Sharma (10.1016/j.segan.2022.100712_b17) 2018; 18
Sharma (10.1016/j.segan.2022.100712_b11) 2015; 30
Christie (10.1016/j.segan.2022.100712_b33) 1999
Li (10.1016/j.segan.2022.100712_b18) 2019; 66
Sharma (10.1016/j.segan.2022.100712_b16) 2017; 66
Da Silva (10.1016/j.segan.2022.100712_b5) 1987; 2
Souza (10.1016/j.segan.2022.100712_b6) 1996; 11
Abdi (10.1016/j.segan.2022.100712_b22) 2017; 25
Geetha (10.1016/j.segan.2022.100712_b25) 2021; 21
Wang (10.1016/j.segan.2022.100712_b10) 2011; 27
Wang (10.1016/j.segan.2022.100712_b19) 2019; 7
Do Coutto Filho (10.1016/j.segan.2022.100712_b30) 2009; 24
Sodhi (10.1016/j.segan.2022.100712_b35) 2010; 38
Do Coutto Filho (10.1016/j.segan.2022.100712_b29) 2009; 24
Lacey (10.1016/j.segan.2022.100712_b38) 1998
Valverde (10.1016/j.segan.2022.100712_b2) 2011; 5
Souza (10.1016/j.segan.2022.100712_b7) 1977; 144
References_xml – volume: 69
  start-page: 8797
  year: 2020
  end-page: 8808
  ident: b27
  article-title: Robust power system state estimation with minimum error entropy unscented Kalman filter
  publication-title: IEEE Trans. Instrum. Meas.
– reference: J.J. LaViola, Double exponential smoothing: An alternative to Kalman filter-based predictive tracking, in: In Proc 2003. the Workshop on Virtual Environments ACM, 2003, pp. 199-206.
– volume: 17
  start-page: 141
  year: 2002
  end-page: 147
  ident: b8
  article-title: Application of a robust algorithm for dynamic state estimation of a power system
  publication-title: IEEE Trans. Power Syst.
– volume: 32
  start-page: 3205
  year: 2016
  end-page: 3216
  ident: b14
  article-title: A robust iterated extended Kalman filter for power system dynamic state estimation
  publication-title: IEEE Trans. Power Syst.
– volume: 36
  start-page: 2462
  year: 2021
  end-page: 2472
  ident: b1
  article-title: Roles of dynamic state estimation in power system modeling, monitoring and operation
  publication-title: IEEE Trans. Power Syst.
– volume: 130
  start-page: 237
  year: 1983
  end-page: 244
  ident: b12
  article-title: State forecasting in electric power systems
  publication-title: Proc. Inst. Elect. Eng. C
– volume: 256
  start-page: 352
  year: 2015
  end-page: 367
  ident: b24
  article-title: Design of adaptive robust square-root cubature Kalman filter with noise statistic estimator
  publication-title: Appl. Math. Comput.
– volume: 41
  start-page: 64
  year: 2018
  end-page: 76
  ident: b20
  article-title: Robust dynamic state estimation of power system using imperialist competitive algorithm
  publication-title: Can. J. Electr. Comput. Eng.
– reference: Johngalt the forcast xperts, Brown’s double exponential smoothing. [Online],
– year: 1999
  ident: b33
  article-title: Power System Test Archive, Aug. 1999. [Online]
– volume: 20
  start-page: 3946
  year: 2020
  end-page: 3955
  ident: b26
  article-title: Modified re-iterated Kalman filter for handling delayed and lost measurements in power system state estimation
  publication-title: IEEE Sens. J.
– volume: 5
  start-page: 29
  year: 2011
  end-page: 37
  ident: b2
  article-title: Unscented Kalman filter for power system dynamic state estimation
  publication-title: IET Gener. Transm. Distrib.
– volume: 34
  start-page: 3188
  year: 2019
  end-page: 3198
  ident: b36
  article-title: Power system dynamic state estimation: motivations, definitions, methodologies and future work
  publication-title: IEEE Trans. Power Syst.
– volume: 11
  start-page: 1592
  year: 1996
  end-page: 1599
  ident: b6
  article-title: Data debugging for real-time power system monitoring based on pattern analysis
  publication-title: IEEE Trans. Power Syst.
– volume: 2
  start-page: 1050
  year: 1987
  end-page: 1058
  ident: b5
  article-title: An efficient dynamic state estimation algorithm including bad data processing
  publication-title: IEEE Trans. Power Syst.
– volume: 25
  start-page: 209
  year: 2017
  end-page: 221
  ident: b22
  article-title: GICA: IMperialist competitive algorithm with globalization mechanism for optimization problems
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– volume: 21
  start-page: 2124
  year: 2021
  end-page: 2133
  ident: b25
  article-title: Asynchronous hierarchical forecasting-aided state estimator with sub-area data validation for power systems
  publication-title: IEEE Sens. J.
– volume: 129C
  start-page: 192
  year: 1982
  end-page: 198
  ident: b13
  article-title: Dynamic state estimation including anomaly detection and identification for power systems
  publication-title: IEE. Proc. Gener. Transm. Distrib.
– volume: 54
  start-page: 1254
  year: 2009
  end-page: 1269
  ident: b21
  article-title: Cubature kalman filters
  publication-title: IEEE Trans. Automat. Control
– volume: 38
  start-page: 533
  year: 2010
  end-page: 544
  ident: b35
  article-title: Phasor-assisted hybrid state estimator
  publication-title: Electr. Power Compon. Syst.
– year: 2018
  ident: b37
  article-title: Introduction to Kalman filter and its applications. introduction and implementations of the kalman filter, 1, 1-16
– start-page: 133
  year: 1998
  end-page: 140
  ident: b38
  article-title: Tutorial: The Kalman filter
– volume: 63
  start-page: 352
  year: 2014
  end-page: 363
  ident: b3
  article-title: Power system dynamic state estimation with synchronized phasor measurements
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 19
  start-page: 610
  year: 2004
  end-page: 619
  ident: b9
  article-title: Enhancement of anomalous data mining in power system predicting-aided state estimation
  publication-title: IEEE Trans. Power Syst.
– volume: 144
  start-page: 445
  year: 1977
  end-page: 455
  ident: b7
  article-title: Data visualisation and identification of anomalies in power system state estimation using artificial neural networks
  publication-title: IEE Proc., Gener. Transm. Distrib.
– volume: 27
  start-page: 942
  year: 2011
  end-page: 950
  ident: b10
  article-title: An alternative method for power system dynamic state estimation based on unscented transform
  publication-title: IEEE Trans. Power Syst.
– volume: 35
  start-page: 691
  year: 2020
  end-page: 702
  ident: b28
  article-title: Robust forecasting-aided state estimation for power system against uncertainties
  publication-title: IEEE Trans. Power Syst.
– volume: 27
  start-page: 1242
  year: 2014
  end-page: 1250
  ident: b23
  article-title: Adaptive Gaussian sum squared-root cubature Kalman filter with split-merge scheme for state estimation
  publication-title: Chin. J. Aeronaut.
– volume: 7
  year: 2019
  ident: b19
  article-title: Adaptive robust cubature Kalman filter for power system dynamic state estimation against outliers
  publication-title: IEEE Access
– volume: 66
  start-page: 1552
  year: 2019
  end-page: 1556
  ident: b18
  article-title: Stochastic event-triggered cubature Kalman filter for power system dynamic state estimation
  publication-title: IEEE Trans. Circuits Syst. II
– reference: .
– volume: 65
  start-page: 26
  year: 2015
  end-page: 33
  ident: b4
  article-title: Decentralized unscented Kalman filter based on a consensus algorithm for multi-area dynamic state estimation in power systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 66
  start-page: 2036
  year: 2017
  end-page: 2045
  ident: b16
  article-title: A cubature Kalman filter based power system dynamic state estimator
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 81
  start-page: 1514
  year: 2011
  end-page: 1524
  ident: b34
  article-title: State estimation and bad data processing for systems including PMU and SCADA measurements
  publication-title: Electr. Power Syst. Res.
– volume: 24
  start-page: 1667
  year: 2009
  end-page: 1677
  ident: b29
  article-title: Forecasting-aided state estimation—Part I: Panorama
  publication-title: IEEE Trans. Power Syst.
– volume: 24
  start-page: 1678
  year: 2009
  end-page: 1685
  ident: b30
  article-title: Forecasting-aided state estimation—Part II: Implementation
  publication-title: IEEE Trans. Power Syst.
– volume: 18
  start-page: 2107
  year: 2018
  end-page: 2116
  ident: b17
  article-title: Power system tracking state estimator for smart grid under unreliable PMU data communication network
  publication-title: IEEE Sens. J.
– volume: 30
  start-page: 52
  year: 2015
  end-page: 59
  ident: b11
  article-title: A multi-agent-based power system hybrid dynamic state estimator
  publication-title: IEEE Intell. Syst.
– volume: 12
  start-page: 578
  year: 2018
  end-page: 592
  ident: b15
  article-title: A robust generalized-maximum likelihood unscented Kalman filter for power system dynamic state estimation
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– volume: 5
  start-page: 29
  issue: 1
  year: 2011
  ident: 10.1016/j.segan.2022.100712_b2
  article-title: Unscented Kalman filter for power system dynamic state estimation
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2010.0210
– volume: 17
  start-page: 141
  issue: 1
  year: 2002
  ident: 10.1016/j.segan.2022.100712_b8
  article-title: Application of a robust algorithm for dynamic state estimation of a power system
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.982205
– volume: 19
  start-page: 610
  issue: 1
  year: 2004
  ident: 10.1016/j.segan.2022.100712_b9
  article-title: Enhancement of anomalous data mining in power system predicting-aided state estimation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2003.818726
– volume: 21
  start-page: 2124
  issue: 2
  year: 2021
  ident: 10.1016/j.segan.2022.100712_b25
  article-title: Asynchronous hierarchical forecasting-aided state estimator with sub-area data validation for power systems
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3017920
– volume: 27
  start-page: 1242
  issue: 5
  year: 2014
  ident: 10.1016/j.segan.2022.100712_b23
  article-title: Adaptive Gaussian sum squared-root cubature Kalman filter with split-merge scheme for state estimation
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2014.09.007
– volume: 27
  start-page: 942
  issue: 2
  year: 2011
  ident: 10.1016/j.segan.2022.100712_b10
  article-title: An alternative method for power system dynamic state estimation based on unscented transform
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2175255
– volume: 30
  start-page: 52
  issue: 3
  year: 2015
  ident: 10.1016/j.segan.2022.100712_b11
  article-title: A multi-agent-based power system hybrid dynamic state estimator
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/MIS.2015.52
– volume: 2
  start-page: 1050
  issue: 4
  year: 1987
  ident: 10.1016/j.segan.2022.100712_b5
  article-title: An efficient dynamic state estimation algorithm including bad data processing
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.1987.4335300
– volume: 144
  start-page: 445
  issue: 5
  year: 1977
  ident: 10.1016/j.segan.2022.100712_b7
  article-title: Data visualisation and identification of anomalies in power system state estimation using artificial neural networks
  publication-title: IEE Proc., Gener. Transm. Distrib.
  doi: 10.1049/ip-gtd:19971168
– volume: 69
  start-page: 8797
  issue: 11
  year: 2020
  ident: 10.1016/j.segan.2022.100712_b27
  article-title: Robust power system state estimation with minimum error entropy unscented Kalman filter
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2999757
– year: 2018
  ident: 10.1016/j.segan.2022.100712_b37
– volume: 11
  start-page: 1592
  issue: 3
  year: 1996
  ident: 10.1016/j.segan.2022.100712_b6
  article-title: Data debugging for real-time power system monitoring based on pattern analysis
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.535702
– volume: 65
  start-page: 26
  year: 2015
  ident: 10.1016/j.segan.2022.100712_b4
  article-title: Decentralized unscented Kalman filter based on a consensus algorithm for multi-area dynamic state estimation in power systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.09.024
– volume: 81
  start-page: 1514
  issue: 7
  year: 2011
  ident: 10.1016/j.segan.2022.100712_b34
  article-title: State estimation and bad data processing for systems including PMU and SCADA measurements
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2011.03.013
– volume: 130
  start-page: 237
  issue: 5
  year: 1983
  ident: 10.1016/j.segan.2022.100712_b12
  article-title: State forecasting in electric power systems
  publication-title: Proc. Inst. Elect. Eng. C
– volume: 41
  start-page: 64
  issue: 2
  year: 2018
  ident: 10.1016/j.segan.2022.100712_b20
  article-title: Robust dynamic state estimation of power system using imperialist competitive algorithm
  publication-title: Can. J. Electr. Comput. Eng.
  doi: 10.1109/CJECE.2016.2629981
– volume: 18
  start-page: 2107
  issue: 5
  year: 2018
  ident: 10.1016/j.segan.2022.100712_b17
  article-title: Power system tracking state estimator for smart grid under unreliable PMU data communication network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2789353
– volume: 24
  start-page: 1678
  issue: 4
  year: 2009
  ident: 10.1016/j.segan.2022.100712_b30
  article-title: Forecasting-aided state estimation—Part II: Implementation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2030297
– volume: 25
  start-page: 209
  issue: 1
  year: 2017
  ident: 10.1016/j.segan.2022.100712_b22
  article-title: GICA: IMperialist competitive algorithm with globalization mechanism for optimization problems
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1507-226
– volume: 20
  start-page: 3946
  issue: 7
  year: 2020
  ident: 10.1016/j.segan.2022.100712_b26
  article-title: Modified re-iterated Kalman filter for handling delayed and lost measurements in power system state estimation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2959663
– volume: 34
  start-page: 3188
  issue: 4
  year: 2019
  ident: 10.1016/j.segan.2022.100712_b36
  article-title: Power system dynamic state estimation: motivations, definitions, methodologies and future work
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2894769
– volume: 36
  start-page: 2462
  issue: 3
  year: 2021
  ident: 10.1016/j.segan.2022.100712_b1
  article-title: Roles of dynamic state estimation in power system modeling, monitoring and operation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2020.3028047
– volume: 66
  start-page: 2036
  issue: 8
  year: 2017
  ident: 10.1016/j.segan.2022.100712_b16
  article-title: A cubature Kalman filter based power system dynamic state estimator
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2677698
– volume: 256
  start-page: 352
  year: 2015
  ident: 10.1016/j.segan.2022.100712_b24
  article-title: Design of adaptive robust square-root cubature Kalman filter with noise statistic estimator
  publication-title: Appl. Math. Comput.
– volume: 63
  start-page: 352
  issue: 2
  year: 2014
  ident: 10.1016/j.segan.2022.100712_b3
  article-title: Power system dynamic state estimation with synchronized phasor measurements
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2278595
– volume: 38
  start-page: 533
  issue: 5
  year: 2010
  ident: 10.1016/j.segan.2022.100712_b35
  article-title: Phasor-assisted hybrid state estimator
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325000903376925
– ident: 10.1016/j.segan.2022.100712_b31
  doi: 10.1145/769953.769976
– start-page: 133
  year: 1998
  ident: 10.1016/j.segan.2022.100712_b38
– volume: 32
  start-page: 3205
  issue: 4
  year: 2016
  ident: 10.1016/j.segan.2022.100712_b14
  article-title: A robust iterated extended Kalman filter for power system dynamic state estimation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2628344
– volume: 129C
  start-page: 192
  issue: 5
  year: 1982
  ident: 10.1016/j.segan.2022.100712_b13
  article-title: Dynamic state estimation including anomaly detection and identification for power systems
  publication-title: IEE. Proc. Gener. Transm. Distrib.
  doi: 10.1049/ip-c.1982.0032
– volume: 12
  start-page: 578
  issue: 4
  year: 2018
  ident: 10.1016/j.segan.2022.100712_b15
  article-title: A robust generalized-maximum likelihood unscented Kalman filter for power system dynamic state estimation
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2018.2827261
– volume: 54
  start-page: 1254
  issue: 6
  year: 2009
  ident: 10.1016/j.segan.2022.100712_b21
  article-title: Cubature kalman filters
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2009.2019800
– volume: 66
  start-page: 1552
  issue: 9
  year: 2019
  ident: 10.1016/j.segan.2022.100712_b18
  article-title: Stochastic event-triggered cubature Kalman filter for power system dynamic state estimation
  publication-title: IEEE Trans. Circuits Syst. II
– year: 1999
  ident: 10.1016/j.segan.2022.100712_b33
– volume: 35
  start-page: 691
  issue: 1
  year: 2020
  ident: 10.1016/j.segan.2022.100712_b28
  article-title: Robust forecasting-aided state estimation for power system against uncertainties
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2936141
– volume: 7
  year: 2019
  ident: 10.1016/j.segan.2022.100712_b19
  article-title: Adaptive robust cubature Kalman filter for power system dynamic state estimation against outliers
  publication-title: IEEE Access
– volume: 24
  start-page: 1667
  issue: 4
  year: 2009
  ident: 10.1016/j.segan.2022.100712_b29
  article-title: Forecasting-aided state estimation—Part I: Panorama
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2030295
– ident: 10.1016/j.segan.2022.100712_b32
SSID ssj0002596675
Score 2.329075
Snippet The state estimator’s real-time state information plays a vital role in monitoring and control of the power system. As a result, one of the primary...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100712
SubjectTerms Brown’s double exponential smoothing
Dynamic state estimation
Power systems
Square-root cubature Kalman filter
Title Square-root cubature Kalman filter based power system dynamic state estimation
URI https://dx.doi.org/10.1016/j.segan.2022.100712
Volume 31
WOSCitedRecordID wos000795153800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-4677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002596675
  issn: 2352-4677
  databaseCode: AIEXJ
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQcKCHquUh6Es-cAs5xNkk9hGhrfrSqhIP7S3yKxAEYWHD4-d3xnaSRSDUIvUSrZx1Enm-jMeTbz4Tsms5VybJeayYGcUYYsdCW6RNZSOrURjXqX2e_ComEz6dit-BVjR32wkUTcMfHsTsv5oa2sDYWDr7D-buLwoN8BuMDkcwOxz_yvCH12B1G0NE3Eb6VjnhzuinvMBkfVXjx_EIpy4TzXCDtCDlHBm_M33kCowilN64HGx23lWNDMVWY1cz6KtcauOFnieeUj4k3uE2racLnMAc2dcEYUWDCeyA-dm9bOrIMb37bM9ZfScDF6Ax8NjD2ZCfgKVtR8AKSbOucGZgKYFvYxD3xeCj_Vxrn2kLztlPEU_8vE85YFn-qUQVW8Yc3SMwsh8LaB_ihfG6DMuSMhQcWGFFJsAHrux_H09_9Dk5WArmudNm7p-lE6pylMAnd3s-mFkIUI7ekbdhZUH3PSLekyXbrJM3C3qTG2SygA3aYYN6bFCPDeqwQR02qMcGDdigDht0wMYmOf46Pjr4FocNNWLN0rSNlU2rRFnLCyWyKsOP-VYwDi9oJVJVVCaB13SUaokiT6rg0sgi0VKLVIKrlyLdIsvNVWO3CbWVHOUQXGtbaAjyuEySXEAoLaxRwkq2Q1g3MqUOavO46clF2dEKz0s3nCUOZ-mHc4fs9Z1mXmzl5b_n3ZCXIV70cWAJMHmp44fXdvxI1gaIfyLL7c2t_UxW9V1bz2--BDj9Ae2OkZo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Square-root+cubature+Kalman+filter+based+power+system+dynamic+state+estimation&rft.jtitle=Sustainable+Energy%2C+Grids+and+Networks&rft.au=Basetti%2C+Vedik&rft.au=Chandel%2C+Ashwani+Kumar&rft.au=Shiva%2C+Chandan+Kumar&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4677&rft.eissn=2352-4677&rft.volume=31&rft_id=info:doi/10.1016%2Fj.segan.2022.100712&rft.externalDocID=S2352467722000571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4677&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4677&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4677&client=summon