A novel approach for Credit-Based Resource Aware Load Balancing algorithm (CB-RALB-SA) for scheduling jobs in cloud computing

In recent years, cloud computing has gained popularity, mainly because of its utility and relevance to current technological trends. It is an arrangement that is highly customizable and encapsulated for providing better computational services to its clients worldwide. In the cloud, computing schedul...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Data & knowledge engineering Ročník 145; s. 102138
Hlavní autori: Narwal, Abhikriti, Dhingra, Sunita
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.05.2023
Predmet:
ISSN:0169-023X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, cloud computing has gained popularity, mainly because of its utility and relevance to current technological trends. It is an arrangement that is highly customizable and encapsulated for providing better computational services to its clients worldwide. In the cloud, computing scheduling plays a pivotal role in optimizing resources. A better scheduling algorithm should be efficient and impartial, reducing the makespan time with proper resource utilization. However, most scheduling algorithms customarily lead to less resource utilization, termed load imbalance. The analysis of the existing papers exhibits better Makespan time but cannot guarantee the load-balanced mapping of jobs with proper resource utilization. Therefore, to eliminate the shortcomings of the prevalent/existing algorithms and enhance the performance, CB-RALB-SA, Credit-based Resource Aware Load Balancing scheduling algorithm has been rendered. The proposed work ensures a balanced distribution of tasks based on the capabilities of the resources, which eventually proves sustainable improvement against the existing scheduling algorithms. Therefore, a novel Credit Based Resource Aware Load Balancing Scheduling algorithm (CB-RALB-SA) is proposed. The tasks weighted by the credit-based scheduling algorithm are then mapped to the resources considering each resource’s load and computing capability using FILL and SPILL functions of Resource Aware and Load using Honey bee optimization heuristic algorithm. With the experimental evaluations and results, it has been proved that the proposed approach provides 48.5% better in Processing Time and 16.90 % better results in makespan time than the Existing CBSA-LB algorithm. Thus, it improves the processor’s efficiency while uplifting the whole system’s performance and has saved memory allocated to tasks and RAM.
AbstractList In recent years, cloud computing has gained popularity, mainly because of its utility and relevance to current technological trends. It is an arrangement that is highly customizable and encapsulated for providing better computational services to its clients worldwide. In the cloud, computing scheduling plays a pivotal role in optimizing resources. A better scheduling algorithm should be efficient and impartial, reducing the makespan time with proper resource utilization. However, most scheduling algorithms customarily lead to less resource utilization, termed load imbalance. The analysis of the existing papers exhibits better Makespan time but cannot guarantee the load-balanced mapping of jobs with proper resource utilization. Therefore, to eliminate the shortcomings of the prevalent/existing algorithms and enhance the performance, CB-RALB-SA, Credit-based Resource Aware Load Balancing scheduling algorithm has been rendered. The proposed work ensures a balanced distribution of tasks based on the capabilities of the resources, which eventually proves sustainable improvement against the existing scheduling algorithms. Therefore, a novel Credit Based Resource Aware Load Balancing Scheduling algorithm (CB-RALB-SA) is proposed. The tasks weighted by the credit-based scheduling algorithm are then mapped to the resources considering each resource’s load and computing capability using FILL and SPILL functions of Resource Aware and Load using Honey bee optimization heuristic algorithm. With the experimental evaluations and results, it has been proved that the proposed approach provides 48.5% better in Processing Time and 16.90 % better results in makespan time than the Existing CBSA-LB algorithm. Thus, it improves the processor’s efficiency while uplifting the whole system’s performance and has saved memory allocated to tasks and RAM.
ArticleNumber 102138
Author Narwal, Abhikriti
Dhingra, Sunita
Author_xml – sequence: 1
  givenname: Abhikriti
  surname: Narwal
  fullname: Narwal, Abhikriti
  email: abhikritiin@gmail.com
– sequence: 2
  givenname: Sunita
  surname: Dhingra
  fullname: Dhingra, Sunita
BookMark eNqFkD1PwzAQhj0UibbwC1g8wpDi2EmaDAxpxZdUCamAxGZd7EvrksaV7RYx8N9JWyYGmE56755XumdAeq1tkZCLmI1iFmfXq5GGAO8jzjjvEh6LvEf63aaIGBdvp2Tg_YoxxhOW9slXSVu7w4bCZuMsqCWtraNTh9qEaAIeNZ2jt1unkJYf4JDOLGg6gQZaZdoFhWZhnQnLNb2cTqJ5OZtEz-XVocWrJepts79a2cpT01LV2K2myq4329DlZ-Skhsbj-c8ckte725fpQzR7un-clrNIcSFCVOR5yrFCnWTjYqwYQ10nIq1SxBiUVgkbq5TlcVpzSATPsyqNscirNINCiyQTQyKOvcpZ7x3WcuPMGtynjJncW5MrebAm99bk0VpHFb8oZQIEY9vgwDT_sDdHFru3dgad9MpgqzqvDlWQ2po_-W8rCY1n
CitedBy_id crossref_primary_10_1186_s44147_024_00471_1
crossref_primary_10_1109_ACCESS_2025_3544775
crossref_primary_10_1007_s12008_024_01745_x
crossref_primary_10_1007_s42979_024_03162_z
crossref_primary_10_1016_j_suscom_2025_101138
Cites_doi 10.4236/cn.2014.63021
10.26483/ijarcs.v8i8.4752
10.30534/ijatcse/2020/34922020
10.1007/978-3-319-08156-4_5
10.1016/j.fcij.2018.03.004
10.26483/ijarcs.v9i2.5820
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.datak.2022.102138
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_datak_2022_102138
S0169023X2200129X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSH
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~G-
77I
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c233t-98852ebed46797c00edf435b5ee1acdc407c50815f2a43286b51e98b56a9d3463
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923424900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-023X
IngestDate Sat Nov 29 07:25:03 EST 2025
Tue Nov 18 22:37:02 EST 2025
Sun Apr 06 06:53:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cloud computing
Enhanced multiobjective scheduling algorithm
Resource aware load balancing
Credit based scheduling algorithm
Task scheduling
Virtual machines
Load balancing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c233t-98852ebed46797c00edf435b5ee1acdc407c50815f2a43286b51e98b56a9d3463
ParticipantIDs crossref_primary_10_1016_j_datak_2022_102138
crossref_citationtrail_10_1016_j_datak_2022_102138
elsevier_sciencedirect_doi_10_1016_j_datak_2022_102138
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Data & knowledge engineering
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sutha, Dr Nawaz (b4) 2016
Srichandan, Kumar, Bibhudatta (b1) 2018
S. Javanmardi, M. Shojafar, D. Amendola, N. Cordeschi, H. Liu, A. Abraham, Hybrid Job Scheduling Algorithm for Cloud Computing Environment, in: Proceedings of the Fifth Intern. Conf. on Innov. in Bio-Inspired Computing. and Applied Science, 2014, pp. 43–52.
Vijayalakshmi, Kumar (b2) 2014
Sindhu (b6) 2015
Narwal, Dhingra (b3) 2016; 5
Maqableh, Karajeh (b16) 2014
Narwal, Dhingra (b22) 2018; 9
Raja, Sekar (b14) 2016
Ananth, Chandrasekaran (b12) 2015
Narwal, Dhingra (b20) 2018
Narwal, Dhingra (b23) 2020; 9
Narwal, Dhingra (b10) 2017
Loganathan, Mukherjee (b19) 2015
Kaur, Kaur, Singh (b9) 2017
Bitam (b17) 2012; 18
Hussain, Aleem, Khan, Iqbal, Islam (b7) 2018
Sharma, Tyagi (b5) 2016
Kimpan, Kruekaew (b18) 2016
Lakra, Yadav (b11) 2015
Srichandan, Kumar, Bibhudatta (b15) 2018
Narwal, Dhingra (b21) 2019; 11
Thomas, Krishnalal, Raj (b13) 2015
Bitam (10.1016/j.datak.2022.102138_b17) 2012; 18
Hussain (10.1016/j.datak.2022.102138_b7) 2018
Ananth (10.1016/j.datak.2022.102138_b12) 2015
Maqableh (10.1016/j.datak.2022.102138_b16) 2014
10.1016/j.datak.2022.102138_b8
Narwal (10.1016/j.datak.2022.102138_b22) 2018; 9
Sharma (10.1016/j.datak.2022.102138_b5) 2016
Vijayalakshmi (10.1016/j.datak.2022.102138_b2) 2014
Kaur (10.1016/j.datak.2022.102138_b9) 2017
Narwal (10.1016/j.datak.2022.102138_b3) 2016; 5
Sindhu (10.1016/j.datak.2022.102138_b6) 2015
Sutha (10.1016/j.datak.2022.102138_b4) 2016
Narwal (10.1016/j.datak.2022.102138_b23) 2020; 9
Thomas (10.1016/j.datak.2022.102138_b13) 2015
Srichandan (10.1016/j.datak.2022.102138_b15) 2018
Srichandan (10.1016/j.datak.2022.102138_b1) 2018
Lakra (10.1016/j.datak.2022.102138_b11) 2015
Narwal (10.1016/j.datak.2022.102138_b21) 2019; 11
Narwal (10.1016/j.datak.2022.102138_b10) 2017
Kimpan (10.1016/j.datak.2022.102138_b18) 2016
Raja (10.1016/j.datak.2022.102138_b14) 2016
Loganathan (10.1016/j.datak.2022.102138_b19) 2015
Narwal (10.1016/j.datak.2022.102138_b20) 2018
References_xml – start-page: 157
  year: 2014
  end-page: 161
  ident: b2
  article-title: Investigations on job scheduling algorithms in cloud computing
  publication-title: Int. J. Adv. Res. Comput. Sci. Technol.
– volume: 9
  start-page: 00
  year: 2018
  ident: b22
  article-title: Analytical review of load balancing techniques in cloud computing
  publication-title: Int. J. Adv. Res. Comput. Sci.
– start-page: 61
  year: 2016
  end-page: 66
  ident: b4
  article-title: Research perspective of job scheduling in cloud computing
  publication-title: International Conference on Advanced Computing
– year: 2018
  ident: b7
  article-title: RALBA: A Computation-Aware Load Balancing Scheduler for Cloud Computing
– start-page: 110
  year: 2018
  end-page: 121
  ident: b20
  article-title: Enhanced task scheduling algorithm using multiobjective function for cloud computing framework
  publication-title: NGCT 2017, vol. 827
– start-page: 191
  year: 2014
  end-page: 200
  ident: b16
  article-title: Job scheduling for cloud computing using neural networks
  publication-title: Commun. Netw.
– start-page: 147
  year: 2015
  end-page: 156
  ident: b12
  article-title: Cooperative game theoretic approach for job scheduling in cloud computing
  publication-title: Conference on Computing and Network Communications
– reference: S. Javanmardi, M. Shojafar, D. Amendola, N. Cordeschi, H. Liu, A. Abraham, Hybrid Job Scheduling Algorithm for Cloud Computing Environment, in: Proceedings of the Fifth Intern. Conf. on Innov. in Bio-Inspired Computing. and Applied Science, 2014, pp. 43–52.
– start-page: 210
  year: 2018
  end-page: 230
  ident: b15
  article-title: Task scheduling for cloud computing using multiobjective hybrid bacteria foraging algorithm science direct
  publication-title: Future Comput. Inform. J.
– start-page: 210
  year: 2018
  end-page: 230
  ident: b1
  article-title: Task scheduling for cloud computing using multiobjective hybrid bacteria foraging algorithm science direct
  publication-title: Future Comput. Inf. J.
– start-page: 107
  year: 2015
  end-page: 113
  ident: b11
  article-title: Multiobjective tasks scheduling algorithm for cloud computing throughput optimization
  publication-title: International Conference on Intelligent Computing, Communication and Convergence
– volume: 11
  start-page: 2093
  year: 2019
  end-page: 2099
  ident: b21
  article-title: Performance analysis of multi objective algorithms for cloud computing framework
  publication-title: J. Adv. Res. Dyn. Control Syst.
– start-page: 1
  year: 2016
  end-page: 5
  ident: b5
  article-title: Task scheduling in cloud computing
  publication-title: Int. J. Sci. Eng. Res.
– volume: 5
  start-page: 1
  year: 2016
  end-page: 9
  ident: b3
  article-title: Scheduling techniques in cloud computing framework: A systematic review
  publication-title: Int. J. Adv. Stud. Comput. Sci. Eng.
– start-page: 913
  year: 2015
  end-page: 920
  ident: b13
  article-title: Credit based scheduling algorithm in cloud computing environment
  publication-title: International Conference on Information and Communication Technologies
– start-page: 227
  year: 2017
  end-page: 238
  ident: b10
  article-title: Task scheduling algorithm using multiobjective functions for cloud computing environment
  publication-title: Int. J. Control Theory Appl.
– start-page: 412
  year: 2017
  end-page: 415
  ident: b9
  article-title: Challenges to task and workflow scheduling in cloud environment
  publication-title: Int. J. Adv. Res. Comput. Sci.
– volume: 9
  start-page: 1121
  year: 2020
  end-page: 1127
  ident: b23
  article-title: Credit based scheduling with load balancing in cloud environment
  publication-title: Int. J. Adv. Trends Comput. Sci. Eng.
– start-page: 70
  year: 2016
  end-page: 76
  ident: b14
  article-title: An algorithm for credit based scheduling in cloud computing environment depending upon deadline strategy
  publication-title: Int. J. Curr. Trends Eng. Res.
– start-page: 3019
  year: 2015
  end-page: 3023
  ident: b6
  article-title: Task scheduling in cloud computing
  publication-title: Int. J. Adv. Res. Comput. Eng. Technol.
– volume: 18
  start-page: 6
  year: 2012
  end-page: 191
  ident: b17
  article-title: Bees life algorithm for job scheduling in cloud computing
  publication-title: ICCIT
– start-page: 281
  year: 2016
  end-page: 286
  ident: b18
  article-title: Heuristic task scheduling with artificial bee colony algorithm for virtual machines
  publication-title: International Conference on Soft Computing and Intelligent Systems
– start-page: 1
  year: 2015
  end-page: 11
  ident: b19
  article-title: Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter
– start-page: 913
  year: 2015
  ident: 10.1016/j.datak.2022.102138_b13
  article-title: Credit based scheduling algorithm in cloud computing environment
– volume: 11
  start-page: 2093
  issue: Special Issue-05
  year: 2019
  ident: 10.1016/j.datak.2022.102138_b21
  article-title: Performance analysis of multi objective algorithms for cloud computing framework
  publication-title: J. Adv. Res. Dyn. Control Syst.
– start-page: 147
  year: 2015
  ident: 10.1016/j.datak.2022.102138_b12
  article-title: Cooperative game theoretic approach for job scheduling in cloud computing
– start-page: 191
  year: 2014
  ident: 10.1016/j.datak.2022.102138_b16
  article-title: Job scheduling for cloud computing using neural networks
  publication-title: Commun. Netw.
  doi: 10.4236/cn.2014.63021
– start-page: 412
  year: 2017
  ident: 10.1016/j.datak.2022.102138_b9
  article-title: Challenges to task and workflow scheduling in cloud environment
  publication-title: Int. J. Adv. Res. Comput. Sci.
  doi: 10.26483/ijarcs.v8i8.4752
– start-page: 227
  year: 2017
  ident: 10.1016/j.datak.2022.102138_b10
  article-title: Task scheduling algorithm using multiobjective functions for cloud computing environment
  publication-title: Int. J. Control Theory Appl.
– start-page: 3019
  year: 2015
  ident: 10.1016/j.datak.2022.102138_b6
  article-title: Task scheduling in cloud computing
  publication-title: Int. J. Adv. Res. Comput. Eng. Technol.
– volume: 5
  start-page: 1
  issue: 7
  year: 2016
  ident: 10.1016/j.datak.2022.102138_b3
  article-title: Scheduling techniques in cloud computing framework: A systematic review
  publication-title: Int. J. Adv. Stud. Comput. Sci. Eng.
– volume: 9
  start-page: 1121
  issue: 2
  year: 2020
  ident: 10.1016/j.datak.2022.102138_b23
  article-title: Credit based scheduling with load balancing in cloud environment
  publication-title: Int. J. Adv. Trends Comput. Sci. Eng.
  doi: 10.30534/ijatcse/2020/34922020
– start-page: 70
  year: 2016
  ident: 10.1016/j.datak.2022.102138_b14
  article-title: An algorithm for credit based scheduling in cloud computing environment depending upon deadline strategy
  publication-title: Int. J. Curr. Trends Eng. Res.
– volume: 18
  start-page: 6
  year: 2012
  ident: 10.1016/j.datak.2022.102138_b17
  article-title: Bees life algorithm for job scheduling in cloud computing
  publication-title: ICCIT
– start-page: 1
  year: 2016
  ident: 10.1016/j.datak.2022.102138_b5
  article-title: Task scheduling in cloud computing
  publication-title: Int. J. Sci. Eng. Res.
– ident: 10.1016/j.datak.2022.102138_b8
  doi: 10.1007/978-3-319-08156-4_5
– start-page: 210
  year: 2018
  ident: 10.1016/j.datak.2022.102138_b1
  article-title: Task scheduling for cloud computing using multiobjective hybrid bacteria foraging algorithm science direct
  publication-title: Future Comput. Inf. J.
  doi: 10.1016/j.fcij.2018.03.004
– start-page: 210
  year: 2018
  ident: 10.1016/j.datak.2022.102138_b15
  article-title: Task scheduling for cloud computing using multiobjective hybrid bacteria foraging algorithm science direct
  publication-title: Future Comput. Inform. J.
  doi: 10.1016/j.fcij.2018.03.004
– start-page: 107
  year: 2015
  ident: 10.1016/j.datak.2022.102138_b11
  article-title: Multiobjective tasks scheduling algorithm for cloud computing throughput optimization
– volume: 9
  start-page: 00
  issue: 2
  year: 2018
  ident: 10.1016/j.datak.2022.102138_b22
  article-title: Analytical review of load balancing techniques in cloud computing
  publication-title: Int. J. Adv. Res. Comput. Sci.
  doi: 10.26483/ijarcs.v9i2.5820
– start-page: 1
  year: 2015
  ident: 10.1016/j.datak.2022.102138_b19
– start-page: 157
  year: 2014
  ident: 10.1016/j.datak.2022.102138_b2
  article-title: Investigations on job scheduling algorithms in cloud computing
  publication-title: Int. J. Adv. Res. Comput. Sci. Technol.
– start-page: 281
  year: 2016
  ident: 10.1016/j.datak.2022.102138_b18
  article-title: Heuristic task scheduling with artificial bee colony algorithm for virtual machines
– start-page: 61
  year: 2016
  ident: 10.1016/j.datak.2022.102138_b4
  article-title: Research perspective of job scheduling in cloud computing
– year: 2018
  ident: 10.1016/j.datak.2022.102138_b7
– start-page: 110
  year: 2018
  ident: 10.1016/j.datak.2022.102138_b20
  article-title: Enhanced task scheduling algorithm using multiobjective function for cloud computing framework
SSID ssj0002405
Score 2.3902144
Snippet In recent years, cloud computing has gained popularity, mainly because of its utility and relevance to current technological trends. It is an arrangement that...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102138
SubjectTerms Cloud computing
Credit based scheduling algorithm
Enhanced multiobjective scheduling algorithm
Load balancing
Resource aware load balancing
Task scheduling
Virtual machines
Title A novel approach for Credit-Based Resource Aware Load Balancing algorithm (CB-RALB-SA) for scheduling jobs in cloud computing
URI https://dx.doi.org/10.1016/j.datak.2022.102138
Volume 145
WOSCitedRecordID wos000923424900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  issn: 0169-023X
  databaseCode: AIEXJ
  dateStart: 20220301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002405
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  issn: 0169-023X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002405
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKlwMXvhHLl3zgACqRGrtJ7GO6LAJUrRC7oNyC4zi77YakCml3L_x3xnbiFopWgMQlqqJ4EvW9eMYvM2OEnoMHKvKChR4TIfVg_ZV5GdNf4XOlCsZExIze8XkWHR2xJOEfBoMvfS3Muoyqil1e8uV_hRrOAdi6dPYv4HZG4QT8BtDhCLDD8Y-Aj0dVvVal6xZuEgkPGnBSrTcFn5U7yX4UX-i8r1kt8tFUpzhKU7FYntbNvD37aj7wTr2P8WzqHcdaPtCWYDUM3skUsS_qzGTTyrJemeK45artPWEX774WrTDsctrdSG06IDolWjQXwmYLZGfzc91nyQXYWiEzeyHBHAfTj9iWKchWUqDVznbqZ6ycGXIPLk5-mo9tf8mdud3KDAt9C3EOK3tCdN8J3zaH-aVp9rG2rA0TYqS25BraI1HA2RDtxe8Ok_fOW0NEY9NcuyfpO1OZHMCdW_0-etmKSE5uo5vdUgLHlgJ30EBVd9GtfpsO3M3a99D3GBtG4J4RGHDE24zAPSOwYQTWjMCOEdgxAr_Y8OGlsbJhA9ZswPMKGzZgx4b76NObw5ODt16364YnCaWtxxkLCLzaObhQHsnxWOUFxNRZoJQvZC4n40hCVO8HBRETSliYBb7iLAtCwXM6CekDNKzqSj1E2Bc05yLLi4ipSRRmGQ11ORKXlFFFCd9HpP83U9m1pNc7o5Rpn3u4SA0EqYYgtRDso1du0NJ2ZLn68rCHKe2CShsspsCrqwY--teBj9GNzQvwBA3bZqWeouty3c6_Nc86_v0ACjubWg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+for+Credit-Based+Resource+Aware+Load+Balancing+algorithm+%28CB-RALB-SA%29+for+scheduling+jobs+in+cloud+computing&rft.jtitle=Data+%26+knowledge+engineering&rft.au=Narwal%2C+Abhikriti&rft.au=Dhingra%2C+Sunita&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=0169-023X&rft.volume=145&rft_id=info:doi/10.1016%2Fj.datak.2022.102138&rft.externalDocID=S0169023X2200129X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-023X&client=summon