Periodic solutions of nonlinear ordinary differential equations computed by a boundary shape function method and a generalized derivative-free Newton method

In the paper, the period of an n-dimensional nonlinear dynamical system is computed by a formula derived in an (n+1)-dimensional augmented state space. The periodic conditions and nonlinear first-order ordinary differential equations constitute a specific periodic boundary value problem within a tim...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mechanical systems and signal processing Ročník 184; s. 109712
Hlavní autori: Liu, Chein-Shan, Chang, Chih-Wen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2023
Predmet:
ISSN:0888-3270, 1096-1216
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the paper, the period of an n-dimensional nonlinear dynamical system is computed by a formula derived in an (n+1)-dimensional augmented state space. The periodic conditions and nonlinear first-order ordinary differential equations constitute a specific periodic boundary value problem within a time interval, whose length is an unknown finite constant. Two periodic problems are considered: (I) boundary values are given and (II) boundary values are unknown. A boundary shape function method (BSFM), using the derived shape functions, is devised to an initial value problem with the initial values of new variables given, whereas the terminal values and period are determined by iterative algorithms. The periodic solutions obtained by the BSFM satisfy the periodic conditions automatically. For the sake of comparison, the iterative algorithms based on the shooting method are developed, directly implementing the Poincaré map with the fictitious time integration method to determine the periodic solutions, where the periodic conditions are transformed to a mathematically equivalent scalar equation. Owing to the implicit, non-differentiable and nonlinear property of the scalar equation, we develop a generalized derivative-free Newton method (GDFNM) to solve the periodic problem of case (I), which can pick up very accurate period through a few iterations. In numerical examples the computed order of convergence displays the merit of the proposed iterative algorithms. The BSFM and GDFNM are better than the shooting method from the aspects of convergence speed, accuracy and stability. A conventional Poincaré mapping method is introduced to solve the periodic problems with the same parameters. The BSFM converges faster and more accurate than the Poincaré mapping method and is less sensitive to the initial guesses of initial values and period. •The novel schemes are different from the conventional methods.•The computed order of convergence displays the merit of the proposed algorithms.•The BSFM and GDFNM are better than the shooting method.
AbstractList In the paper, the period of an n-dimensional nonlinear dynamical system is computed by a formula derived in an (n+1)-dimensional augmented state space. The periodic conditions and nonlinear first-order ordinary differential equations constitute a specific periodic boundary value problem within a time interval, whose length is an unknown finite constant. Two periodic problems are considered: (I) boundary values are given and (II) boundary values are unknown. A boundary shape function method (BSFM), using the derived shape functions, is devised to an initial value problem with the initial values of new variables given, whereas the terminal values and period are determined by iterative algorithms. The periodic solutions obtained by the BSFM satisfy the periodic conditions automatically. For the sake of comparison, the iterative algorithms based on the shooting method are developed, directly implementing the Poincaré map with the fictitious time integration method to determine the periodic solutions, where the periodic conditions are transformed to a mathematically equivalent scalar equation. Owing to the implicit, non-differentiable and nonlinear property of the scalar equation, we develop a generalized derivative-free Newton method (GDFNM) to solve the periodic problem of case (I), which can pick up very accurate period through a few iterations. In numerical examples the computed order of convergence displays the merit of the proposed iterative algorithms. The BSFM and GDFNM are better than the shooting method from the aspects of convergence speed, accuracy and stability. A conventional Poincaré mapping method is introduced to solve the periodic problems with the same parameters. The BSFM converges faster and more accurate than the Poincaré mapping method and is less sensitive to the initial guesses of initial values and period. •The novel schemes are different from the conventional methods.•The computed order of convergence displays the merit of the proposed algorithms.•The BSFM and GDFNM are better than the shooting method.
ArticleNumber 109712
Author Chang, Chih-Wen
Liu, Chein-Shan
Author_xml – sequence: 1
  givenname: Chein-Shan
  surname: Liu
  fullname: Liu, Chein-Shan
  organization: Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
– sequence: 2
  givenname: Chih-Wen
  orcidid: 0000-0001-9846-0694
  surname: Chang
  fullname: Chang, Chih-Wen
  email: cwchang@nuu.edu.tw
  organization: Department of Mechanical Engineering, National United University, Miaoli 36063, Taiwan
BookMark eNqFkM1OAyEURompiW31CdzwAlOBmU6nCxem8S9p1IWuyR24Y2mmUIGpqc_iw0pb48KFLgiEfOe7uWdAetZZJOScsxFnvLxYjrarENYjwYRIP9MJF0eknx5lxgUve6TPqqrKcjFhJ2QQwpIxNi1Y2SefT-iN00bR4NouGmcDdQ1N_a2xCJ46r40Fv6XaNA16tNFAS_Gtg0NYudW6i6hpvaVAa9dZvUuHBayRNp1VuxhdYVw4TcGmQ1_RoofWfCRKp_GbVLXBrPGI9AHf40_-lBw30AY8-76H5OXm-nl2l80fb-9nV_NMiTyP2QTVWIlajIHxAuu8gqosRV2NNZ8icFbnMGHAQeQCADQUtSgKVStQnDENOh-S6aFXeReCx0YqE_f7RQ-mlZzJnWa5lHvNcqdZHjQnNv_Frr1ZJQX_UJcHCtNaG4NeBmXQKtTGo4pSO_Mn_wVqOaBo
CitedBy_id crossref_primary_10_1115_1_4069598
crossref_primary_10_3390_math11183997
crossref_primary_10_3390_vibration8030045
Cites_doi 10.1016/j.chaos.2006.05.072
10.3390/math9233070
10.5539/jmr.v13n6p10
10.1016/0020-7462(71)90010-2
10.1007/s11071-014-1391-4
10.1016/j.matcom.2021.06.019
10.1016/j.ymssp.2022.109261
10.3390/sym14071313
10.1142/S0218127499001024
10.1007/s11071-013-0813-z
10.1016/j.aml.2019.106151
10.1016/j.matcom.2011.05.007
10.1016/j.jcp.2005.10.026
10.1016/j.ymssp.2020.107157
10.3390/sym14040778
10.1016/j.ijnonlinmec.2006.01.006
10.1016/S0020-7462(98)00048-1
10.1515/ijnsns-2019-0209
10.1016/j.jsv.2006.03.047
10.1016/S0020-7462(00)00069-X
10.1016/j.camwa.2009.03.034
10.1137/S0036144500375292
10.1504/IJANS.2016.085806
10.2307/2373181
10.1006/jsvi.1996.0228
10.1080/10407790.2020.1713623
10.1016/j.jsv.2007.05.021
10.1016/0022-247X(86)90076-4
10.1016/S0893-9659(00)00100-2
10.1016/S0020-7462(98)00085-7
10.1016/S0167-2789(02)00603-6
10.1186/s13661-020-01436-y
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ymssp.2022.109712
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2022_109712
S0888327022007877
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
ID FETCH-LOGICAL-c233t-7ec5c2b25a014eb38a8662b85d19ea10b3a70a1a232aaada4b244cbcac100dad3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000877454800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Sat Nov 29 07:15:47 EST 2025
Tue Nov 18 22:30:38 EST 2025
Fri Feb 23 02:37:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Boundary shape function method
Iterative algorithm
Nonlinear dynamical system
Periodic solution
Generalized derivative-free Newton method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c233t-7ec5c2b25a014eb38a8662b85d19ea10b3a70a1a232aaada4b244cbcac100dad3
ORCID 0000-0001-9846-0694
ParticipantIDs crossref_citationtrail_10_1016_j_ymssp_2022_109712
crossref_primary_10_1016_j_ymssp_2022_109712
elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_109712
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Benterki, Llibre (b20) 2019; 1
Liu, Atluri (b28) 2008; 31
He (b8) 1999; 34
Thompson, Stewart (b39) 1986
Liu (b33) 2006; 12
Liu, Chang, Chen, Chang (b27) 2022; 14
Liu, Kuo, Chang (b26) 2021; 148
Yue, Dai, Liu (b16) 2014; 77
Liu, Chang (b25) 2020; 21
Koroglu, Ozis (b13) 2011; 75
Chu, Lo (b15) 2011; 77
Liu, Chen (b2) 2021; 9
Liu, Chang (b21) 2020; 102
Weerakoon, Fernando (b32) 2000; 13
Liu (b12) 2021; 13
Mulholland (b36) 1971; 6
Tucker (b40) 2002; 171
Waldvogel (b34) 1986; 114
Gottlieb (b37) 2006; 297
Viswanath (b3) 2001; 43
Liu, Chang (b31) 2022; 14
Nayfeh, Balachandran (b46) 1995
Liu, Chang (b4) 2022; 178
Sanz-Serna, Calvo (b42) 1994
Donescu, Virgin, Wu (b5) 1996; 192
Liu, Qiu, Lin (b23) 2020; 77
He, Abdou (b14) 2007; 34
Arnold, Kozlov, Neishtadt (b44) 1993
He (b10) 2000; 35
Liu (b47) 2001; 36
Chen, Ueta (b38) 1999; 9
Arnold (b43) 1989
Dai, Schnoor, Atluri (b17) 2012; 84
Shou (b11) 2009; 58
Dai, Yue, Yuan (b18) 2013; 73
Liu, Hong, Lee (b30) 2021; 190
Parker, Chua (b29) 1989
Rothe (b35) 1985; 355
Liu, Chang (b24) 2020; 2020
Khan, Liu, Riaz (b19) 2016; 2
Calvo, Laburta, Montijano, Randez (b41) 2011; 81
Wu, Sun, Lim (b6) 2006; 41
Liu, Kuo, Chang (b22) 2020; 122
Farkas (b1) 1994
Ozis, Yildirim (b9) 2007; 306
Liu, Thomas, Dowell, Attar, Hall (b7) 2006; 215
Arenstorf (b45) 1963; 85
Liu (10.1016/j.ymssp.2022.109712_b21) 2020; 102
Liu (10.1016/j.ymssp.2022.109712_b33) 2006; 12
Mulholland (10.1016/j.ymssp.2022.109712_b36) 1971; 6
Chu (10.1016/j.ymssp.2022.109712_b15) 2011; 77
Chen (10.1016/j.ymssp.2022.109712_b38) 1999; 9
Liu (10.1016/j.ymssp.2022.109712_b28) 2008; 31
Gottlieb (10.1016/j.ymssp.2022.109712_b37) 2006; 297
Viswanath (10.1016/j.ymssp.2022.109712_b3) 2001; 43
Liu (10.1016/j.ymssp.2022.109712_b4) 2022; 178
Liu (10.1016/j.ymssp.2022.109712_b30) 2021; 190
Farkas (10.1016/j.ymssp.2022.109712_b1) 1994
Rothe (10.1016/j.ymssp.2022.109712_b35) 1985; 355
Thompson (10.1016/j.ymssp.2022.109712_b39) 1986
Tucker (10.1016/j.ymssp.2022.109712_b40) 2002; 171
Liu (10.1016/j.ymssp.2022.109712_b31) 2022; 14
Liu (10.1016/j.ymssp.2022.109712_b26) 2021; 148
Waldvogel (10.1016/j.ymssp.2022.109712_b34) 1986; 114
Liu (10.1016/j.ymssp.2022.109712_b25) 2020; 21
Ozis (10.1016/j.ymssp.2022.109712_b9) 2007; 306
Dai (10.1016/j.ymssp.2022.109712_b17) 2012; 84
Weerakoon (10.1016/j.ymssp.2022.109712_b32) 2000; 13
Liu (10.1016/j.ymssp.2022.109712_b47) 2001; 36
He (10.1016/j.ymssp.2022.109712_b8) 1999; 34
Liu (10.1016/j.ymssp.2022.109712_b12) 2021; 13
Liu (10.1016/j.ymssp.2022.109712_b2) 2021; 9
Arenstorf (10.1016/j.ymssp.2022.109712_b45) 1963; 85
Benterki (10.1016/j.ymssp.2022.109712_b20) 2019; 1
He (10.1016/j.ymssp.2022.109712_b10) 2000; 35
Yue (10.1016/j.ymssp.2022.109712_b16) 2014; 77
Arnold (10.1016/j.ymssp.2022.109712_b43) 1989
He (10.1016/j.ymssp.2022.109712_b14) 2007; 34
Dai (10.1016/j.ymssp.2022.109712_b18) 2013; 73
Arnold (10.1016/j.ymssp.2022.109712_b44) 1993
Shou (10.1016/j.ymssp.2022.109712_b11) 2009; 58
Liu (10.1016/j.ymssp.2022.109712_b27) 2022; 14
Parker (10.1016/j.ymssp.2022.109712_b29) 1989
Liu (10.1016/j.ymssp.2022.109712_b22) 2020; 122
Liu (10.1016/j.ymssp.2022.109712_b7) 2006; 215
Liu (10.1016/j.ymssp.2022.109712_b24) 2020; 2020
Nayfeh (10.1016/j.ymssp.2022.109712_b46) 1995
Koroglu (10.1016/j.ymssp.2022.109712_b13) 2011; 75
Donescu (10.1016/j.ymssp.2022.109712_b5) 1996; 192
Calvo (10.1016/j.ymssp.2022.109712_b41) 2011; 81
Khan (10.1016/j.ymssp.2022.109712_b19) 2016; 2
Liu (10.1016/j.ymssp.2022.109712_b23) 2020; 77
Wu (10.1016/j.ymssp.2022.109712_b6) 2006; 41
Sanz-Serna (10.1016/j.ymssp.2022.109712_b42) 1994
References_xml – volume: 81
  start-page: 2646
  year: 2011
  end-page: 2661
  ident: b41
  article-title: Error growth in the numerical integration of periodic orbits
  publication-title: Math. Comput. Simulation
– volume: 77
  start-page: 1455
  year: 2014
  end-page: 1468
  ident: b16
  article-title: Optimal scale polynomial interpolation technique for obtaining periodic solutions to the duffing oscillator
  publication-title: Nonlinear Dynam.
– volume: 192
  start-page: 959
  year: 1996
  end-page: 976
  ident: b5
  article-title: Periodic solutions of an unsymmetric oscillator including a comprehensive study of their stability characteristics
  publication-title: J. Sound Vib.
– volume: 122
  start-page: 33
  year: 2020
  end-page: 48
  ident: b22
  article-title: Solving the optimal control problems of nonlinear duffing oscillators by using an iterative shape functions method
  publication-title: Comput. Model. Eng. Sci.
– volume: 21
  start-page: 797
  year: 2020
  end-page: 806
  ident: b25
  article-title: Boundary shape functions methods for solving the nonlinear singularly perturbed problems with robin boundary conditions
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
– volume: 31
  start-page: 71
  year: 2008
  end-page: 83
  ident: b28
  article-title: A novel time integration method for solving a large system of non-linear algebraic equations
  publication-title: Comput. Model. Eng. Sci.
– volume: 58
  start-page: 2456
  year: 2009
  end-page: 2459
  ident: b11
  article-title: The homotopy perturbation method for nonlinear oscillators
  publication-title: Comput. Math. Appl.
– volume: 77
  start-page: 311
  year: 2020
  end-page: 327
  ident: b23
  article-title: Solving heat equations under convection boundary conditions by a high-performance space–time boundary shape functions method
  publication-title: Numer. Heat Transfer B
– volume: 306
  start-page: 372
  year: 2007
  end-page: 376
  ident: b9
  article-title: A study of nonlinear oscillators with
  publication-title: J. Sound Vib.
– volume: 2
  start-page: 290
  year: 2016
  end-page: 310
  ident: b19
  article-title: An optimally scaled polynomial-Fourier-series method for the numerical solution of the duffing oscillator
  publication-title: Int. J. Appl. Nonlinear Sci.
– volume: 36
  start-page: 1047
  year: 2001
  end-page: 1068
  ident: b47
  article-title: Cone of non-linear dynamical system and group preserving schemes
  publication-title: Int. J. Non-Linear Mech.
– volume: 1
  start-page: 11
  year: 2019
  end-page: 26
  ident: b20
  article-title: Periodic solutions of the duffing differential equation revisited via the averaging theory
  publication-title: J. Nonlinear Model. Anal.
– volume: 43
  start-page: 478
  year: 2001
  end-page: 495
  ident: b3
  article-title: The Lindstedt-Poincaré technique as an algorithm for computing periodic orbits
  publication-title: SIAM Rev.
– volume: 75
  start-page: 223
  year: 2011
  end-page: 234
  ident: b13
  article-title: Applications of parameter-expanding method to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable or in form of rational function of dependent variable
  publication-title: Comput. Model. Eng. Sci.
– year: 1994
  ident: b42
  article-title: Numerical Hamiltonian Problems
– year: 1993
  ident: b44
  article-title: Mathematical Aspects of Classical and Celestial Mechanics
– volume: 12
  start-page: 83
  year: 2006
  end-page: 107
  ident: b33
  article-title: Preserving constraints of differential equations by numerical methods based on integrating factors
  publication-title: Comput. Model. Eng. Sci.
– volume: 41
  start-page: 766
  year: 2006
  end-page: 774
  ident: b6
  article-title: An analytical approximate technique for a class of strongly non-linear oscillators
  publication-title: Int. J. Non-Linear Mech.
– volume: 2020
  start-page: 139
  year: 2020
  ident: b24
  article-title: Boundary shape function method for nonlinear BVP, automatically satisfying prescribed multipoint boundary conditions
  publication-title: Bound. Value Probl.
– volume: 77
  start-page: 161
  year: 2011
  end-page: 172
  ident: b15
  article-title: Application of the differential transform method for solving periodic solutions of strongly non-linear oscillators
  publication-title: Comput. Model. Eng. Sci.
– volume: 178
  year: 2022
  ident: b4
  article-title: A novel perturbation method to approximate the solution of nonlinear ordinary differential equation after being linearized to the Mathieu equation
  publication-title: Mech. Syst. Signal Process
– year: 1995
  ident: b46
  article-title: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
– year: 1994
  ident: b1
  article-title: Periodic Motions
– volume: 13
  start-page: 87
  year: 2000
  end-page: 93
  ident: b32
  article-title: A variant of Newton’s method with accelerated third-order convergence
  publication-title: Appl. Math. Lett.
– volume: 171
  start-page: 127
  year: 2002
  end-page: 1377
  ident: b40
  article-title: Computing accurate Poincaré maps
  publication-title: Physica D
– volume: 355
  start-page: 129
  year: 1985
  end-page: 138
  ident: b35
  article-title: The periods of the Volterra-Lotka system
  publication-title: J. Reine Angew. Math.
– volume: 14
  start-page: 778
  year: 2022
  ident: b31
  article-title: Lie-group shooting/boundary shape function methods for solving nonlinear boundary value problems
  publication-title: Symmetry
– volume: 190
  start-page: 837
  year: 2021
  end-page: 847
  ident: b30
  article-title: A splitting method to solve a single nonlinear equation with derivative-free iterative schemes
  publication-title: Math. Comput. Simulation
– volume: 297
  start-page: 243
  year: 2006
  end-page: 250
  ident: b37
  article-title: Harmonic balance approach to limit cycles for nonlinear jerk equations
  publication-title: J. Sound Vib.
– year: 1986
  ident: b39
  article-title: Nonlinear Dynamics and Chaos
– volume: 114
  start-page: 178
  year: 1986
  end-page: 184
  ident: b34
  article-title: The period in the Lotka–Volterra system is monotonic
  publication-title: J. Math. Anal. Appl.
– volume: 35
  start-page: 37
  year: 2000
  end-page: 43
  ident: b10
  article-title: A coupling method of a homotopy technique and a perturbation technique for non-linear problems
  publication-title: Int. J. Non-Linear Mech.
– volume: 34
  start-page: 1421
  year: 2007
  end-page: 1429
  ident: b14
  article-title: New periodic solutions for nonlinear evolution equations using exp-function method
  publication-title: Chaos Solitons Fractals
– year: 1989
  ident: b29
  article-title: Practical Numerical Algorithms for Chaotic Systems
– volume: 6
  start-page: 279
  year: 1971
  end-page: 294
  ident: b36
  article-title: Non-linear oscillations of a third order differential equation
  publication-title: Int. J. Non-Linear Mech.
– volume: 102
  year: 2020
  ident: b21
  article-title: The periods and periodic solutions of nonlinear jerk equations solved by an iterative algorithm based on a shape function method
  publication-title: Appl. Math. Lett.
– volume: 9
  start-page: 1465
  year: 1999
  end-page: 1466
  ident: b38
  article-title: Yet another chaotic attractor
  publication-title: Int. J. Bifurcation Chaos
– volume: 34
  start-page: 699
  year: 1999
  end-page: 708
  ident: b8
  article-title: Variational iteration method – a kind of non-linear analytic technique: some examples
  publication-title: Int. J. Non-Linear Mech.
– volume: 14
  start-page: 1313
  year: 2022
  ident: b27
  article-title: Periodic orbits of nonlinear ordinary differential equations computed by a boundary shape function method
  publication-title: Symmetry
– volume: 84
  start-page: 459
  year: 2012
  end-page: 497
  ident: b17
  article-title: A simple collocation scheme for obtaining the periodic solutions of the duffing equation, and its equivalence to the high dimensional harmonic balance method: subharmonic oscillations
  publication-title: Comput. Model. Eng. Sci.
– volume: 148
  year: 2021
  ident: b26
  article-title: Recovering external forces on vibrating Euler–Bernoulli beams using boundary shape function methods
  publication-title: Mech. Syst. Signal Process
– volume: 13
  start-page: 10
  year: 2021
  end-page: 19
  ident: b12
  article-title: Linearized homotopy perturbation method for two nonlinear problems of duffing equations
  publication-title: J. Math. Res.
– year: 1989
  ident: b43
  article-title: Mathematical Methods of Classical Mechanics
– volume: 215
  start-page: 298
  year: 2006
  end-page: 320
  ident: b7
  article-title: A comparison of classical and high dimension harmonic balance approaches for a duffing oscillator
  publication-title: J. Comput. Phys.
– volume: 85
  start-page: 27
  year: 1963
  end-page: 35
  ident: b45
  article-title: Periodic solutions of the restricted three body problem representing analytic continuations of Keplerian elliptic motions
  publication-title: Amer. J. Math.
– volume: 9
  start-page: 3070
  year: 2021
  ident: b2
  article-title: A simplified Lindstedt-Poincaré method for saving computational cost to determine higher order nonlinear free vibrations
  publication-title: Mathematics
– volume: 73
  start-page: 593
  year: 2013
  end-page: 609
  ident: b18
  article-title: A time domain collocation method for obtaining the third superharmonic solutions to the duffing oscillator
  publication-title: Nonlinear Dynam.
– volume: 34
  start-page: 1421
  year: 2007
  ident: 10.1016/j.ymssp.2022.109712_b14
  article-title: New periodic solutions for nonlinear evolution equations using exp-function method
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.05.072
– volume: 9
  start-page: 3070
  year: 2021
  ident: 10.1016/j.ymssp.2022.109712_b2
  article-title: A simplified Lindstedt-Poincaré method for saving computational cost to determine higher order nonlinear free vibrations
  publication-title: Mathematics
  doi: 10.3390/math9233070
– volume: 13
  start-page: 10
  issue: 6
  year: 2021
  ident: 10.1016/j.ymssp.2022.109712_b12
  article-title: Linearized homotopy perturbation method for two nonlinear problems of duffing equations
  publication-title: J. Math. Res.
  doi: 10.5539/jmr.v13n6p10
– volume: 6
  start-page: 279
  year: 1971
  ident: 10.1016/j.ymssp.2022.109712_b36
  article-title: Non-linear oscillations of a third order differential equation
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/0020-7462(71)90010-2
– volume: 77
  start-page: 1455
  year: 2014
  ident: 10.1016/j.ymssp.2022.109712_b16
  article-title: Optimal scale polynomial interpolation technique for obtaining periodic solutions to the duffing oscillator
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-014-1391-4
– volume: 190
  start-page: 837
  year: 2021
  ident: 10.1016/j.ymssp.2022.109712_b30
  article-title: A splitting method to solve a single nonlinear equation with derivative-free iterative schemes
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2021.06.019
– volume: 122
  start-page: 33
  year: 2020
  ident: 10.1016/j.ymssp.2022.109712_b22
  article-title: Solving the optimal control problems of nonlinear duffing oscillators by using an iterative shape functions method
  publication-title: Comput. Model. Eng. Sci.
– volume: 178
  year: 2022
  ident: 10.1016/j.ymssp.2022.109712_b4
  article-title: A novel perturbation method to approximate the solution of nonlinear ordinary differential equation after being linearized to the Mathieu equation
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2022.109261
– volume: 14
  start-page: 1313
  year: 2022
  ident: 10.1016/j.ymssp.2022.109712_b27
  article-title: Periodic orbits of nonlinear ordinary differential equations computed by a boundary shape function method
  publication-title: Symmetry
  doi: 10.3390/sym14071313
– volume: 9
  start-page: 1465
  year: 1999
  ident: 10.1016/j.ymssp.2022.109712_b38
  article-title: Yet another chaotic attractor
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127499001024
– volume: 77
  start-page: 161
  year: 2011
  ident: 10.1016/j.ymssp.2022.109712_b15
  article-title: Application of the differential transform method for solving periodic solutions of strongly non-linear oscillators
  publication-title: Comput. Model. Eng. Sci.
– volume: 73
  start-page: 593
  year: 2013
  ident: 10.1016/j.ymssp.2022.109712_b18
  article-title: A time domain collocation method for obtaining the third superharmonic solutions to the duffing oscillator
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-013-0813-z
– volume: 102
  year: 2020
  ident: 10.1016/j.ymssp.2022.109712_b21
  article-title: The periods and periodic solutions of nonlinear jerk equations solved by an iterative algorithm based on a shape function method
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.106151
– volume: 81
  start-page: 2646
  year: 2011
  ident: 10.1016/j.ymssp.2022.109712_b41
  article-title: Error growth in the numerical integration of periodic orbits
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2011.05.007
– year: 1995
  ident: 10.1016/j.ymssp.2022.109712_b46
– volume: 355
  start-page: 129
  year: 1985
  ident: 10.1016/j.ymssp.2022.109712_b35
  article-title: The periods of the Volterra-Lotka system
  publication-title: J. Reine Angew. Math.
– year: 1986
  ident: 10.1016/j.ymssp.2022.109712_b39
– volume: 1
  start-page: 11
  year: 2019
  ident: 10.1016/j.ymssp.2022.109712_b20
  article-title: Periodic solutions of the duffing differential equation revisited via the averaging theory
  publication-title: J. Nonlinear Model. Anal.
– volume: 215
  start-page: 298
  year: 2006
  ident: 10.1016/j.ymssp.2022.109712_b7
  article-title: A comparison of classical and high dimension harmonic balance approaches for a duffing oscillator
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.10.026
– volume: 148
  year: 2021
  ident: 10.1016/j.ymssp.2022.109712_b26
  article-title: Recovering external forces on vibrating Euler–Bernoulli beams using boundary shape function methods
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2020.107157
– volume: 14
  start-page: 778
  year: 2022
  ident: 10.1016/j.ymssp.2022.109712_b31
  article-title: Lie-group shooting/boundary shape function methods for solving nonlinear boundary value problems
  publication-title: Symmetry
  doi: 10.3390/sym14040778
– volume: 41
  start-page: 766
  year: 2006
  ident: 10.1016/j.ymssp.2022.109712_b6
  article-title: An analytical approximate technique for a class of strongly non-linear oscillators
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2006.01.006
– volume: 84
  start-page: 459
  year: 2012
  ident: 10.1016/j.ymssp.2022.109712_b17
  article-title: A simple collocation scheme for obtaining the periodic solutions of the duffing equation, and its equivalence to the high dimensional harmonic balance method: subharmonic oscillations
  publication-title: Comput. Model. Eng. Sci.
– year: 1994
  ident: 10.1016/j.ymssp.2022.109712_b1
– volume: 75
  start-page: 223
  year: 2011
  ident: 10.1016/j.ymssp.2022.109712_b13
  article-title: Applications of parameter-expanding method to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable or in form of rational function of dependent variable
  publication-title: Comput. Model. Eng. Sci.
– year: 1989
  ident: 10.1016/j.ymssp.2022.109712_b29
– volume: 34
  start-page: 699
  year: 1999
  ident: 10.1016/j.ymssp.2022.109712_b8
  article-title: Variational iteration method – a kind of non-linear analytic technique: some examples
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(98)00048-1
– volume: 21
  start-page: 797
  year: 2020
  ident: 10.1016/j.ymssp.2022.109712_b25
  article-title: Boundary shape functions methods for solving the nonlinear singularly perturbed problems with robin boundary conditions
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2019-0209
– volume: 297
  start-page: 243
  year: 2006
  ident: 10.1016/j.ymssp.2022.109712_b37
  article-title: Harmonic balance approach to limit cycles for nonlinear jerk equations
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2006.03.047
– volume: 36
  start-page: 1047
  year: 2001
  ident: 10.1016/j.ymssp.2022.109712_b47
  article-title: Cone of non-linear dynamical system and group preserving schemes
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(00)00069-X
– volume: 31
  start-page: 71
  year: 2008
  ident: 10.1016/j.ymssp.2022.109712_b28
  article-title: A novel time integration method for solving a large system of non-linear algebraic equations
  publication-title: Comput. Model. Eng. Sci.
– volume: 58
  start-page: 2456
  year: 2009
  ident: 10.1016/j.ymssp.2022.109712_b11
  article-title: The homotopy perturbation method for nonlinear oscillators
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.03.034
– volume: 43
  start-page: 478
  year: 2001
  ident: 10.1016/j.ymssp.2022.109712_b3
  article-title: The Lindstedt-Poincaré technique as an algorithm for computing periodic orbits
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144500375292
– volume: 2
  start-page: 290
  year: 2016
  ident: 10.1016/j.ymssp.2022.109712_b19
  article-title: An optimally scaled polynomial-Fourier-series method for the numerical solution of the duffing oscillator
  publication-title: Int. J. Appl. Nonlinear Sci.
  doi: 10.1504/IJANS.2016.085806
– year: 1989
  ident: 10.1016/j.ymssp.2022.109712_b43
– volume: 85
  start-page: 27
  year: 1963
  ident: 10.1016/j.ymssp.2022.109712_b45
  article-title: Periodic solutions of the restricted three body problem representing analytic continuations of Keplerian elliptic motions
  publication-title: Amer. J. Math.
  doi: 10.2307/2373181
– volume: 192
  start-page: 959
  year: 1996
  ident: 10.1016/j.ymssp.2022.109712_b5
  article-title: Periodic solutions of an unsymmetric oscillator including a comprehensive study of their stability characteristics
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1996.0228
– volume: 77
  start-page: 311
  year: 2020
  ident: 10.1016/j.ymssp.2022.109712_b23
  article-title: Solving heat equations under convection boundary conditions by a high-performance space–time boundary shape functions method
  publication-title: Numer. Heat Transfer B
  doi: 10.1080/10407790.2020.1713623
– year: 1994
  ident: 10.1016/j.ymssp.2022.109712_b42
– volume: 306
  start-page: 372
  year: 2007
  ident: 10.1016/j.ymssp.2022.109712_b9
  article-title: A study of nonlinear oscillators with u1/3 force by He’s variational iteration method
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.05.021
– volume: 114
  start-page: 178
  year: 1986
  ident: 10.1016/j.ymssp.2022.109712_b34
  article-title: The period in the Lotka–Volterra system is monotonic
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(86)90076-4
– year: 1993
  ident: 10.1016/j.ymssp.2022.109712_b44
– volume: 12
  start-page: 83
  year: 2006
  ident: 10.1016/j.ymssp.2022.109712_b33
  article-title: Preserving constraints of differential equations by numerical methods based on integrating factors
  publication-title: Comput. Model. Eng. Sci.
– volume: 13
  start-page: 87
  year: 2000
  ident: 10.1016/j.ymssp.2022.109712_b32
  article-title: A variant of Newton’s method with accelerated third-order convergence
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(00)00100-2
– volume: 35
  start-page: 37
  year: 2000
  ident: 10.1016/j.ymssp.2022.109712_b10
  article-title: A coupling method of a homotopy technique and a perturbation technique for non-linear problems
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/S0020-7462(98)00085-7
– volume: 171
  start-page: 127
  year: 2002
  ident: 10.1016/j.ymssp.2022.109712_b40
  article-title: Computing accurate Poincaré maps
  publication-title: Physica D
  doi: 10.1016/S0167-2789(02)00603-6
– volume: 2020
  start-page: 139
  year: 2020
  ident: 10.1016/j.ymssp.2022.109712_b24
  article-title: Boundary shape function method for nonlinear BVP, automatically satisfying prescribed multipoint boundary conditions
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-020-01436-y
SSID ssj0009406
Score 2.4054418
Snippet In the paper, the period of an n-dimensional nonlinear dynamical system is computed by a formula derived in an (n+1)-dimensional augmented state space. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109712
SubjectTerms Boundary shape function method
Generalized derivative-free Newton method
Iterative algorithm
Nonlinear dynamical system
Periodic solution
Title Periodic solutions of nonlinear ordinary differential equations computed by a boundary shape function method and a generalized derivative-free Newton method
URI https://dx.doi.org/10.1016/j.ymssp.2022.109712
Volume 184
WOSCitedRecordID wos000877454800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKxgM8IH6KjR_yA2_FU-OkdfI4VUOAYJq0IfoWnR1XzTS60qbVtn-EF_5Yzr44CTBNgMRLVEV2Lu331T6f7r5j7BUkKQytUz7WMhOJsYUANQIRGdzOlB3EmkRcP6jDw3QyyY56vW-hFmZzpubz9OIiW_xXqPEegu1KZ_8C7uaheAM_I-h4Rdjx-kfAH6GR86I0_caMT9YgSQxY9vG0STW4oTdK5YLm9uu6Tooz1OfBO6bQ177tEo5ezWBh-24b9IyhztMk9eraMLvQVnmFswo0v_Fq4mK6tD6BsmrGd13hj9YVHVNVJsmm-6e5hBJXHUYFDGFjdSlD5ZryA2w5F8ezltXjEPMez8qZ-FzXttWRDBmH5OcQXgslNm0-E62CqYgldRfZs7RK47lLRJKKNNtlPLl2S6DoxOne5ZfVygmUSullO-vk7Z-1to-dNWdMuhBuqtQtti3VMMPlcnv_3cHkfavnnPi2rc3bBUErnzr4m6nrnZ6OI3Nyn92rTyB8n5jzgPXs_CG729GlfMS-Bw7xhkP8fMobDvHAId7lEG84xAOHuL7kwAOHuOcQDxzixAmOqOOgDof4LxzixKF6_GP26c3ByfitqNt4CCPjuBLKmqGRWg4Bj-NWxymko5HU6bCIMgvRQMegBhAB-vYAUECi0eU02oCJBoMCivgJ28IvaJ8yriCbRnGqAD27RBcSVDSdJlGhipFOlY53mAy_c25qjXvXauUsD8mMp7kHJ3fg5ATODnvdTFqQxMvNw0cBwLz2Usn7zJFxN03c_deJz9id9u_ynG1Vy7V9wW6bTVWuli9rZv4AAGfDqQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Periodic+solutions+of+nonlinear+ordinary+differential+equations+computed+by+a+boundary+shape+function+method+and+a+generalized+derivative-free+Newton+method&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Liu%2C+Chein-Shan&rft.au=Chang%2C+Chih-Wen&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=184&rft_id=info:doi/10.1016%2Fj.ymssp.2022.109712&rft.externalDocID=S0888327022007877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon