The Borel complexity of ideal limit points
•Studying the Borel complexity of ideal limit points systematically.•Solving an open problem.•Revealing close connection of Borel complexity between ideal limit points and ideals. In this paper we mainly study the Borel complexity of ideal limit points, denoted by Λr(I), in a first countable space....
Uložené v:
| Vydané v: | Topology and its applications Ročník 312; s. 108061 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.05.2022
|
| Predmet: | |
| ISSN: | 0166-8641 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Studying the Borel complexity of ideal limit points systematically.•Solving an open problem.•Revealing close connection of Borel complexity between ideal limit points and ideals.
In this paper we mainly study the Borel complexity of ideal limit points, denoted by Λr(I), in a first countable space. We investigate the connection between complexity of Λr(I) and properties of the ideal I, and answer an open question. The main results are the following.•Fix a sequence r. Then Λr(I) can be any nonempty subset of ordinary limit points. This answers an open question. Moreover, under suitable assumptions, if the subset is Borel, then the corresponding ideal can be chosen to be Borel.•Λr(I) is closed for every real sequence r if and only if I is P+.•Λr(I) is Fσ for Farah ideals (a subclass of Fσδ ideals). These generalize several results in [1]. |
|---|---|
| AbstractList | •Studying the Borel complexity of ideal limit points systematically.•Solving an open problem.•Revealing close connection of Borel complexity between ideal limit points and ideals.
In this paper we mainly study the Borel complexity of ideal limit points, denoted by Λr(I), in a first countable space. We investigate the connection between complexity of Λr(I) and properties of the ideal I, and answer an open question. The main results are the following.•Fix a sequence r. Then Λr(I) can be any nonempty subset of ordinary limit points. This answers an open question. Moreover, under suitable assumptions, if the subset is Borel, then the corresponding ideal can be chosen to be Borel.•Λr(I) is closed for every real sequence r if and only if I is P+.•Λr(I) is Fσ for Farah ideals (a subclass of Fσδ ideals). These generalize several results in [1]. |
| ArticleNumber | 108061 |
| Author | Zhang, Shuguo He, Xi Zhang, Hang |
| Author_xml | – sequence: 1 givenname: Xi orcidid: 0000-0002-8073-8923 surname: He fullname: He, Xi email: hexi@nsu.edu.cn, 342015258@qq.com organization: College of Mathematics, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China – sequence: 2 givenname: Hang surname: Zhang fullname: Zhang, Hang email: zhanghangzh@sina.com, hzhangzh@gmail.com organization: School of Mathematics, Southwest Jiaotong University, Xipu Campus, West Park of Hi-Tech Zone, Chengdu, 611756, Sichuan, China – sequence: 3 givenname: Shuguo surname: Zhang fullname: Zhang, Shuguo email: zhangsg@scu.edu.cn organization: College of Mathematics, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China |
| BookMark | eNqFzz1PwzAQgGEPRaIt_AKWzEgJ_kicZGCAii-pEkuZLfdyFo6cOLItRP89KWVigOmkOz0nvSuyGP2IhFwxWjDK5E1fJD95V3DK-bxpqGQLspwvMm9kyc7JKsaeUsrami_J9e4ds3sf0GXgh8nhp02HzJvMdqhd5uxgUzZ5O6Z4Qc6MdhEvf-aavD0-7DbP-fb16WVzt82BC5Hyuja1BNSyapoagXKUlShFww1voQYsOa1AIBf7tjRalIaXvELkoPeNga4Sa9Ke_kLwMQY0CmzSyfoxBW2dYlQdQ1WvvkPVMVSdQmcrftkp2EGHwz_q9qRwzvqwGFQEiyNgZwNCUp23f_ovIudxmA |
| CitedBy_id | crossref_primary_10_1016_j_topol_2022_108324 |
| Cites_doi | 10.1090/S0002-9947-04-03565-2 10.1016/S0168-0072(98)00051-7 10.1016/j.jmaa.2014.09.059 10.21136/MB.2005.134133 10.18273/revint.v37n1-2019009 10.1016/j.apal.2017.06.001 10.2178/jsl/1185803621 10.1016/j.topol.2018.11.022 10.1007/s10587-011-0073-3 10.1007/s12215-011-0064-0 10.1090/S0002-9939-1993-1181163-6 10.4064/fm-138-2-103-111 10.1016/j.topol.2012.04.007 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.topol.2022.108061 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_topol_2022_108061 S0166864122000633 |
| GrantInformation_xml | – fundername: NSFC grantid: 11771311; 11801386 funderid: https://doi.org/10.13039/501100001809 – fundername: NSFC grantid: 11601443; 11426188 funderid: https://doi.org/10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2682016CX111 funderid: https://doi.org/10.13039/501100012226 – fundername: NSFC grantid: 11771311 funderid: https://doi.org/10.13039/501100001809 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN AACTN AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AASFE AATTM AAXKI AAXUO ABAOU ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 ROL RPZ SCC SDF SDG SES SPCBC T5K TN5 WH7 ~G- 186 29Q 5VS 9DU AAEDT AAQXK AAYWO AAYXX ABFNM ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEUPX AEXQZ AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB G-2 HZ~ H~9 NHB R2- SEW SPC SSW SSZ WUQ ZKB ~HD |
| ID | FETCH-LOGICAL-c233t-77f76cea65887ec02e6534382f29c7ce4205c3e23b94fa34f2425ee2cab8fcd53 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792684000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-8641 |
| IngestDate | Tue Nov 18 19:58:27 EST 2025 Sat Nov 29 07:23:08 EST 2025 Sun Apr 06 06:54:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | secondary Borel ideal Farah ideal Ideal limit points Borel complexity Ideal cluster points primary |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c233t-77f76cea65887ec02e6534382f29c7ce4205c3e23b94fa34f2425ee2cab8fcd53 |
| ORCID | 0000-0002-8073-8923 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_topol_2022_108061 crossref_primary_10_1016_j_topol_2022_108061 elsevier_sciencedirect_doi_10_1016_j_topol_2022_108061 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 2022-05-00 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Topology and its applications |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hrušák, Meza-Alcántara (br0080) 2011; 52 Filipów, Mrożek, Recław, Szuca (br0060) 2011; 61 Farah (br0040) 2004; 356 Jech (br0110) 2003 Mazur (br0140) 1991; 138 Hrušák, Verner (br0100) 2011; 60 Solecki (br0150) 1999; 99 Balcerzak, Leonetti (br0010) 2019; 252 Kwela, Sabok (br0120) 2015; 422 Uzcátegui (br0160) 2019; 37 Das (br0030) 2012; 159 Fridy (br0070) 1993; 118 Lahiri, Das (br0130) 2005; 130 Filipów, Mrożek, Recław, Szuca (br0050) 2007; 72 Hrušák, Meza-Alcántara, Thümmel, Uzcátegui (br0090) 2017; 168 Bartoszynski, Judah (br0020) 1995 Jech (10.1016/j.topol.2022.108061_br0110) 2003 Farah (10.1016/j.topol.2022.108061_br0040) 2004; 356 Mazur (10.1016/j.topol.2022.108061_br0140) 1991; 138 Solecki (10.1016/j.topol.2022.108061_br0150) 1999; 99 Balcerzak (10.1016/j.topol.2022.108061_br0010) 2019; 252 Hrušák (10.1016/j.topol.2022.108061_br0100) 2011; 60 Uzcátegui (10.1016/j.topol.2022.108061_br0160) 2019; 37 Fridy (10.1016/j.topol.2022.108061_br0070) 1993; 118 Hrušák (10.1016/j.topol.2022.108061_br0090) 2017; 168 Filipów (10.1016/j.topol.2022.108061_br0050) 2007; 72 Filipów (10.1016/j.topol.2022.108061_br0060) 2011; 61 Lahiri (10.1016/j.topol.2022.108061_br0130) 2005; 130 Bartoszynski (10.1016/j.topol.2022.108061_br0020) 1995 Kwela (10.1016/j.topol.2022.108061_br0120) 2015; 422 Hrušák (10.1016/j.topol.2022.108061_br0080) 2011; 52 Das (10.1016/j.topol.2022.108061_br0030) 2012; 159 |
| References_xml | – volume: 159 start-page: 2621 year: 2012 end-page: 2626 ident: br0030 article-title: Some further results on ideal convergence in topological spaces publication-title: Topol. Appl. – volume: 138 start-page: 103 year: 1991 end-page: 111 ident: br0140 article-title: F publication-title: Fundam. Math. – volume: 72 start-page: 501 year: 2007 end-page: 512 ident: br0050 article-title: Ideal convergence of bounded sequences publication-title: J. Symb. Log. – volume: 118 start-page: 1187 year: 1993 end-page: 1192 ident: br0070 article-title: Statistical limit points publication-title: Proc. Am. Math. Soc. – volume: 99 start-page: 51 year: 1999 end-page: 72 ident: br0150 article-title: Analytic ideals and their applications publication-title: Ann. Pure Appl. Log. – volume: 356 start-page: 2197 year: 2004 end-page: 2239 ident: br0040 article-title: Luzin gaps publication-title: Trans. Am. Math. Soc. – volume: 60 start-page: 445 year: 2011 end-page: 454 ident: br0100 article-title: Adding ultrafilters by definable quotients publication-title: Rend. Circ. Mat. Palermo – year: 2003 ident: br0110 article-title: Set Theory, vol. 14 – volume: 168 start-page: 2022 year: 2017 end-page: 2049 ident: br0090 article-title: Ramsey type properties of ideals publication-title: Ann. Pure Appl. Log. – volume: 422 start-page: 1434 year: 2015 end-page: 1446 ident: br0120 article-title: Topological representations publication-title: J. Math. Anal. Appl. – year: 1995 ident: br0020 article-title: Set Theory: On the Structure of the Real Line – volume: 52 start-page: 191 year: 2011 end-page: 204 ident: br0080 article-title: Comparison game on Borel ideals publication-title: Comment. Math. Univ. Carol. – volume: 130 start-page: 153 year: 2005 end-page: 160 ident: br0130 article-title: I and I publication-title: Math. Bohem. – volume: 252 start-page: 178 year: 2019 end-page: 190 ident: br0010 article-title: On the relationship between ideal cluster points and ideal limit points publication-title: Topol. Appl. – volume: 37 start-page: 167 year: 2019 end-page: 198 ident: br0160 article-title: Ideals on countable sets: a survey with questions publication-title: Integr. - UIS – volume: 61 start-page: 289 year: 2011 end-page: 308 ident: br0060 article-title: Ideal version of Ramsey's theorem publication-title: Czechoslov. Math. J. – volume: 356 start-page: 2197 year: 2004 ident: 10.1016/j.topol.2022.108061_br0040 article-title: Luzin gaps publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-04-03565-2 – volume: 99 start-page: 51 year: 1999 ident: 10.1016/j.topol.2022.108061_br0150 article-title: Analytic ideals and their applications publication-title: Ann. Pure Appl. Log. doi: 10.1016/S0168-0072(98)00051-7 – volume: 422 start-page: 1434 year: 2015 ident: 10.1016/j.topol.2022.108061_br0120 article-title: Topological representations publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.09.059 – volume: 130 start-page: 153 year: 2005 ident: 10.1016/j.topol.2022.108061_br0130 article-title: I and I⁎-convergence in topological spaces publication-title: Math. Bohem. doi: 10.21136/MB.2005.134133 – volume: 37 start-page: 167 year: 2019 ident: 10.1016/j.topol.2022.108061_br0160 article-title: Ideals on countable sets: a survey with questions publication-title: Integr. - UIS doi: 10.18273/revint.v37n1-2019009 – volume: 168 start-page: 2022 year: 2017 ident: 10.1016/j.topol.2022.108061_br0090 article-title: Ramsey type properties of ideals publication-title: Ann. Pure Appl. Log. doi: 10.1016/j.apal.2017.06.001 – year: 2003 ident: 10.1016/j.topol.2022.108061_br0110 – volume: 72 start-page: 501 year: 2007 ident: 10.1016/j.topol.2022.108061_br0050 article-title: Ideal convergence of bounded sequences publication-title: J. Symb. Log. doi: 10.2178/jsl/1185803621 – volume: 252 start-page: 178 year: 2019 ident: 10.1016/j.topol.2022.108061_br0010 article-title: On the relationship between ideal cluster points and ideal limit points publication-title: Topol. Appl. doi: 10.1016/j.topol.2018.11.022 – volume: 61 start-page: 289 year: 2011 ident: 10.1016/j.topol.2022.108061_br0060 article-title: Ideal version of Ramsey's theorem publication-title: Czechoslov. Math. J. doi: 10.1007/s10587-011-0073-3 – year: 1995 ident: 10.1016/j.topol.2022.108061_br0020 – volume: 60 start-page: 445 year: 2011 ident: 10.1016/j.topol.2022.108061_br0100 article-title: Adding ultrafilters by definable quotients publication-title: Rend. Circ. Mat. Palermo doi: 10.1007/s12215-011-0064-0 – volume: 118 start-page: 1187 year: 1993 ident: 10.1016/j.topol.2022.108061_br0070 article-title: Statistical limit points publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1993-1181163-6 – volume: 52 start-page: 191 year: 2011 ident: 10.1016/j.topol.2022.108061_br0080 article-title: Comparison game on Borel ideals publication-title: Comment. Math. Univ. Carol. – volume: 138 start-page: 103 year: 1991 ident: 10.1016/j.topol.2022.108061_br0140 article-title: Fσ-ideals and ω1ω1⁎-gaps in the Boolean algebras P(ω)/I publication-title: Fundam. Math. doi: 10.4064/fm-138-2-103-111 – volume: 159 start-page: 2621 year: 2012 ident: 10.1016/j.topol.2022.108061_br0030 article-title: Some further results on ideal convergence in topological spaces publication-title: Topol. Appl. doi: 10.1016/j.topol.2012.04.007 |
| SSID | ssj0001972 |
| Score | 2.2866151 |
| Snippet | •Studying the Borel complexity of ideal limit points systematically.•Solving an open problem.•Revealing close connection of Borel complexity between ideal... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108061 |
| SubjectTerms | Borel complexity Borel ideal Farah ideal Ideal cluster points Ideal limit points |
| Title | The Borel complexity of ideal limit points |
| URI | https://dx.doi.org/10.1016/j.topol.2022.108061 |
| Volume | 312 |
| WOSCitedRecordID | wos000792684000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0166-8641 databaseCode: AIEXJ dateStart: 20211214 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001972 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA66-aAP4hXnjT74pHbMJE3axymTKToEp-yttFmiG6Mdu8j89-bWbjoZKvhSSmnS5nxpes7JOd8B4MQXMY1iBF2GGFYGCpSfVBC5GAt-4TPsIZ31_nxHGw2_1QoebGHIoS4nQJPEn0yC_r9CLa9JsFXq7C_gzjuVF-S5BF0eJezy-GPgL9MB75lwcT6xQRedtuIQ7qmEprN-2rEUTpli2jTFEt7zzYTZne2pw1Qh0urMeZvrkf0BfnJBv45fxumsW0FClAfxGV_XXL6LcT8S4vrEUFVl6ycycdBza7FxC3TLIzWAsnqGDmg03OtfSK4fVc-qY6hThxBaBkVIvUAutcXqTa11m_9dVZk0w9du3iRjktIxe3OP-l7bmNEgmhtg3ar-TtVAtgmWeLIF1u5z3tzhNjiV4DkaPGcKnpMKR4PnaPAcA94OeLquNa_qrq1m4TKI0EiaMYISxiOp8vmUswrkxENqG1bAgFHGMax4DHGI4gCLCGGhjEHOIYtiX7C2h3ZBIUkTvgccZaRSdMEJ4RgHrB0LxP2oQkm7wqi0P0sAZqMOmaV6VxVHemEW09cNtahCJarQiKoEzvNGfcN0svh2kokztMqaUcJCif-ihvt_bXgAVqcT9RAURoMxPwIr7G3UGQ6O7Tz5AIV1YXc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Borel+complexity+of+ideal+limit+points&rft.jtitle=Topology+and+its+applications&rft.au=He%2C+Xi&rft.au=Zhang%2C+Hang&rft.au=Zhang%2C+Shuguo&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=0166-8641&rft.volume=312&rft_id=info:doi/10.1016%2Fj.topol.2022.108061&rft.externalDocID=S0166864122000633 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-8641&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-8641&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-8641&client=summon |