The Borel complexity of ideal limit points

•Studying the Borel complexity of ideal limit points systematically.•Solving an open problem.•Revealing close connection of Borel complexity between ideal limit points and ideals. In this paper we mainly study the Borel complexity of ideal limit points, denoted by Λr(I), in a first countable space....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Topology and its applications Ročník 312; s. 108061
Hlavní autori: He, Xi, Zhang, Hang, Zhang, Shuguo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.05.2022
Predmet:
ISSN:0166-8641
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Studying the Borel complexity of ideal limit points systematically.•Solving an open problem.•Revealing close connection of Borel complexity between ideal limit points and ideals. In this paper we mainly study the Borel complexity of ideal limit points, denoted by Λr(I), in a first countable space. We investigate the connection between complexity of Λr(I) and properties of the ideal I, and answer an open question. The main results are the following.•Fix a sequence r. Then Λr(I) can be any nonempty subset of ordinary limit points. This answers an open question. Moreover, under suitable assumptions, if the subset is Borel, then the corresponding ideal can be chosen to be Borel.•Λr(I) is closed for every real sequence r if and only if I is P+.•Λr(I) is Fσ for Farah ideals (a subclass of Fσδ ideals). These generalize several results in [1].
AbstractList •Studying the Borel complexity of ideal limit points systematically.•Solving an open problem.•Revealing close connection of Borel complexity between ideal limit points and ideals. In this paper we mainly study the Borel complexity of ideal limit points, denoted by Λr(I), in a first countable space. We investigate the connection between complexity of Λr(I) and properties of the ideal I, and answer an open question. The main results are the following.•Fix a sequence r. Then Λr(I) can be any nonempty subset of ordinary limit points. This answers an open question. Moreover, under suitable assumptions, if the subset is Borel, then the corresponding ideal can be chosen to be Borel.•Λr(I) is closed for every real sequence r if and only if I is P+.•Λr(I) is Fσ for Farah ideals (a subclass of Fσδ ideals). These generalize several results in [1].
ArticleNumber 108061
Author Zhang, Shuguo
He, Xi
Zhang, Hang
Author_xml – sequence: 1
  givenname: Xi
  orcidid: 0000-0002-8073-8923
  surname: He
  fullname: He, Xi
  email: hexi@nsu.edu.cn, 342015258@qq.com
  organization: College of Mathematics, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China
– sequence: 2
  givenname: Hang
  surname: Zhang
  fullname: Zhang, Hang
  email: zhanghangzh@sina.com, hzhangzh@gmail.com
  organization: School of Mathematics, Southwest Jiaotong University, Xipu Campus, West Park of Hi-Tech Zone, Chengdu, 611756, Sichuan, China
– sequence: 3
  givenname: Shuguo
  surname: Zhang
  fullname: Zhang, Shuguo
  email: zhangsg@scu.edu.cn
  organization: College of Mathematics, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China
BookMark eNqFzz1PwzAQgGEPRaIt_AKWzEgJ_kicZGCAii-pEkuZLfdyFo6cOLItRP89KWVigOmkOz0nvSuyGP2IhFwxWjDK5E1fJD95V3DK-bxpqGQLspwvMm9kyc7JKsaeUsrami_J9e4ds3sf0GXgh8nhp02HzJvMdqhd5uxgUzZ5O6Z4Qc6MdhEvf-aavD0-7DbP-fb16WVzt82BC5Hyuja1BNSyapoagXKUlShFww1voQYsOa1AIBf7tjRalIaXvELkoPeNga4Sa9Ke_kLwMQY0CmzSyfoxBW2dYlQdQ1WvvkPVMVSdQmcrftkp2EGHwz_q9qRwzvqwGFQEiyNgZwNCUp23f_ovIudxmA
CitedBy_id crossref_primary_10_1016_j_topol_2022_108324
Cites_doi 10.1090/S0002-9947-04-03565-2
10.1016/S0168-0072(98)00051-7
10.1016/j.jmaa.2014.09.059
10.21136/MB.2005.134133
10.18273/revint.v37n1-2019009
10.1016/j.apal.2017.06.001
10.2178/jsl/1185803621
10.1016/j.topol.2018.11.022
10.1007/s10587-011-0073-3
10.1007/s12215-011-0064-0
10.1090/S0002-9939-1993-1181163-6
10.4064/fm-138-2-103-111
10.1016/j.topol.2012.04.007
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.topol.2022.108061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_topol_2022_108061
S0166864122000633
GrantInformation_xml – fundername: NSFC
  grantid: 11771311; 11801386
  funderid: https://doi.org/10.13039/501100001809
– fundername: NSFC
  grantid: 11601443; 11426188
  funderid: https://doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2682016CX111
  funderid: https://doi.org/10.13039/501100012226
– fundername: NSFC
  grantid: 11771311
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AACTN
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AASFE
AATTM
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPCBC
T5K
TN5
WH7
~G-
186
29Q
5VS
9DU
AAEDT
AAQXK
AAYWO
AAYXX
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
H~9
NHB
R2-
SEW
SPC
SSW
SSZ
WUQ
ZKB
~HD
ID FETCH-LOGICAL-c233t-77f76cea65887ec02e6534382f29c7ce4205c3e23b94fa34f2425ee2cab8fcd53
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792684000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-8641
IngestDate Tue Nov 18 19:58:27 EST 2025
Sat Nov 29 07:23:08 EST 2025
Sun Apr 06 06:54:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords secondary
Borel ideal
Farah ideal
Ideal limit points
Borel complexity
Ideal cluster points
primary
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c233t-77f76cea65887ec02e6534382f29c7ce4205c3e23b94fa34f2425ee2cab8fcd53
ORCID 0000-0002-8073-8923
ParticipantIDs crossref_citationtrail_10_1016_j_topol_2022_108061
crossref_primary_10_1016_j_topol_2022_108061
elsevier_sciencedirect_doi_10_1016_j_topol_2022_108061
PublicationCentury 2000
PublicationDate 2022-05-01
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Topology and its applications
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hrušák, Meza-Alcántara (br0080) 2011; 52
Filipów, Mrożek, Recław, Szuca (br0060) 2011; 61
Farah (br0040) 2004; 356
Jech (br0110) 2003
Mazur (br0140) 1991; 138
Hrušák, Verner (br0100) 2011; 60
Solecki (br0150) 1999; 99
Balcerzak, Leonetti (br0010) 2019; 252
Kwela, Sabok (br0120) 2015; 422
Uzcátegui (br0160) 2019; 37
Das (br0030) 2012; 159
Fridy (br0070) 1993; 118
Lahiri, Das (br0130) 2005; 130
Filipów, Mrożek, Recław, Szuca (br0050) 2007; 72
Hrušák, Meza-Alcántara, Thümmel, Uzcátegui (br0090) 2017; 168
Bartoszynski, Judah (br0020) 1995
Jech (10.1016/j.topol.2022.108061_br0110) 2003
Farah (10.1016/j.topol.2022.108061_br0040) 2004; 356
Mazur (10.1016/j.topol.2022.108061_br0140) 1991; 138
Solecki (10.1016/j.topol.2022.108061_br0150) 1999; 99
Balcerzak (10.1016/j.topol.2022.108061_br0010) 2019; 252
Hrušák (10.1016/j.topol.2022.108061_br0100) 2011; 60
Uzcátegui (10.1016/j.topol.2022.108061_br0160) 2019; 37
Fridy (10.1016/j.topol.2022.108061_br0070) 1993; 118
Hrušák (10.1016/j.topol.2022.108061_br0090) 2017; 168
Filipów (10.1016/j.topol.2022.108061_br0050) 2007; 72
Filipów (10.1016/j.topol.2022.108061_br0060) 2011; 61
Lahiri (10.1016/j.topol.2022.108061_br0130) 2005; 130
Bartoszynski (10.1016/j.topol.2022.108061_br0020) 1995
Kwela (10.1016/j.topol.2022.108061_br0120) 2015; 422
Hrušák (10.1016/j.topol.2022.108061_br0080) 2011; 52
Das (10.1016/j.topol.2022.108061_br0030) 2012; 159
References_xml – volume: 159
  start-page: 2621
  year: 2012
  end-page: 2626
  ident: br0030
  article-title: Some further results on ideal convergence in topological spaces
  publication-title: Topol. Appl.
– volume: 138
  start-page: 103
  year: 1991
  end-page: 111
  ident: br0140
  article-title: F
  publication-title: Fundam. Math.
– volume: 72
  start-page: 501
  year: 2007
  end-page: 512
  ident: br0050
  article-title: Ideal convergence of bounded sequences
  publication-title: J. Symb. Log.
– volume: 118
  start-page: 1187
  year: 1993
  end-page: 1192
  ident: br0070
  article-title: Statistical limit points
  publication-title: Proc. Am. Math. Soc.
– volume: 99
  start-page: 51
  year: 1999
  end-page: 72
  ident: br0150
  article-title: Analytic ideals and their applications
  publication-title: Ann. Pure Appl. Log.
– volume: 356
  start-page: 2197
  year: 2004
  end-page: 2239
  ident: br0040
  article-title: Luzin gaps
  publication-title: Trans. Am. Math. Soc.
– volume: 60
  start-page: 445
  year: 2011
  end-page: 454
  ident: br0100
  article-title: Adding ultrafilters by definable quotients
  publication-title: Rend. Circ. Mat. Palermo
– year: 2003
  ident: br0110
  article-title: Set Theory, vol. 14
– volume: 168
  start-page: 2022
  year: 2017
  end-page: 2049
  ident: br0090
  article-title: Ramsey type properties of ideals
  publication-title: Ann. Pure Appl. Log.
– volume: 422
  start-page: 1434
  year: 2015
  end-page: 1446
  ident: br0120
  article-title: Topological representations
  publication-title: J. Math. Anal. Appl.
– year: 1995
  ident: br0020
  article-title: Set Theory: On the Structure of the Real Line
– volume: 52
  start-page: 191
  year: 2011
  end-page: 204
  ident: br0080
  article-title: Comparison game on Borel ideals
  publication-title: Comment. Math. Univ. Carol.
– volume: 130
  start-page: 153
  year: 2005
  end-page: 160
  ident: br0130
  article-title: I and I
  publication-title: Math. Bohem.
– volume: 252
  start-page: 178
  year: 2019
  end-page: 190
  ident: br0010
  article-title: On the relationship between ideal cluster points and ideal limit points
  publication-title: Topol. Appl.
– volume: 37
  start-page: 167
  year: 2019
  end-page: 198
  ident: br0160
  article-title: Ideals on countable sets: a survey with questions
  publication-title: Integr. - UIS
– volume: 61
  start-page: 289
  year: 2011
  end-page: 308
  ident: br0060
  article-title: Ideal version of Ramsey's theorem
  publication-title: Czechoslov. Math. J.
– volume: 356
  start-page: 2197
  year: 2004
  ident: 10.1016/j.topol.2022.108061_br0040
  article-title: Luzin gaps
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-04-03565-2
– volume: 99
  start-page: 51
  year: 1999
  ident: 10.1016/j.topol.2022.108061_br0150
  article-title: Analytic ideals and their applications
  publication-title: Ann. Pure Appl. Log.
  doi: 10.1016/S0168-0072(98)00051-7
– volume: 422
  start-page: 1434
  year: 2015
  ident: 10.1016/j.topol.2022.108061_br0120
  article-title: Topological representations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.09.059
– volume: 130
  start-page: 153
  year: 2005
  ident: 10.1016/j.topol.2022.108061_br0130
  article-title: I and I⁎-convergence in topological spaces
  publication-title: Math. Bohem.
  doi: 10.21136/MB.2005.134133
– volume: 37
  start-page: 167
  year: 2019
  ident: 10.1016/j.topol.2022.108061_br0160
  article-title: Ideals on countable sets: a survey with questions
  publication-title: Integr. - UIS
  doi: 10.18273/revint.v37n1-2019009
– volume: 168
  start-page: 2022
  year: 2017
  ident: 10.1016/j.topol.2022.108061_br0090
  article-title: Ramsey type properties of ideals
  publication-title: Ann. Pure Appl. Log.
  doi: 10.1016/j.apal.2017.06.001
– year: 2003
  ident: 10.1016/j.topol.2022.108061_br0110
– volume: 72
  start-page: 501
  year: 2007
  ident: 10.1016/j.topol.2022.108061_br0050
  article-title: Ideal convergence of bounded sequences
  publication-title: J. Symb. Log.
  doi: 10.2178/jsl/1185803621
– volume: 252
  start-page: 178
  year: 2019
  ident: 10.1016/j.topol.2022.108061_br0010
  article-title: On the relationship between ideal cluster points and ideal limit points
  publication-title: Topol. Appl.
  doi: 10.1016/j.topol.2018.11.022
– volume: 61
  start-page: 289
  year: 2011
  ident: 10.1016/j.topol.2022.108061_br0060
  article-title: Ideal version of Ramsey's theorem
  publication-title: Czechoslov. Math. J.
  doi: 10.1007/s10587-011-0073-3
– year: 1995
  ident: 10.1016/j.topol.2022.108061_br0020
– volume: 60
  start-page: 445
  year: 2011
  ident: 10.1016/j.topol.2022.108061_br0100
  article-title: Adding ultrafilters by definable quotients
  publication-title: Rend. Circ. Mat. Palermo
  doi: 10.1007/s12215-011-0064-0
– volume: 118
  start-page: 1187
  year: 1993
  ident: 10.1016/j.topol.2022.108061_br0070
  article-title: Statistical limit points
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1993-1181163-6
– volume: 52
  start-page: 191
  year: 2011
  ident: 10.1016/j.topol.2022.108061_br0080
  article-title: Comparison game on Borel ideals
  publication-title: Comment. Math. Univ. Carol.
– volume: 138
  start-page: 103
  year: 1991
  ident: 10.1016/j.topol.2022.108061_br0140
  article-title: Fσ-ideals and ω1ω1⁎-gaps in the Boolean algebras P(ω)/I
  publication-title: Fundam. Math.
  doi: 10.4064/fm-138-2-103-111
– volume: 159
  start-page: 2621
  year: 2012
  ident: 10.1016/j.topol.2022.108061_br0030
  article-title: Some further results on ideal convergence in topological spaces
  publication-title: Topol. Appl.
  doi: 10.1016/j.topol.2012.04.007
SSID ssj0001972
Score 2.2866151
Snippet •Studying the Borel complexity of ideal limit points systematically.•Solving an open problem.•Revealing close connection of Borel complexity between ideal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108061
SubjectTerms Borel complexity
Borel ideal
Farah ideal
Ideal cluster points
Ideal limit points
Title The Borel complexity of ideal limit points
URI https://dx.doi.org/10.1016/j.topol.2022.108061
Volume 312
WOSCitedRecordID wos000792684000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0166-8641
  databaseCode: AIEXJ
  dateStart: 20211214
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001972
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA66-aAP4hXnjT74pHbMJE3axymTKToEp-yttFmiG6Mdu8j89-bWbjoZKvhSSmnS5nxpes7JOd8B4MQXMY1iBF2GGFYGCpSfVBC5GAt-4TPsIZ31_nxHGw2_1QoebGHIoS4nQJPEn0yC_r9CLa9JsFXq7C_gzjuVF-S5BF0eJezy-GPgL9MB75lwcT6xQRedtuIQ7qmEprN-2rEUTpli2jTFEt7zzYTZne2pw1Qh0urMeZvrkf0BfnJBv45fxumsW0FClAfxGV_XXL6LcT8S4vrEUFVl6ycycdBza7FxC3TLIzWAsnqGDmg03OtfSK4fVc-qY6hThxBaBkVIvUAutcXqTa11m_9dVZk0w9du3iRjktIxe3OP-l7bmNEgmhtg3ar-TtVAtgmWeLIF1u5z3tzhNjiV4DkaPGcKnpMKR4PnaPAcA94OeLquNa_qrq1m4TKI0EiaMYISxiOp8vmUswrkxENqG1bAgFHGMax4DHGI4gCLCGGhjEHOIYtiX7C2h3ZBIUkTvgccZaRSdMEJ4RgHrB0LxP2oQkm7wqi0P0sAZqMOmaV6VxVHemEW09cNtahCJarQiKoEzvNGfcN0svh2kokztMqaUcJCif-ihvt_bXgAVqcT9RAURoMxPwIr7G3UGQ6O7Tz5AIV1YXc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Borel+complexity+of+ideal+limit+points&rft.jtitle=Topology+and+its+applications&rft.au=He%2C+Xi&rft.au=Zhang%2C+Hang&rft.au=Zhang%2C+Shuguo&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=0166-8641&rft.volume=312&rft_id=info:doi/10.1016%2Fj.topol.2022.108061&rft.externalDocID=S0166864122000633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-8641&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-8641&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-8641&client=summon