The Borel complexity of ideal limit points

•Studying the Borel complexity of ideal limit points systematically.•Solving an open problem.•Revealing close connection of Borel complexity between ideal limit points and ideals. In this paper we mainly study the Borel complexity of ideal limit points, denoted by Λr(I), in a first countable space....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topology and its applications Jg. 312; S. 108061
Hauptverfasser: He, Xi, Zhang, Hang, Zhang, Shuguo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.05.2022
Schlagworte:
ISSN:0166-8641
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Studying the Borel complexity of ideal limit points systematically.•Solving an open problem.•Revealing close connection of Borel complexity between ideal limit points and ideals. In this paper we mainly study the Borel complexity of ideal limit points, denoted by Λr(I), in a first countable space. We investigate the connection between complexity of Λr(I) and properties of the ideal I, and answer an open question. The main results are the following.•Fix a sequence r. Then Λr(I) can be any nonempty subset of ordinary limit points. This answers an open question. Moreover, under suitable assumptions, if the subset is Borel, then the corresponding ideal can be chosen to be Borel.•Λr(I) is closed for every real sequence r if and only if I is P+.•Λr(I) is Fσ for Farah ideals (a subclass of Fσδ ideals). These generalize several results in [1].
ISSN:0166-8641
DOI:10.1016/j.topol.2022.108061