A partition-based constrained multi-objective evolutionary algorithm
•The CMOP is divided into a series of sub-problems by objective space partition.•A hybrid constrained handling technique including the unconstrained search mode.•A selection operator based on partition feasible solutions.•Mating-pool selection based on population and external archive. Solving constr...
Gespeichert in:
| Veröffentlicht in: | Swarm and evolutionary computation Jg. 66; S. 100940 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.10.2021
|
| Schlagworte: | |
| ISSN: | 2210-6502 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The CMOP is divided into a series of sub-problems by objective space partition.•A hybrid constrained handling technique including the unconstrained search mode.•A selection operator based on partition feasible solutions.•Mating-pool selection based on population and external archive.
Solving constrained multi-objective optimization problems (CMOPs) is full of challenges due to the difficulties in balancing between feasibility, convergence and distribution. To remedy this issue, this paper proposes a multi-objective differential evolutionary algorithm based on partition selection (MODE-PS). Firstly, MODE-PS divides a CMOP into a series of optimization sub-problems by objective space partition to maintain the distribution. Then, to keep the feasibility of the subspaces, one feasible solution of each subspace is saved to a partition feasible solution set. Next, once there are feasible solutions in one subspace, the individual selection strategy of this subspace is changed from constraint search to non-constraint search. By this way, the convergence is accelerated. Finally, all the feasible solutions are archived and evolved together with the population by a mating-pool selection to balance the feasibility, convergence and distribution. Twenty-two benchmark test problems are used to test the performance of MODE-PS in comparison with five state-of-the-art constrained multi-objective evolution algorithms. Moreover, a real-world problem, i.e., bi-source compressed-air pipeline optimization, is used to test the performance of algorithms. The experimental results have demonstrated the high competitiveness of MODE-PS for solving CMOPs. |
|---|---|
| AbstractList | •The CMOP is divided into a series of sub-problems by objective space partition.•A hybrid constrained handling technique including the unconstrained search mode.•A selection operator based on partition feasible solutions.•Mating-pool selection based on population and external archive.
Solving constrained multi-objective optimization problems (CMOPs) is full of challenges due to the difficulties in balancing between feasibility, convergence and distribution. To remedy this issue, this paper proposes a multi-objective differential evolutionary algorithm based on partition selection (MODE-PS). Firstly, MODE-PS divides a CMOP into a series of optimization sub-problems by objective space partition to maintain the distribution. Then, to keep the feasibility of the subspaces, one feasible solution of each subspace is saved to a partition feasible solution set. Next, once there are feasible solutions in one subspace, the individual selection strategy of this subspace is changed from constraint search to non-constraint search. By this way, the convergence is accelerated. Finally, all the feasible solutions are archived and evolved together with the population by a mating-pool selection to balance the feasibility, convergence and distribution. Twenty-two benchmark test problems are used to test the performance of MODE-PS in comparison with five state-of-the-art constrained multi-objective evolution algorithms. Moreover, a real-world problem, i.e., bi-source compressed-air pipeline optimization, is used to test the performance of algorithms. The experimental results have demonstrated the high competitiveness of MODE-PS for solving CMOPs. |
| ArticleNumber | 100940 |
| Author | Yang, Yongkuan Liu, Jianchang Tan, Shubin |
| Author_xml | – sequence: 1 givenname: Yongkuan surname: Yang fullname: Yang, Yongkuan organization: School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen 361024, China – sequence: 2 givenname: Jianchang surname: Liu fullname: Liu, Jianchang email: liujianchang@ise.neu.edu.cn organization: Department of Information Science and Engineering and the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China – sequence: 3 givenname: Shubin surname: Tan fullname: Tan, Shubin organization: Department of Information Science and Engineering and the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China |
| BookMark | eNqFkM1OwzAMgHMYEmPsCbj0BTqcZEmbA4dp_EqTuMA58tIUUnXNlGRDvD0p48QBfLFl-bP8-YJMBj9YQq4oLChQed0t4oc9-gUDRnMH1BImZMoYhVIKYOdkHmMHOSQwIdSU3K6KPYbkkvNDucVom8L4IaaAbsj17tAnV_ptZ01yR1vk3f1hnMXwWWD_5oNL77tLctZiH-38J8_I6_3dy_qx3Dw_PK1Xm9IwzlMp1LJSS9lugQKXWKECwSslKyGBU2QgVMNaKWtoa6W4scB4jVhXqlLIuOAzwk97TfAxBtvqfXC7fIqmoEd_3elvfz3665N_ptQvyriEo8Ro2f_D3pxYm7WOzgYdjbODsY0L-SW68e5P_gvULHry |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2024_101581 crossref_primary_10_1109_ACCESS_2023_3300590 crossref_primary_10_1016_j_swevo_2023_101372 crossref_primary_10_1016_j_knosys_2024_111998 crossref_primary_10_1109_TCYB_2022_3163759 crossref_primary_10_1016_j_jmsy_2025_04_003 crossref_primary_10_1007_s11424_025_4232_2 crossref_primary_10_3390_math10050813 crossref_primary_10_1016_j_asoc_2024_111398 crossref_primary_10_1016_j_matcom_2024_02_012 crossref_primary_10_1007_s12667_022_00549_w crossref_primary_10_1109_TEVC_2023_3241762 crossref_primary_10_1016_j_asoc_2023_110845 crossref_primary_10_1016_j_swevo_2022_101123 crossref_primary_10_3390_math13111851 crossref_primary_10_7717_peerj_cs_2102 crossref_primary_10_1109_TEVC_2022_3155533 crossref_primary_10_1016_j_swevo_2025_102016 crossref_primary_10_1016_j_swevo_2025_102137 crossref_primary_10_1016_j_swevo_2023_101402 crossref_primary_10_1007_s11831_022_09859_9 crossref_primary_10_1016_j_swevo_2023_101389 |
| Cites_doi | 10.1162/EVCO_a_00009 10.1016/j.ifacol.2018.09.294 10.1109/TEVC.2015.2457616 10.1109/4235.797969 10.1109/TEVC.2020.2981949 10.1109/TSMCB.2004.834438 10.1016/j.compchemeng.2017.02.017 10.1016/j.compchemeng.2016.06.006 10.1016/j.asoc.2018.02.048 10.1016/j.swevo.2011.10.001 10.1016/S0045-7825(99)00389-8 10.1109/TEVC.2014.2339823 10.1109/TEVC.2016.2519378 10.1007/s00500-019-03794-x 10.1109/TEVC.2020.3004012 10.1109/TEVC.2008.2009032 10.1016/j.swevo.2011.03.001 10.1109/TEVC.2007.892759 10.1016/j.asoc.2020.106104 10.1109/4235.996017 10.1109/TEVC.2007.902851 10.1109/TEVC.2013.2281534 10.1109/TCYB.2014.2367526 10.1016/j.asoc.2012.07.027 10.1023/A:1026065325419 10.1109/4235.873238 10.1109/TEVC.2013.2281533 10.1109/TEVC.2017.2669098 10.1007/s00500-015-1588-6 10.1109/TEVC.2014.2373386 10.1080/0305215X.2010.493937 10.1016/j.swevo.2018.08.017 10.1109/TCYB.2015.2493239 10.1109/TEVC.2008.925798 10.1109/TEVC.2003.810761 10.1016/j.swevo.2019.02.003 10.1109/TCYB.2015.2461651 10.1016/j.asoc.2019.02.041 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2021.100940 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2021_100940 S2210650221001012 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABMYL ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c233t-5947946fb01036a7a9053796756031a2059d2f6680f8993ce0238aa87979a2353 |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686799300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Wed Nov 05 20:38:18 EST 2025 Tue Nov 18 20:45:14 EST 2025 Sat Mar 16 16:13:22 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Constrained multi-objective optimization Differential evolution Compressed-air pipeline optimization Partition selection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c233t-5947946fb01036a7a9053796756031a2059d2f6680f8993ce0238aa87979a2353 |
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2021_100940 crossref_citationtrail_10_1016_j_swevo_2021_100940 elsevier_sciencedirect_doi_10_1016_j_swevo_2021_100940 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Deb, Pratap, Agarwal, Meyarivan (bib0009) 2002; 6 Jain, Deb (bib0027) 2014; 18 Mezura-Montes, Coello (bib0017) 2011; 1 Liu, Gu, Zhang (bib0014) 2014; 18 Wang, Cai, Zhou, Zeng (bib0019) 2008; 12 Bandyopadhyay, Pal, Aruna (bib0044) 2004; 34 Li, Deb, Zhang, Suganthan, Chen (bib0046) 2019; 46 Yang, Liu, Tan, Wang (bib0036) 2019; 80 Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (bib0031) 2019; 44 Zhu, Zhang, Lin (bib0034) 2020; 24 Woldesenbet, Yen, Tessema (bib0025) 2009; 13 Deb (bib0021) 2000; 186 Qian, Ye, Jiang, Wang (bib0043) 2016; 46 Li, Deb, Zhang, Kwong (bib0005) 2015; 19 Li, Chen, Fu, Yao (bib0035) 2018 Bader, Zitzler (bib0015) 2011; 19 Cheng, Jin, Olhofer, Sendhoff (bib0006) 2016; 20 Runarsson, Yao (bib0022) 2000; 4 Tian, Zhang, Xiao, Zhang, Jin (bib0037) 2021; 25 Liu, Teo, Wang, Wu (bib0020) 2016; 20 Miettinen, Mkel, Toivanen (bib0018) 2003; 27 Bosman, Thierens (bib0045) 2003; 7 Takahama, Sakai (bib0024) 2010 Demissie, Zhu, Belachew (bib0003) 2017; 100 Corne, Jerram, Knowles, Oates (bib0011) 2001 Zhang, Li (bib0012) 2007; 11 Takahama, Sakai (bib0023) 2005 Fan, Li, Cai, Huang, Fang, You, Mo, Wei, Goodman (bib0029) 2019; 23 Zhou, Qu, Li, Zhao, Suganthan, Zhang (bib0008) 2011; 1 Deb, Pratap, Meyarivan (bib0041) 2001 Li, Zhang (bib0013) 2009; 13 Jan, Khanum (bib0026) 2013; 13 Yang, Liu, Tan (bib0032) 2020; 89 Wang, Xu, Sun, Yang (bib0039) 2017; 21 Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (bib0042) 2019 Wang, Wang, Li, Yen (bib0040) 2016; 46 Zitzler, Thiele (bib0010) 1999; 3 Qu, Suganthan (bib0030) 2011; 43 Liu, Wang (bib0033) 2019 Li, Cheng, Liu, Jin (bib0007) 2018; 67 Yang, Liu, Tan, Wang (bib0001) 2018; 51 Martinez, Montano, Coello (bib0004) 2014 Wang, Zhang, Zhou, Gong, Jiao (bib0038) 2016; 20 Alves, Souza, Costa (bib0002) 2016; 93 Jiang, Zhang, Ong, Zhang, Tan (bib0016) 2015; 45 Asafuddoula, Ray, Sarker (bib0028) 2015; 19 Runarsson (10.1016/j.swevo.2021.100940_bib0022) 2000; 4 Jan (10.1016/j.swevo.2021.100940_bib0026) 2013; 13 Bader (10.1016/j.swevo.2021.100940_bib0015) 2011; 19 Liu (10.1016/j.swevo.2021.100940_bib0020) 2016; 20 Bandyopadhyay (10.1016/j.swevo.2021.100940_bib0044) 2004; 34 Yang (10.1016/j.swevo.2021.100940_bib0036) 2019; 80 Wang (10.1016/j.swevo.2021.100940_bib0040) 2016; 46 Wang (10.1016/j.swevo.2021.100940_bib0039) 2017; 21 Woldesenbet (10.1016/j.swevo.2021.100940_bib0025) 2009; 13 Mezura-Montes (10.1016/j.swevo.2021.100940_bib0017) 2011; 1 Wang (10.1016/j.swevo.2021.100940_bib0038) 2016; 20 Cheng (10.1016/j.swevo.2021.100940_bib0006) 2016; 20 Takahama (10.1016/j.swevo.2021.100940_bib0024) 2010 Deb (10.1016/j.swevo.2021.100940_bib0041) 2001 Deb (10.1016/j.swevo.2021.100940_bib0021) 2000; 186 Zhang (10.1016/j.swevo.2021.100940_bib0012) 2007; 11 Li (10.1016/j.swevo.2021.100940_bib0046) 2019; 46 Li (10.1016/j.swevo.2021.100940_bib0035) 2018 Tian (10.1016/j.swevo.2021.100940_bib0037) 2021; 25 Deb (10.1016/j.swevo.2021.100940_bib0009) 2002; 6 Jain (10.1016/j.swevo.2021.100940_bib0027) 2014; 18 Jiang (10.1016/j.swevo.2021.100940_bib0016) 2015; 45 Liu (10.1016/j.swevo.2021.100940_bib0033) 2019 Wang (10.1016/j.swevo.2021.100940_bib0019) 2008; 12 Asafuddoula (10.1016/j.swevo.2021.100940_bib0028) 2015; 19 Yang (10.1016/j.swevo.2021.100940_bib0032) 2020; 89 Miettinen (10.1016/j.swevo.2021.100940_bib0018) 2003; 27 Alves (10.1016/j.swevo.2021.100940_bib0002) 2016; 93 Qian (10.1016/j.swevo.2021.100940_bib0043) 2016; 46 Corne (10.1016/j.swevo.2021.100940_bib0011) 2001 Zhou (10.1016/j.swevo.2021.100940_bib0008) 2011; 1 Qu (10.1016/j.swevo.2021.100940_bib0030) 2011; 43 Yang (10.1016/j.swevo.2021.100940_bib0001) 2018; 51 Li (10.1016/j.swevo.2021.100940_bib0013) 2009; 13 Bosman (10.1016/j.swevo.2021.100940_bib0045) 2003; 7 Fan (10.1016/j.swevo.2021.100940_bib0031) 2019; 44 Demissie (10.1016/j.swevo.2021.100940_bib0003) 2017; 100 Fan (10.1016/j.swevo.2021.100940_bib0042) 2019 Li (10.1016/j.swevo.2021.100940_bib0005) 2015; 19 Zitzler (10.1016/j.swevo.2021.100940_bib0010) 1999; 3 Fan (10.1016/j.swevo.2021.100940_bib0029) 2019; 23 Martinez (10.1016/j.swevo.2021.100940_bib0004) 2014 Takahama (10.1016/j.swevo.2021.100940_bib0023) 2005 Zhu (10.1016/j.swevo.2021.100940_bib0034) 2020; 24 Liu (10.1016/j.swevo.2021.100940_bib0014) 2014; 18 Li (10.1016/j.swevo.2021.100940_bib0007) 2018; 67 |
| References_xml | – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: bib0006 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 80 start-page: 42 year: 2019 end-page: 56 ident: bib0036 article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio publication-title: Appl. Soft Comput. – year: 2019 ident: bib0042 article-title: Difficulty adjustable and scalable constrained multi-objective test problem toolkit publication-title: Evol. Comput. – volume: 34 start-page: 2088 year: 2004 end-page: 2099 ident: bib0044 article-title: Multiobjective gas, quantitative indices, and pattern classification publication-title: IEEE Trans. Syst. Man Cybern. Part B – volume: 21 start-page: 665 year: 2017 end-page: 680 ident: bib0039 article-title: A two-phase differential evolution for uniform designs in constrained experimental domains publication-title: IEEE Trans. Evol. Comput. – start-page: 1019 year: 2005 end-page: 1029 ident: bib0023 article-title: Constrained optimization by publication-title: Soft Computing as Transdisciplinary Science and Technology – volume: 13 start-page: 128 year: 2013 end-page: 148 ident: bib0026 article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D publication-title: Appl. Soft Comput. J. – volume: 19 start-page: 694 year: 2015 end-page: 716 ident: bib0005 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 602 year: 2014 end-page: 622 ident: bib0027 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach publication-title: IEEE Trans. Evol. Comput. – volume: 27 start-page: 427 year: 2003 end-page: 446 ident: bib0018 article-title: Numerical comparison of some penalty-based constraint handling techniques in genetic algorithms publication-title: J. Global Optim. – volume: 93 start-page: 212 year: 2016 end-page: 220 ident: bib0002 article-title: Multi-objective design optimization of natural gas transmission networks publication-title: Comput. Chem. Eng. – year: 2014 ident: bib0004 article-title: Constrained Multi-Objective Aerodynamic Shape Optimization via Swarm Intelligence – start-page: 283 year: 2001 end-page: 290 ident: bib0011 article-title: PESA-II: region-based selection in evolutionary multiobjective optimization publication-title: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation – start-page: 1 year: 2018 ident: bib0035 article-title: Two-archive evolutionary algorithm for constrained multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 1 start-page: 173 year: 2011 end-page: 194 ident: bib0017 article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future publication-title: Swarm Evol. Comput. – volume: 20 start-page: 475 year: 2016 end-page: 480 ident: bib0038 article-title: Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm publication-title: IEEE Trans. Evol. Comput. – volume: 67 start-page: 245 year: 2018 end-page: 260 ident: bib0007 article-title: A two-stage R2 indicator based evolutionary algorithm for many-objective optimization publication-title: Appl. Soft Comput. – volume: 18 start-page: 450 year: 2014 end-page: 455 ident: bib0014 article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems publication-title: IEEE Trans. Evol. Comput. – volume: 1 start-page: 32 year: 2011 end-page: 49 ident: bib0008 article-title: Multiobjective evolutionary algorithms: a survey of the state of the art publication-title: Swarm Evol. Comput. – volume: 24 start-page: 938 year: 2020 end-page: 947 ident: bib0034 article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy publication-title: IEEE Trans. Evol. Comput. – volume: 46 start-page: 2938 year: 2016 end-page: 2952 ident: bib0040 article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization publication-title: IEEE Trans. Cybern. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib0012 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: bib0021 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. – volume: 4 start-page: 284 year: 2000 end-page: 294 ident: bib0022 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 514 year: 2009 end-page: 525 ident: bib0025 article-title: Constraint handling in multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 12 start-page: 80 year: 2008 end-page: 92 ident: bib0019 article-title: An adaptive tradeoff model for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. – volume: 46 start-page: 104 year: 2019 end-page: 117 ident: bib0046 article-title: Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties publication-title: Swarm Evol. Comput. – volume: 43 start-page: 403 year: 2011 end-page: 416 ident: bib0030 article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods publication-title: Eng. Optim. – volume: 100 start-page: 94 year: 2017 end-page: 103 ident: bib0003 article-title: A multi-objective optimization model for gas pipeline operations publication-title: Comput. Chem. Eng. – start-page: 1 year: 2019 ident: bib0033 article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces publication-title: IEEE Trans. Evol. Comput. – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: bib0010 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 445 year: 2015 end-page: 460 ident: bib0028 article-title: A decomposition-based evolutionary algorithm for many objective optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 284 year: 2001 end-page: 298 ident: bib0041 article-title: Constrained test problems for multi-objective evolutionary optimization publication-title: Evolutionary Multi-Criterion Optimization – volume: 13 start-page: 284 year: 2009 end-page: 302 ident: bib0013 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 23 start-page: 12491 year: 2019 end-page: 12510 ident: bib0029 article-title: An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions publication-title: Soft Comput. – start-page: 1 year: 2010 end-page: 9 ident: bib0024 article-title: Constrained optimization by the publication-title: IEEE Congress on Evolutionary Computation – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0009 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 25 start-page: 102 year: 2021 end-page: 116 ident: bib0037 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 45 year: 2011 end-page: 76 ident: bib0015 article-title: HypE: an algorithm for fast hypervolume-based many-objective optimization publication-title: Evol. Comput. – volume: 45 start-page: 2202 year: 2015 end-page: 2213 ident: bib0016 article-title: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm publication-title: IEEE Trans. Cybern. – volume: 44 start-page: 665 year: 2019 end-page: 679 ident: bib0031 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. – volume: 20 start-page: 1305 year: 2016 end-page: 1313 ident: bib0020 article-title: An exact penalty function-based differential search algorithm for constrained global optimization publication-title: Soft Comput. – volume: 46 start-page: 2056 year: 2016 end-page: 2069 ident: bib0043 article-title: Constrained multiobjective optimization algorithm based on immune system model publication-title: IEEE Trans. Cybern. – volume: 89 start-page: 106104 year: 2020 ident: bib0032 article-title: A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism publication-title: Appl. Soft Comput. – volume: 51 start-page: 168 year: 2018 end-page: 173 ident: bib0001 article-title: Application of constrained multi-objective evolutionary algorithm in multi-source compressed-air pipeline optimization problems publication-title: IFAC-PapersOnLine – volume: 7 start-page: 174 year: 2003 end-page: 188 ident: bib0045 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. – volume: 19 start-page: 45 issue: 1 year: 2011 ident: 10.1016/j.swevo.2021.100940_bib0015 article-title: HypE: an algorithm for fast hypervolume-based many-objective optimization publication-title: Evol. Comput. doi: 10.1162/EVCO_a_00009 – year: 2019 ident: 10.1016/j.swevo.2021.100940_bib0042 article-title: Difficulty adjustable and scalable constrained multi-objective test problem toolkit publication-title: Evol. Comput. – volume: 51 start-page: 168 issue: 18 year: 2018 ident: 10.1016/j.swevo.2021.100940_bib0001 article-title: Application of constrained multi-objective evolutionary algorithm in multi-source compressed-air pipeline optimization problems publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.09.294 – volume: 20 start-page: 475 issue: 3 year: 2016 ident: 10.1016/j.swevo.2021.100940_bib0038 article-title: Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2457616 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.swevo.2021.100940_bib0010 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – volume: 24 start-page: 938 issue: 5 year: 2020 ident: 10.1016/j.swevo.2021.100940_bib0034 article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2981949 – volume: 34 start-page: 2088 issue: 5 year: 2004 ident: 10.1016/j.swevo.2021.100940_bib0044 article-title: Multiobjective gas, quantitative indices, and pattern classification publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/TSMCB.2004.834438 – volume: 100 start-page: 94 year: 2017 ident: 10.1016/j.swevo.2021.100940_bib0003 article-title: A multi-objective optimization model for gas pipeline operations publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.02.017 – year: 2014 ident: 10.1016/j.swevo.2021.100940_bib0004 – volume: 93 start-page: 212 year: 2016 ident: 10.1016/j.swevo.2021.100940_bib0002 article-title: Multi-objective design optimization of natural gas transmission networks publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2016.06.006 – volume: 67 start-page: 245 year: 2018 ident: 10.1016/j.swevo.2021.100940_bib0007 article-title: A two-stage R2 indicator based evolutionary algorithm for many-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.048 – volume: 1 start-page: 173 issue: 4 year: 2011 ident: 10.1016/j.swevo.2021.100940_bib0017 article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.10.001 – volume: 186 start-page: 311 issue: 2 year: 2000 ident: 10.1016/j.swevo.2021.100940_bib0021 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00389-8 – volume: 19 start-page: 445 issue: 3 year: 2015 ident: 10.1016/j.swevo.2021.100940_bib0028 article-title: A decomposition-based evolutionary algorithm for many objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2339823 – start-page: 284 year: 2001 ident: 10.1016/j.swevo.2021.100940_bib0041 article-title: Constrained test problems for multi-objective evolutionary optimization – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.swevo.2021.100940_bib0006 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2519378 – volume: 23 start-page: 12491 year: 2019 ident: 10.1016/j.swevo.2021.100940_bib0029 article-title: An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions publication-title: Soft Comput. doi: 10.1007/s00500-019-03794-x – volume: 25 start-page: 102 issue: 1 year: 2021 ident: 10.1016/j.swevo.2021.100940_bib0037 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.3004012 – volume: 13 start-page: 514 issue: 3 year: 2009 ident: 10.1016/j.swevo.2021.100940_bib0025 article-title: Constraint handling in multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.2009032 – volume: 1 start-page: 32 issue: 1 year: 2011 ident: 10.1016/j.swevo.2021.100940_bib0008 article-title: Multiobjective evolutionary algorithms: a survey of the state of the art publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.03.001 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.swevo.2021.100940_bib0012 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 89 start-page: 106104 year: 2020 ident: 10.1016/j.swevo.2021.100940_bib0032 article-title: A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106104 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.swevo.2021.100940_bib0009 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 12 start-page: 80 issue: 1 year: 2008 ident: 10.1016/j.swevo.2021.100940_bib0019 article-title: An adaptive tradeoff model for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.902851 – start-page: 1019 year: 2005 ident: 10.1016/j.swevo.2021.100940_bib0023 article-title: Constrained optimization by ϵ constrained particle swarm optimizer with ϵ-level control – volume: 18 start-page: 602 issue: 4 year: 2014 ident: 10.1016/j.swevo.2021.100940_bib0027 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281534 – volume: 45 start-page: 2202 issue: 10 year: 2015 ident: 10.1016/j.swevo.2021.100940_bib0016 article-title: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2367526 – start-page: 283 year: 2001 ident: 10.1016/j.swevo.2021.100940_bib0011 article-title: PESA-II: region-based selection in evolutionary multiobjective optimization – volume: 13 start-page: 128 issue: 1 year: 2013 ident: 10.1016/j.swevo.2021.100940_bib0026 article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2012.07.027 – volume: 27 start-page: 427 issue: 4 year: 2003 ident: 10.1016/j.swevo.2021.100940_bib0018 article-title: Numerical comparison of some penalty-based constraint handling techniques in genetic algorithms publication-title: J. Global Optim. doi: 10.1023/A:1026065325419 – volume: 4 start-page: 284 issue: 3 year: 2000 ident: 10.1016/j.swevo.2021.100940_bib0022 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.873238 – volume: 18 start-page: 450 issue: 3 year: 2014 ident: 10.1016/j.swevo.2021.100940_bib0014 article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281533 – volume: 21 start-page: 665 issue: 5 year: 2017 ident: 10.1016/j.swevo.2021.100940_bib0039 article-title: A two-phase differential evolution for uniform designs in constrained experimental domains publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2669098 – volume: 20 start-page: 1305 issue: 4 year: 2016 ident: 10.1016/j.swevo.2021.100940_bib0020 article-title: An exact penalty function-based differential search algorithm for constrained global optimization publication-title: Soft Comput. doi: 10.1007/s00500-015-1588-6 – volume: 19 start-page: 694 issue: 5 year: 2015 ident: 10.1016/j.swevo.2021.100940_bib0005 article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2373386 – volume: 43 start-page: 403 issue: 4 year: 2011 ident: 10.1016/j.swevo.2021.100940_bib0030 article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods publication-title: Eng. Optim. doi: 10.1080/0305215X.2010.493937 – volume: 44 start-page: 665 year: 2019 ident: 10.1016/j.swevo.2021.100940_bib0031 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.017 – volume: 46 start-page: 2938 issue: 12 year: 2016 ident: 10.1016/j.swevo.2021.100940_bib0040 article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2493239 – start-page: 1 year: 2019 ident: 10.1016/j.swevo.2021.100940_bib0033 article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces publication-title: IEEE Trans. Evol. Comput. – volume: 13 start-page: 284 issue: 2 year: 2009 ident: 10.1016/j.swevo.2021.100940_bib0013 article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.925798 – volume: 7 start-page: 174 issue: 2 year: 2003 ident: 10.1016/j.swevo.2021.100940_bib0045 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810761 – start-page: 1 year: 2010 ident: 10.1016/j.swevo.2021.100940_bib0024 article-title: Constrained optimization by the ϵ constrained differential evolution with an archive and gradient-based mutation – start-page: 1 year: 2018 ident: 10.1016/j.swevo.2021.100940_bib0035 article-title: Two-archive evolutionary algorithm for constrained multi-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 46 start-page: 104 year: 2019 ident: 10.1016/j.swevo.2021.100940_bib0046 article-title: Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.02.003 – volume: 46 start-page: 2056 issue: 9 year: 2016 ident: 10.1016/j.swevo.2021.100940_bib0043 article-title: Constrained multiobjective optimization algorithm based on immune system model publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2461651 – volume: 80 start-page: 42 year: 2019 ident: 10.1016/j.swevo.2021.100940_bib0036 article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.02.041 |
| SSID | ssj0000602559 |
| Score | 2.3561692 |
| Snippet | •The CMOP is divided into a series of sub-problems by objective space partition.•A hybrid constrained handling technique including the unconstrained search... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100940 |
| SubjectTerms | Compressed-air pipeline optimization Constrained multi-objective optimization Differential evolution Partition selection |
| Title | A partition-based constrained multi-objective evolutionary algorithm |
| URI | https://dx.doi.org/10.1016/j.swevo.2021.100940 |
| Volume | 66 |
| WOSCitedRecordID | wos000686799300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDI4QcODCG_FWD9ygaEtp2hwnHgIOCAmQxqlKswQ2oJv2YPv52Elaug0hQOJSTVGTtP4yx3Ydf4QcMKEZ1ZjUXo2Ej4cffYEFAZSA_bBxouAPKA3ZRHRzE9fr_NZxuPcMnUCUZfFoxDv_CjW0Adh4dPYXcBeDQgP8BtDhCrDD9UfA1w472IoT-LhH4bE1LBMrwJ5s2ARCv522rKI7VO_uYTB7Trw-tbvN_vNb2WS9G4qu5dEYu1caOoix7_iPLvb82M6eXgalZJ_mwCwWjJ9gfPozWmCDr8-D1NX_duEHWi0S2VxMbOpcDKouCo6kD7bfmJ617CpTKttGD1rHvSG8xTFOgZkb3BZxmqiFfYcD47i0aorjwd47R6OQgzqbq12d16-L8FqFGWcJqQXzZ8lrTpnsvqnZvrZLSrbG_TJZdE6CV7PgrpAZla2SpZyAw3P6eI2c1bwJrL0S1t4E1l4ZP6_Aep08XJzfn176jhbDlzQI-n7IDSuATpGig4lIcKzJw8HzQ8ZwQcFgblDNWFzR4EwHUqFZJkQc8YgLGoTBBpnN2pnaJF5MdRpSEUim2InmMQ_TWMmqTqWo6CBSW4TmQkmkqxmP7_Ca5MmBrcRIMkFJJlaSW-So6NSxJVO-v53l0k6c1WetuQRWyHcdt__acYcsfK7kXTLb7w7UHpmX7_1mr7vvVtIHM79-HQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+partition-based+constrained+multi-objective+evolutionary+algorithm&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Yang%2C+Yongkuan&rft.au=Liu%2C+Jianchang&rft.au=Tan%2C+Shubin&rft.date=2021-10-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=66&rft_id=info:doi/10.1016%2Fj.swevo.2021.100940&rft.externalDocID=S2210650221001012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |