A partition-based constrained multi-objective evolutionary algorithm

•The CMOP is divided into a series of sub-problems by objective space partition.•A hybrid constrained handling technique including the unconstrained search mode.•A selection operator based on partition feasible solutions.•Mating-pool selection based on population and external archive. Solving constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Swarm and evolutionary computation Jg. 66; S. 100940
Hauptverfasser: Yang, Yongkuan, Liu, Jianchang, Tan, Shubin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2021
Schlagworte:
ISSN:2210-6502
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The CMOP is divided into a series of sub-problems by objective space partition.•A hybrid constrained handling technique including the unconstrained search mode.•A selection operator based on partition feasible solutions.•Mating-pool selection based on population and external archive. Solving constrained multi-objective optimization problems (CMOPs) is full of challenges due to the difficulties in balancing between feasibility, convergence and distribution. To remedy this issue, this paper proposes a multi-objective differential evolutionary algorithm based on partition selection (MODE-PS). Firstly, MODE-PS divides a CMOP into a series of optimization sub-problems by objective space partition to maintain the distribution. Then, to keep the feasibility of the subspaces, one feasible solution of each subspace is saved to a partition feasible solution set. Next, once there are feasible solutions in one subspace, the individual selection strategy of this subspace is changed from constraint search to non-constraint search. By this way, the convergence is accelerated. Finally, all the feasible solutions are archived and evolved together with the population by a mating-pool selection to balance the feasibility, convergence and distribution. Twenty-two benchmark test problems are used to test the performance of MODE-PS in comparison with five state-of-the-art constrained multi-objective evolution algorithms. Moreover, a real-world problem, i.e., bi-source compressed-air pipeline optimization, is used to test the performance of algorithms. The experimental results have demonstrated the high competitiveness of MODE-PS for solving CMOPs.
AbstractList •The CMOP is divided into a series of sub-problems by objective space partition.•A hybrid constrained handling technique including the unconstrained search mode.•A selection operator based on partition feasible solutions.•Mating-pool selection based on population and external archive. Solving constrained multi-objective optimization problems (CMOPs) is full of challenges due to the difficulties in balancing between feasibility, convergence and distribution. To remedy this issue, this paper proposes a multi-objective differential evolutionary algorithm based on partition selection (MODE-PS). Firstly, MODE-PS divides a CMOP into a series of optimization sub-problems by objective space partition to maintain the distribution. Then, to keep the feasibility of the subspaces, one feasible solution of each subspace is saved to a partition feasible solution set. Next, once there are feasible solutions in one subspace, the individual selection strategy of this subspace is changed from constraint search to non-constraint search. By this way, the convergence is accelerated. Finally, all the feasible solutions are archived and evolved together with the population by a mating-pool selection to balance the feasibility, convergence and distribution. Twenty-two benchmark test problems are used to test the performance of MODE-PS in comparison with five state-of-the-art constrained multi-objective evolution algorithms. Moreover, a real-world problem, i.e., bi-source compressed-air pipeline optimization, is used to test the performance of algorithms. The experimental results have demonstrated the high competitiveness of MODE-PS for solving CMOPs.
ArticleNumber 100940
Author Yang, Yongkuan
Liu, Jianchang
Tan, Shubin
Author_xml – sequence: 1
  givenname: Yongkuan
  surname: Yang
  fullname: Yang, Yongkuan
  organization: School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen 361024, China
– sequence: 2
  givenname: Jianchang
  surname: Liu
  fullname: Liu, Jianchang
  email: liujianchang@ise.neu.edu.cn
  organization: Department of Information Science and Engineering and the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
– sequence: 3
  givenname: Shubin
  surname: Tan
  fullname: Tan, Shubin
  organization: Department of Information Science and Engineering and the State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
BookMark eNqFkM1OwzAMgHMYEmPsCbj0BTqcZEmbA4dp_EqTuMA58tIUUnXNlGRDvD0p48QBfLFl-bP8-YJMBj9YQq4oLChQed0t4oc9-gUDRnMH1BImZMoYhVIKYOdkHmMHOSQwIdSU3K6KPYbkkvNDucVom8L4IaaAbsj17tAnV_ptZ01yR1vk3f1hnMXwWWD_5oNL77tLctZiH-38J8_I6_3dy_qx3Dw_PK1Xm9IwzlMp1LJSS9lugQKXWKECwSslKyGBU2QgVMNaKWtoa6W4scB4jVhXqlLIuOAzwk97TfAxBtvqfXC7fIqmoEd_3elvfz3665N_ptQvyriEo8Ro2f_D3pxYm7WOzgYdjbODsY0L-SW68e5P_gvULHry
CitedBy_id crossref_primary_10_1016_j_swevo_2024_101581
crossref_primary_10_1109_ACCESS_2023_3300590
crossref_primary_10_1016_j_swevo_2023_101372
crossref_primary_10_1016_j_knosys_2024_111998
crossref_primary_10_1109_TCYB_2022_3163759
crossref_primary_10_1016_j_jmsy_2025_04_003
crossref_primary_10_1007_s11424_025_4232_2
crossref_primary_10_3390_math10050813
crossref_primary_10_1016_j_asoc_2024_111398
crossref_primary_10_1016_j_matcom_2024_02_012
crossref_primary_10_1007_s12667_022_00549_w
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_1016_j_asoc_2023_110845
crossref_primary_10_1016_j_swevo_2022_101123
crossref_primary_10_3390_math13111851
crossref_primary_10_7717_peerj_cs_2102
crossref_primary_10_1109_TEVC_2022_3155533
crossref_primary_10_1016_j_swevo_2025_102016
crossref_primary_10_1016_j_swevo_2025_102137
crossref_primary_10_1016_j_swevo_2023_101402
crossref_primary_10_1007_s11831_022_09859_9
crossref_primary_10_1016_j_swevo_2023_101389
Cites_doi 10.1162/EVCO_a_00009
10.1016/j.ifacol.2018.09.294
10.1109/TEVC.2015.2457616
10.1109/4235.797969
10.1109/TEVC.2020.2981949
10.1109/TSMCB.2004.834438
10.1016/j.compchemeng.2017.02.017
10.1016/j.compchemeng.2016.06.006
10.1016/j.asoc.2018.02.048
10.1016/j.swevo.2011.10.001
10.1016/S0045-7825(99)00389-8
10.1109/TEVC.2014.2339823
10.1109/TEVC.2016.2519378
10.1007/s00500-019-03794-x
10.1109/TEVC.2020.3004012
10.1109/TEVC.2008.2009032
10.1016/j.swevo.2011.03.001
10.1109/TEVC.2007.892759
10.1016/j.asoc.2020.106104
10.1109/4235.996017
10.1109/TEVC.2007.902851
10.1109/TEVC.2013.2281534
10.1109/TCYB.2014.2367526
10.1016/j.asoc.2012.07.027
10.1023/A:1026065325419
10.1109/4235.873238
10.1109/TEVC.2013.2281533
10.1109/TEVC.2017.2669098
10.1007/s00500-015-1588-6
10.1109/TEVC.2014.2373386
10.1080/0305215X.2010.493937
10.1016/j.swevo.2018.08.017
10.1109/TCYB.2015.2493239
10.1109/TEVC.2008.925798
10.1109/TEVC.2003.810761
10.1016/j.swevo.2019.02.003
10.1109/TCYB.2015.2461651
10.1016/j.asoc.2019.02.041
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2021.100940
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2021_100940
S2210650221001012
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABMYL
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c233t-5947946fb01036a7a9053796756031a2059d2f6680f8993ce0238aa87979a2353
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686799300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Wed Nov 05 20:38:18 EST 2025
Tue Nov 18 20:45:14 EST 2025
Sat Mar 16 16:13:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Constrained multi-objective optimization
Differential evolution
Compressed-air pipeline optimization
Partition selection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c233t-5947946fb01036a7a9053796756031a2059d2f6680f8993ce0238aa87979a2353
ParticipantIDs crossref_primary_10_1016_j_swevo_2021_100940
crossref_citationtrail_10_1016_j_swevo_2021_100940
elsevier_sciencedirect_doi_10_1016_j_swevo_2021_100940
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Deb, Pratap, Agarwal, Meyarivan (bib0009) 2002; 6
Jain, Deb (bib0027) 2014; 18
Mezura-Montes, Coello (bib0017) 2011; 1
Liu, Gu, Zhang (bib0014) 2014; 18
Wang, Cai, Zhou, Zeng (bib0019) 2008; 12
Bandyopadhyay, Pal, Aruna (bib0044) 2004; 34
Li, Deb, Zhang, Suganthan, Chen (bib0046) 2019; 46
Yang, Liu, Tan, Wang (bib0036) 2019; 80
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (bib0031) 2019; 44
Zhu, Zhang, Lin (bib0034) 2020; 24
Woldesenbet, Yen, Tessema (bib0025) 2009; 13
Deb (bib0021) 2000; 186
Qian, Ye, Jiang, Wang (bib0043) 2016; 46
Li, Deb, Zhang, Kwong (bib0005) 2015; 19
Li, Chen, Fu, Yao (bib0035) 2018
Bader, Zitzler (bib0015) 2011; 19
Cheng, Jin, Olhofer, Sendhoff (bib0006) 2016; 20
Runarsson, Yao (bib0022) 2000; 4
Tian, Zhang, Xiao, Zhang, Jin (bib0037) 2021; 25
Liu, Teo, Wang, Wu (bib0020) 2016; 20
Miettinen, Mkel, Toivanen (bib0018) 2003; 27
Bosman, Thierens (bib0045) 2003; 7
Takahama, Sakai (bib0024) 2010
Demissie, Zhu, Belachew (bib0003) 2017; 100
Corne, Jerram, Knowles, Oates (bib0011) 2001
Zhang, Li (bib0012) 2007; 11
Takahama, Sakai (bib0023) 2005
Fan, Li, Cai, Huang, Fang, You, Mo, Wei, Goodman (bib0029) 2019; 23
Zhou, Qu, Li, Zhao, Suganthan, Zhang (bib0008) 2011; 1
Deb, Pratap, Meyarivan (bib0041) 2001
Li, Zhang (bib0013) 2009; 13
Jan, Khanum (bib0026) 2013; 13
Yang, Liu, Tan (bib0032) 2020; 89
Wang, Xu, Sun, Yang (bib0039) 2017; 21
Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (bib0042) 2019
Wang, Wang, Li, Yen (bib0040) 2016; 46
Zitzler, Thiele (bib0010) 1999; 3
Qu, Suganthan (bib0030) 2011; 43
Liu, Wang (bib0033) 2019
Li, Cheng, Liu, Jin (bib0007) 2018; 67
Yang, Liu, Tan, Wang (bib0001) 2018; 51
Martinez, Montano, Coello (bib0004) 2014
Wang, Zhang, Zhou, Gong, Jiao (bib0038) 2016; 20
Alves, Souza, Costa (bib0002) 2016; 93
Jiang, Zhang, Ong, Zhang, Tan (bib0016) 2015; 45
Asafuddoula, Ray, Sarker (bib0028) 2015; 19
Runarsson (10.1016/j.swevo.2021.100940_bib0022) 2000; 4
Jan (10.1016/j.swevo.2021.100940_bib0026) 2013; 13
Bader (10.1016/j.swevo.2021.100940_bib0015) 2011; 19
Liu (10.1016/j.swevo.2021.100940_bib0020) 2016; 20
Bandyopadhyay (10.1016/j.swevo.2021.100940_bib0044) 2004; 34
Yang (10.1016/j.swevo.2021.100940_bib0036) 2019; 80
Wang (10.1016/j.swevo.2021.100940_bib0040) 2016; 46
Wang (10.1016/j.swevo.2021.100940_bib0039) 2017; 21
Woldesenbet (10.1016/j.swevo.2021.100940_bib0025) 2009; 13
Mezura-Montes (10.1016/j.swevo.2021.100940_bib0017) 2011; 1
Wang (10.1016/j.swevo.2021.100940_bib0038) 2016; 20
Cheng (10.1016/j.swevo.2021.100940_bib0006) 2016; 20
Takahama (10.1016/j.swevo.2021.100940_bib0024) 2010
Deb (10.1016/j.swevo.2021.100940_bib0041) 2001
Deb (10.1016/j.swevo.2021.100940_bib0021) 2000; 186
Zhang (10.1016/j.swevo.2021.100940_bib0012) 2007; 11
Li (10.1016/j.swevo.2021.100940_bib0046) 2019; 46
Li (10.1016/j.swevo.2021.100940_bib0035) 2018
Tian (10.1016/j.swevo.2021.100940_bib0037) 2021; 25
Deb (10.1016/j.swevo.2021.100940_bib0009) 2002; 6
Jain (10.1016/j.swevo.2021.100940_bib0027) 2014; 18
Jiang (10.1016/j.swevo.2021.100940_bib0016) 2015; 45
Liu (10.1016/j.swevo.2021.100940_bib0033) 2019
Wang (10.1016/j.swevo.2021.100940_bib0019) 2008; 12
Asafuddoula (10.1016/j.swevo.2021.100940_bib0028) 2015; 19
Yang (10.1016/j.swevo.2021.100940_bib0032) 2020; 89
Miettinen (10.1016/j.swevo.2021.100940_bib0018) 2003; 27
Alves (10.1016/j.swevo.2021.100940_bib0002) 2016; 93
Qian (10.1016/j.swevo.2021.100940_bib0043) 2016; 46
Corne (10.1016/j.swevo.2021.100940_bib0011) 2001
Zhou (10.1016/j.swevo.2021.100940_bib0008) 2011; 1
Qu (10.1016/j.swevo.2021.100940_bib0030) 2011; 43
Yang (10.1016/j.swevo.2021.100940_bib0001) 2018; 51
Li (10.1016/j.swevo.2021.100940_bib0013) 2009; 13
Bosman (10.1016/j.swevo.2021.100940_bib0045) 2003; 7
Fan (10.1016/j.swevo.2021.100940_bib0031) 2019; 44
Demissie (10.1016/j.swevo.2021.100940_bib0003) 2017; 100
Fan (10.1016/j.swevo.2021.100940_bib0042) 2019
Li (10.1016/j.swevo.2021.100940_bib0005) 2015; 19
Zitzler (10.1016/j.swevo.2021.100940_bib0010) 1999; 3
Fan (10.1016/j.swevo.2021.100940_bib0029) 2019; 23
Martinez (10.1016/j.swevo.2021.100940_bib0004) 2014
Takahama (10.1016/j.swevo.2021.100940_bib0023) 2005
Zhu (10.1016/j.swevo.2021.100940_bib0034) 2020; 24
Liu (10.1016/j.swevo.2021.100940_bib0014) 2014; 18
Li (10.1016/j.swevo.2021.100940_bib0007) 2018; 67
References_xml – volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: bib0006
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 80
  start-page: 42
  year: 2019
  end-page: 56
  ident: bib0036
  article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: bib0042
  article-title: Difficulty adjustable and scalable constrained multi-objective test problem toolkit
  publication-title: Evol. Comput.
– volume: 34
  start-page: 2088
  year: 2004
  end-page: 2099
  ident: bib0044
  article-title: Multiobjective gas, quantitative indices, and pattern classification
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
– volume: 21
  start-page: 665
  year: 2017
  end-page: 680
  ident: bib0039
  article-title: A two-phase differential evolution for uniform designs in constrained experimental domains
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1019
  year: 2005
  end-page: 1029
  ident: bib0023
  article-title: Constrained optimization by
  publication-title: Soft Computing as Transdisciplinary Science and Technology
– volume: 13
  start-page: 128
  year: 2013
  end-page: 148
  ident: bib0026
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl. Soft Comput. J.
– volume: 19
  start-page: 694
  year: 2015
  end-page: 716
  ident: bib0005
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 602
  year: 2014
  end-page: 622
  ident: bib0027
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 27
  start-page: 427
  year: 2003
  end-page: 446
  ident: bib0018
  article-title: Numerical comparison of some penalty-based constraint handling techniques in genetic algorithms
  publication-title: J. Global Optim.
– volume: 93
  start-page: 212
  year: 2016
  end-page: 220
  ident: bib0002
  article-title: Multi-objective design optimization of natural gas transmission networks
  publication-title: Comput. Chem. Eng.
– year: 2014
  ident: bib0004
  article-title: Constrained Multi-Objective Aerodynamic Shape Optimization via Swarm Intelligence
– start-page: 283
  year: 2001
  end-page: 290
  ident: bib0011
  article-title: PESA-II: region-based selection in evolutionary multiobjective optimization
  publication-title: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation
– start-page: 1
  year: 2018
  ident: bib0035
  article-title: Two-archive evolutionary algorithm for constrained multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 173
  year: 2011
  end-page: 194
  ident: bib0017
  article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future
  publication-title: Swarm Evol. Comput.
– volume: 20
  start-page: 475
  year: 2016
  end-page: 480
  ident: bib0038
  article-title: Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: 67
  start-page: 245
  year: 2018
  end-page: 260
  ident: bib0007
  article-title: A two-stage R2 indicator based evolutionary algorithm for many-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 450
  year: 2014
  end-page: 455
  ident: bib0014
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 32
  year: 2011
  end-page: 49
  ident: bib0008
  article-title: Multiobjective evolutionary algorithms: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
– volume: 24
  start-page: 938
  year: 2020
  end-page: 947
  ident: bib0034
  article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 2938
  year: 2016
  end-page: 2952
  ident: bib0040
  article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization
  publication-title: IEEE Trans. Cybern.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0012
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: bib0021
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 4
  start-page: 284
  year: 2000
  end-page: 294
  ident: bib0022
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 514
  year: 2009
  end-page: 525
  ident: bib0025
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 12
  start-page: 80
  year: 2008
  end-page: 92
  ident: bib0019
  article-title: An adaptive tradeoff model for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 104
  year: 2019
  end-page: 117
  ident: bib0046
  article-title: Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties
  publication-title: Swarm Evol. Comput.
– volume: 43
  start-page: 403
  year: 2011
  end-page: 416
  ident: bib0030
  article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods
  publication-title: Eng. Optim.
– volume: 100
  start-page: 94
  year: 2017
  end-page: 103
  ident: bib0003
  article-title: A multi-objective optimization model for gas pipeline operations
  publication-title: Comput. Chem. Eng.
– start-page: 1
  year: 2019
  ident: bib0033
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib0010
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 445
  year: 2015
  end-page: 460
  ident: bib0028
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 284
  year: 2001
  end-page: 298
  ident: bib0041
  article-title: Constrained test problems for multi-objective evolutionary optimization
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: bib0013
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 12491
  year: 2019
  end-page: 12510
  ident: bib0029
  article-title: An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions
  publication-title: Soft Comput.
– start-page: 1
  year: 2010
  end-page: 9
  ident: bib0024
  article-title: Constrained optimization by the
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0009
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 102
  year: 2021
  end-page: 116
  ident: bib0037
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: bib0015
  article-title: HypE: an algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
– volume: 45
  start-page: 2202
  year: 2015
  end-page: 2213
  ident: bib0016
  article-title: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm
  publication-title: IEEE Trans. Cybern.
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: bib0031
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 20
  start-page: 1305
  year: 2016
  end-page: 1313
  ident: bib0020
  article-title: An exact penalty function-based differential search algorithm for constrained global optimization
  publication-title: Soft Comput.
– volume: 46
  start-page: 2056
  year: 2016
  end-page: 2069
  ident: bib0043
  article-title: Constrained multiobjective optimization algorithm based on immune system model
  publication-title: IEEE Trans. Cybern.
– volume: 89
  start-page: 106104
  year: 2020
  ident: bib0032
  article-title: A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism
  publication-title: Appl. Soft Comput.
– volume: 51
  start-page: 168
  year: 2018
  end-page: 173
  ident: bib0001
  article-title: Application of constrained multi-objective evolutionary algorithm in multi-source compressed-air pipeline optimization problems
  publication-title: IFAC-PapersOnLine
– volume: 7
  start-page: 174
  year: 2003
  end-page: 188
  ident: bib0045
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.swevo.2021.100940_bib0015
  article-title: HypE: an algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00009
– year: 2019
  ident: 10.1016/j.swevo.2021.100940_bib0042
  article-title: Difficulty adjustable and scalable constrained multi-objective test problem toolkit
  publication-title: Evol. Comput.
– volume: 51
  start-page: 168
  issue: 18
  year: 2018
  ident: 10.1016/j.swevo.2021.100940_bib0001
  article-title: Application of constrained multi-objective evolutionary algorithm in multi-source compressed-air pipeline optimization problems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.294
– volume: 20
  start-page: 475
  issue: 3
  year: 2016
  ident: 10.1016/j.swevo.2021.100940_bib0038
  article-title: Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2457616
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.swevo.2021.100940_bib0010
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 24
  start-page: 938
  issue: 5
  year: 2020
  ident: 10.1016/j.swevo.2021.100940_bib0034
  article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2981949
– volume: 34
  start-page: 2088
  issue: 5
  year: 2004
  ident: 10.1016/j.swevo.2021.100940_bib0044
  article-title: Multiobjective gas, quantitative indices, and pattern classification
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/TSMCB.2004.834438
– volume: 100
  start-page: 94
  year: 2017
  ident: 10.1016/j.swevo.2021.100940_bib0003
  article-title: A multi-objective optimization model for gas pipeline operations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.017
– year: 2014
  ident: 10.1016/j.swevo.2021.100940_bib0004
– volume: 93
  start-page: 212
  year: 2016
  ident: 10.1016/j.swevo.2021.100940_bib0002
  article-title: Multi-objective design optimization of natural gas transmission networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.06.006
– volume: 67
  start-page: 245
  year: 2018
  ident: 10.1016/j.swevo.2021.100940_bib0007
  article-title: A two-stage R2 indicator based evolutionary algorithm for many-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.048
– volume: 1
  start-page: 173
  issue: 4
  year: 2011
  ident: 10.1016/j.swevo.2021.100940_bib0017
  article-title: Constraint-handling in nature-inspired numerical optimization: past, present and future
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.10.001
– volume: 186
  start-page: 311
  issue: 2
  year: 2000
  ident: 10.1016/j.swevo.2021.100940_bib0021
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 19
  start-page: 445
  issue: 3
  year: 2015
  ident: 10.1016/j.swevo.2021.100940_bib0028
  article-title: A decomposition-based evolutionary algorithm for many objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2339823
– start-page: 284
  year: 2001
  ident: 10.1016/j.swevo.2021.100940_bib0041
  article-title: Constrained test problems for multi-objective evolutionary optimization
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.swevo.2021.100940_bib0006
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 23
  start-page: 12491
  year: 2019
  ident: 10.1016/j.swevo.2021.100940_bib0029
  article-title: An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03794-x
– volume: 25
  start-page: 102
  issue: 1
  year: 2021
  ident: 10.1016/j.swevo.2021.100940_bib0037
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3004012
– volume: 13
  start-page: 514
  issue: 3
  year: 2009
  ident: 10.1016/j.swevo.2021.100940_bib0025
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.2009032
– volume: 1
  start-page: 32
  issue: 1
  year: 2011
  ident: 10.1016/j.swevo.2021.100940_bib0008
  article-title: Multiobjective evolutionary algorithms: a survey of the state of the art
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.03.001
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.swevo.2021.100940_bib0012
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 89
  start-page: 106104
  year: 2020
  ident: 10.1016/j.swevo.2021.100940_bib0032
  article-title: A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106104
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.swevo.2021.100940_bib0009
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 12
  start-page: 80
  issue: 1
  year: 2008
  ident: 10.1016/j.swevo.2021.100940_bib0019
  article-title: An adaptive tradeoff model for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.902851
– start-page: 1019
  year: 2005
  ident: 10.1016/j.swevo.2021.100940_bib0023
  article-title: Constrained optimization by ϵ constrained particle swarm optimizer with ϵ-level control
– volume: 18
  start-page: 602
  issue: 4
  year: 2014
  ident: 10.1016/j.swevo.2021.100940_bib0027
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– volume: 45
  start-page: 2202
  issue: 10
  year: 2015
  ident: 10.1016/j.swevo.2021.100940_bib0016
  article-title: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2367526
– start-page: 283
  year: 2001
  ident: 10.1016/j.swevo.2021.100940_bib0011
  article-title: PESA-II: region-based selection in evolutionary multiobjective optimization
– volume: 13
  start-page: 128
  issue: 1
  year: 2013
  ident: 10.1016/j.swevo.2021.100940_bib0026
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2012.07.027
– volume: 27
  start-page: 427
  issue: 4
  year: 2003
  ident: 10.1016/j.swevo.2021.100940_bib0018
  article-title: Numerical comparison of some penalty-based constraint handling techniques in genetic algorithms
  publication-title: J. Global Optim.
  doi: 10.1023/A:1026065325419
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 10.1016/j.swevo.2021.100940_bib0022
  article-title: Stochastic ranking for constrained evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.873238
– volume: 18
  start-page: 450
  issue: 3
  year: 2014
  ident: 10.1016/j.swevo.2021.100940_bib0014
  article-title: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281533
– volume: 21
  start-page: 665
  issue: 5
  year: 2017
  ident: 10.1016/j.swevo.2021.100940_bib0039
  article-title: A two-phase differential evolution for uniform designs in constrained experimental domains
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2669098
– volume: 20
  start-page: 1305
  issue: 4
  year: 2016
  ident: 10.1016/j.swevo.2021.100940_bib0020
  article-title: An exact penalty function-based differential search algorithm for constrained global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1588-6
– volume: 19
  start-page: 694
  issue: 5
  year: 2015
  ident: 10.1016/j.swevo.2021.100940_bib0005
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– volume: 43
  start-page: 403
  issue: 4
  year: 2011
  ident: 10.1016/j.swevo.2021.100940_bib0030
  article-title: Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2010.493937
– volume: 44
  start-page: 665
  year: 2019
  ident: 10.1016/j.swevo.2021.100940_bib0031
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.017
– volume: 46
  start-page: 2938
  issue: 12
  year: 2016
  ident: 10.1016/j.swevo.2021.100940_bib0040
  article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2493239
– start-page: 1
  year: 2019
  ident: 10.1016/j.swevo.2021.100940_bib0033
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.swevo.2021.100940_bib0013
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 7
  start-page: 174
  issue: 2
  year: 2003
  ident: 10.1016/j.swevo.2021.100940_bib0045
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810761
– start-page: 1
  year: 2010
  ident: 10.1016/j.swevo.2021.100940_bib0024
  article-title: Constrained optimization by the ϵ constrained differential evolution with an archive and gradient-based mutation
– start-page: 1
  year: 2018
  ident: 10.1016/j.swevo.2021.100940_bib0035
  article-title: Two-archive evolutionary algorithm for constrained multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 104
  year: 2019
  ident: 10.1016/j.swevo.2021.100940_bib0046
  article-title: Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.02.003
– volume: 46
  start-page: 2056
  issue: 9
  year: 2016
  ident: 10.1016/j.swevo.2021.100940_bib0043
  article-title: Constrained multiobjective optimization algorithm based on immune system model
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2461651
– volume: 80
  start-page: 42
  year: 2019
  ident: 10.1016/j.swevo.2021.100940_bib0036
  article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.041
SSID ssj0000602559
Score 2.3561692
Snippet •The CMOP is divided into a series of sub-problems by objective space partition.•A hybrid constrained handling technique including the unconstrained search...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100940
SubjectTerms Compressed-air pipeline optimization
Constrained multi-objective optimization
Differential evolution
Partition selection
Title A partition-based constrained multi-objective evolutionary algorithm
URI https://dx.doi.org/10.1016/j.swevo.2021.100940
Volume 66
WOSCitedRecordID wos000686799300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDI4QcODCG_FWD9ygaEtp2hwnHgIOCAmQxqlKswQ2oJv2YPv52Elaug0hQOJSTVGTtP4yx3Ydf4QcMKEZ1ZjUXo2Ej4cffYEFAZSA_bBxouAPKA3ZRHRzE9fr_NZxuPcMnUCUZfFoxDv_CjW0Adh4dPYXcBeDQgP8BtDhCrDD9UfA1w472IoT-LhH4bE1LBMrwJ5s2ARCv522rKI7VO_uYTB7Trw-tbvN_vNb2WS9G4qu5dEYu1caOoix7_iPLvb82M6eXgalZJ_mwCwWjJ9gfPozWmCDr8-D1NX_duEHWi0S2VxMbOpcDKouCo6kD7bfmJ617CpTKttGD1rHvSG8xTFOgZkb3BZxmqiFfYcD47i0aorjwd47R6OQgzqbq12d16-L8FqFGWcJqQXzZ8lrTpnsvqnZvrZLSrbG_TJZdE6CV7PgrpAZla2SpZyAw3P6eI2c1bwJrL0S1t4E1l4ZP6_Aep08XJzfn176jhbDlzQI-n7IDSuATpGig4lIcKzJw8HzQ8ZwQcFgblDNWFzR4EwHUqFZJkQc8YgLGoTBBpnN2pnaJF5MdRpSEUim2InmMQ_TWMmqTqWo6CBSW4TmQkmkqxmP7_Ca5MmBrcRIMkFJJlaSW-So6NSxJVO-v53l0k6c1WetuQRWyHcdt__acYcsfK7kXTLb7w7UHpmX7_1mr7vvVtIHM79-HQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+partition-based+constrained+multi-objective+evolutionary+algorithm&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Yang%2C+Yongkuan&rft.au=Liu%2C+Jianchang&rft.au=Tan%2C+Shubin&rft.date=2021-10-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=66&rft_id=info:doi/10.1016%2Fj.swevo.2021.100940&rft.externalDocID=S2210650221001012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon