Novel MILP and CP models for distributed hybrid flowshop scheduling problem with sequence-dependent setup times

As regards distributed hybrid flow shop scheduling with sequence-dependent setup times (DHFSP-SDST), three novel mixed-integer linear programming (MILP) models and a constraint programming (CP) model are formulated for the same-factory and different-factory environments. The three novel MILP models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Swarm and evolutionary computation Jg. 71; S. 101058
Hauptverfasser: Meng, Leilei, Gao, Kaizhou, Ren, Yaping, Zhang, Biao, Sang, Hongyan, Chaoyong, Zhang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2022
Schlagworte:
ISSN:2210-6502
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As regards distributed hybrid flow shop scheduling with sequence-dependent setup times (DHFSP-SDST), three novel mixed-integer linear programming (MILP) models and a constraint programming (CP) model are formulated for the same-factory and different-factory environments. The three novel MILP models are based on two different modeling ideas. The existing MILP model and the three proposed MILP models are compared in detail from several aspects, such as binary decision variables, continuous decision variables, constraints, solution performance and solution time. By solving the benchmarks in existing studies, the effectiveness and superiority of the proposed MILP and CP models are proved. Experimental results show that the MILP model of sequence-based modeling idea performs best, the MILP model of adjacent sequence-based modeling idea takes the second place and the existing MILP model of position-based modeling idea performs worst. The CP model is more efficient and effective than MILP models. In addition, compared with the existing meta-heuristic algorithms (e.g., DABC and IABC), the proposed MILP models prove the optimal solutions of 37 instances and improve 17 current best solutions. The CP model solves all the 45 instances to optimality and improves 19 current best solutions for benchmarks in the existing studies
AbstractList As regards distributed hybrid flow shop scheduling with sequence-dependent setup times (DHFSP-SDST), three novel mixed-integer linear programming (MILP) models and a constraint programming (CP) model are formulated for the same-factory and different-factory environments. The three novel MILP models are based on two different modeling ideas. The existing MILP model and the three proposed MILP models are compared in detail from several aspects, such as binary decision variables, continuous decision variables, constraints, solution performance and solution time. By solving the benchmarks in existing studies, the effectiveness and superiority of the proposed MILP and CP models are proved. Experimental results show that the MILP model of sequence-based modeling idea performs best, the MILP model of adjacent sequence-based modeling idea takes the second place and the existing MILP model of position-based modeling idea performs worst. The CP model is more efficient and effective than MILP models. In addition, compared with the existing meta-heuristic algorithms (e.g., DABC and IABC), the proposed MILP models prove the optimal solutions of 37 instances and improve 17 current best solutions. The CP model solves all the 45 instances to optimality and improves 19 current best solutions for benchmarks in the existing studies
ArticleNumber 101058
Author Zhang, Biao
Chaoyong, Zhang
Ren, Yaping
Meng, Leilei
Gao, Kaizhou
Sang, Hongyan
Author_xml – sequence: 1
  givenname: Leilei
  orcidid: 0000-0003-1439-4832
  surname: Meng
  fullname: Meng, Leilei
  organization: School of Computer Science, Liaocheng University, Liaocheng 252000, China
– sequence: 2
  givenname: Kaizhou
  surname: Gao
  fullname: Gao, Kaizhou
  email: gaokaizh@aliyun.com
  organization: School of Computer Science, Liaocheng University, Liaocheng 252000, China
– sequence: 3
  givenname: Yaping
  surname: Ren
  fullname: Ren, Yaping
  organization: Department of Industrial Engineering, School of Intelligent Systems Science and Engineering, Jinan University, Zhuhai 519070, China
– sequence: 4
  givenname: Biao
  surname: Zhang
  fullname: Zhang, Biao
  organization: School of Computer Science, Liaocheng University, Liaocheng 252000, China
– sequence: 5
  givenname: Hongyan
  surname: Sang
  fullname: Sang, Hongyan
  organization: School of Computer Science, Liaocheng University, Liaocheng 252000, China
– sequence: 6
  givenname: Zhang
  surname: Chaoyong
  fullname: Chaoyong, Zhang
  organization: State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNqF0L1OwzAQwHEPRaKUPgGLXyDFseM0GRhQxUelAh1gtmL7TFwlcbDdVrw9CWVigFtOOul_w-8CTTrXAUJXKVmkJM2vd4twhINbUELpeCG8mKAppSlJck7oOZqHsCPD5IRyXk6Re3YHaPDTerPFVafxaotbp6EJ2DiPtQ3RW7mPoHH9Kb3V2DTuGGrX46Bq0PvGdu-490420OKjjTUO8LGHTkGioYdOQxeHU9z3ONoWwiU6M1UTYP6zZ-jt_u519ZhsXh7Wq9tNoihjMeEZYVwpJuWSQ56VTLOCVDSlcpmbqpSZpMTwkktqsjQ3suScFKxUFdFFZmjKZqg8_VXeheDBCGVjFa3roq9sI1IiRjCxE99gYgQTJ7ChZb_a3tu28p__VDenasCDgwUvgrIjhLYeVBTa2T_7L4XZi3U
CitedBy_id crossref_primary_10_1016_j_cie_2023_109325
crossref_primary_10_1016_j_cie_2024_110635
crossref_primary_10_3390_math10203854
crossref_primary_10_1016_j_swevo_2024_101681
crossref_primary_10_1016_j_engappai_2023_107818
crossref_primary_10_1080_0305215X_2025_2503950
crossref_primary_10_1080_00207543_2023_2253925
crossref_primary_10_1016_j_jmsy_2024_07_011
crossref_primary_10_3390_math10193446
crossref_primary_10_1016_j_eswa_2025_126603
crossref_primary_10_23919_CSMS_2025_0001
crossref_primary_10_1016_j_knosys_2025_114418
crossref_primary_10_1007_s40747_023_01288_w
crossref_primary_10_1016_j_engappai_2024_109915
crossref_primary_10_1080_0305215X_2024_2328188
crossref_primary_10_26599_TST_2024_9010174
crossref_primary_10_3390_s23083815
crossref_primary_10_1080_00207543_2025_2553820
crossref_primary_10_1007_s00500_023_09086_9
crossref_primary_10_1038_s41598_022_19215_3
crossref_primary_10_1016_j_cie_2025_111488
crossref_primary_10_1016_j_swevo_2024_101479
crossref_primary_10_1016_j_swevo_2024_101558
crossref_primary_10_1016_j_engappai_2025_111799
crossref_primary_10_1016_j_jii_2022_100412
crossref_primary_10_1016_j_knosys_2024_111474
crossref_primary_10_3390_su15032622
crossref_primary_10_1016_j_cie_2024_110646
crossref_primary_10_1016_j_eswa_2024_125344
crossref_primary_10_1016_j_dajour_2025_100596
crossref_primary_10_1049_cim2_12075
crossref_primary_10_26599_TST_2023_9010087
crossref_primary_10_1016_j_knosys_2023_110808
crossref_primary_10_1080_17517575_2025_2453244
crossref_primary_10_26599_TST_2024_9010141
crossref_primary_10_1016_j_asoc_2023_110563
crossref_primary_10_1016_j_asoc_2024_112124
crossref_primary_10_1016_j_eswa_2023_119805
crossref_primary_10_1016_j_jclepro_2025_145670
crossref_primary_10_1016_j_cie_2025_110861
crossref_primary_10_1016_j_swevo_2024_101544
crossref_primary_10_1007_s11081_024_09911_6
crossref_primary_10_1016_j_swevo_2024_101502
crossref_primary_10_1109_TSMC_2022_3212045
crossref_primary_10_1016_j_swevo_2024_101668
crossref_primary_10_3390_sym15040836
crossref_primary_10_1016_j_cie_2023_109621
crossref_primary_10_1007_s40747_025_01890_0
crossref_primary_10_1016_j_engappai_2023_106347
crossref_primary_10_1080_0951192X_2025_2478005
crossref_primary_10_1080_00207543_2024_2423807
crossref_primary_10_1016_j_cor_2024_106919
crossref_primary_10_1016_j_ins_2023_119949
crossref_primary_10_3390_s23052808
crossref_primary_10_2478_jaiscr_2024_0006
crossref_primary_10_1016_j_swevo_2022_101139
crossref_primary_10_1007_s40747_023_01153_w
crossref_primary_10_1016_j_swevo_2023_101338
crossref_primary_10_1016_j_swevo_2025_101936
crossref_primary_10_1016_j_swevo_2024_101538
crossref_primary_10_1016_j_eswa_2024_126182
crossref_primary_10_1016_j_swevo_2023_101374
crossref_primary_10_3390_math11030581
crossref_primary_10_1016_j_cor_2025_107087
crossref_primary_10_1016_j_swevo_2024_101771
crossref_primary_10_3390_su15010776
crossref_primary_10_1016_j_swevo_2022_101179
crossref_primary_10_1109_TETCI_2023_3271331
crossref_primary_10_1016_j_swevo_2024_101697
crossref_primary_10_1016_j_cie_2024_110624
crossref_primary_10_1049_cim2_12099
crossref_primary_10_1016_j_cie_2022_108745
crossref_primary_10_23919_CSMS_2024_0041
crossref_primary_10_3390_math10162871
crossref_primary_10_1038_s41598_022_23144_6
crossref_primary_10_1016_j_engappai_2023_107762
crossref_primary_10_1016_j_cor_2024_106849
crossref_primary_10_1016_j_eswa_2022_118711
crossref_primary_10_1186_s10033_025_01281_z
crossref_primary_10_1080_00207543_2023_2262616
crossref_primary_10_1080_00207543_2024_2390979
crossref_primary_10_1016_j_cor_2023_106386
crossref_primary_10_1016_j_eswa_2023_120732
crossref_primary_10_1016_j_eswa_2023_122434
crossref_primary_10_1016_j_engappai_2023_107011
crossref_primary_10_1016_j_rcim_2025_103029
crossref_primary_10_1016_j_eswa_2023_122197
crossref_primary_10_1016_j_eswa_2023_122594
crossref_primary_10_3390_pr13010095
crossref_primary_10_1016_j_swevo_2025_101861
Cites_doi 10.1016/j.cor.2021.105482
10.1007/s40815-021-01050-9
10.1016/j.engappai.2020.103540
10.1016/j.apm.2009.09.002
10.1080/00207543.2018.1501166
10.1080/00207543.2019.1636324
10.1016/j.cor.2019.05.002
10.1016/j.swevo.2020.100745
10.1016/j.cie.2018.05.014
10.1016/j.cie.2020.106347
10.1016/j.apm.2016.09.022
10.1016/j.knosys.2020.105527
10.1016/j.swevo.2020.100660
10.1016/j.eswa.2014.06.023
10.1016/j.swevo.2018.12.001
10.1016/j.swevo.2021.100874
10.1016/j.swevo.2019.100557
10.1016/j.rcim.2021.102277
10.1016/j.cie.2020.106638
10.1155/2021/8035806
10.1109/ACCESS.2019.2917273
10.1016/j.swevo.2016.06.002
10.1080/00207543.2019.1598596
10.1016/j.cor.2016.11.021
10.1016/j.jclepro.2018.11.021
10.1016/j.cie.2016.11.001
10.1016/j.apm.2014.04.012
10.1016/j.eswa.2017.09.032
10.1080/00207543.2020.1780333
10.1049/cim2.12005
10.1016/j.cor.2020.105006
10.1080/00207543.2020.1753897
10.1016/j.ejor.2009.01.008
10.1016/j.asoc.2021.107750
10.1016/j.cor.2006.07.015
10.1016/j.cor.2021.105282
10.1016/j.apm.2012.03.020
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2022.101058
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2022_101058
S221065022200030X
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c233t-54035cc3bb75e6493d380a212b76fa9b4b20f595b2f416fb9550839ca0d84f213
ISICitedReferencesCount 114
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793131000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Wed Nov 05 20:54:08 EST 2025
Tue Nov 18 21:30:18 EST 2025
Fri Feb 23 02:39:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Modeling idea
Setup time
Constraint programming
Mixed-integer linear programming
Distributed hybrid flow shop scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c233t-54035cc3bb75e6493d380a212b76fa9b4b20f595b2f416fb9550839ca0d84f213
ORCID 0000-0003-1439-4832
ParticipantIDs crossref_citationtrail_10_1016_j_swevo_2022_101058
crossref_primary_10_1016_j_swevo_2022_101058
elsevier_sciencedirect_doi_10_1016_j_swevo_2022_101058
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gedik, Kalathia, Egilmez (bib0034) 2018; 121
Zhao, Zhao, Wang (bib0003) 2021; 112
Du, Li, Luo (bib0016) 2021
Fernandez-Viagas, Perez-Gonzalez, Framinan (bib0024) 2019; 109
Hamzadayı (bib0042) 2020; 123
Demir, Kürşat İşleyen (bib0033) 2013; 37
Li, Pan, Li (bib0001) 2021; 63
Lei, Yuan, Cai (bib0005) 2020; 58
Li, Li, Gao (bib0017) 2020; 147
Naderi, Gohari, Yazdani (bib0031) 2014; 38
Ying, Lin (bib0025) 2018; 92
Karimi, Ardalan, Naderi (bib0032) 2017; 41
Sang, Pan, Li (bib0004) 2019; 44
Jiang, Wang, Peng (bib0011) 2020; 58
Lu, Huang, Meng (bib0008) 2022; 74
Shao, Shao, Pi (bib0013) 2021; 136
Meng, Zhang, Shao (bib0018) 2019; 4
Wu, Lin, Lin (bib0010) 2017; 80
Chen, Wang, Peng (bib0007) 2019; 50
Zhang, Yu, Wong (bib0040) 2021; 131
Jiang, Wang, Peng (bib0022) 2020; 58
Shao, Shao, Pi (bib0014) 2020; 194
Meng, Zhang, Shao (bib0029) 2020; 58
Cai, Lei, Li (bib0028) 2021; 59
Rocha, Ravetti, Mateus (bib0041) 2008; 35
Özgüven, Özbakır, Yavuz (bib0030) 2010; 34
Naderi, Azab (bib0020) 2014; 41
KP, G, W (bib0002) 2020
Deng, Wang (bib0006) 2017; 32
Li, Li, Gao (bib0012) 2021; 59
Li, Li, Zhang (bib0023) 2021; 23
Cai, Zhou, Lei (bib0026) 2020; 90
De, Pezzella (bib0015) 2010; 200
Hao, Li, Du (bib0027) 2019; 7
Ham, Park, Kim (bib0038) 2021; 2021
Meng, Zhang, Ren (bib0039) 2020; 142
Meng, Zhang, Shao (bib0019) 2019; 210
Rakovitis, Li, Zhang (bib0021) 2021
Meng, Lu, Zhang (bib0035) 2021; 3
Z, M, W (bib0009) 2021
Öztop, Tasgetiren, Kandiller (bib0036) 2020; 54
Ham, Cakici (bib0037) 2016; 102
Jiang (10.1016/j.swevo.2022.101058_bib0011) 2020; 58
Li (10.1016/j.swevo.2022.101058_bib0001) 2021; 63
Ham (10.1016/j.swevo.2022.101058_bib0038) 2021; 2021
Meng (10.1016/j.swevo.2022.101058_bib0018) 2019; 4
Deng (10.1016/j.swevo.2022.101058_bib0006) 2017; 32
Karimi (10.1016/j.swevo.2022.101058_bib0032) 2017; 41
Li (10.1016/j.swevo.2022.101058_bib0012) 2021; 59
Demir (10.1016/j.swevo.2022.101058_bib0033) 2013; 37
Zhang (10.1016/j.swevo.2022.101058_bib0040) 2021; 131
Wu (10.1016/j.swevo.2022.101058_bib0010) 2017; 80
Ying (10.1016/j.swevo.2022.101058_bib0025) 2018; 92
Li (10.1016/j.swevo.2022.101058_bib0017) 2020; 147
Özgüven (10.1016/j.swevo.2022.101058_bib0030) 2010; 34
Jiang (10.1016/j.swevo.2022.101058_bib0022) 2020; 58
Meng (10.1016/j.swevo.2022.101058_bib0029) 2020; 58
Lei (10.1016/j.swevo.2022.101058_bib0005) 2020; 58
Naderi (10.1016/j.swevo.2022.101058_bib0020) 2014; 41
De (10.1016/j.swevo.2022.101058_bib0015) 2010; 200
Cai (10.1016/j.swevo.2022.101058_bib0026) 2020; 90
Gedik (10.1016/j.swevo.2022.101058_bib0034) 2018; 121
Shao (10.1016/j.swevo.2022.101058_bib0014) 2020; 194
Hao (10.1016/j.swevo.2022.101058_bib0027) 2019; 7
KP (10.1016/j.swevo.2022.101058_bib0002) 2020
Öztop (10.1016/j.swevo.2022.101058_bib0036) 2020; 54
Z (10.1016/j.swevo.2022.101058_bib0009) 2021
Fernandez-Viagas (10.1016/j.swevo.2022.101058_bib0024) 2019; 109
Meng (10.1016/j.swevo.2022.101058_bib0019) 2019; 210
Shao (10.1016/j.swevo.2022.101058_bib0013) 2021; 136
Meng (10.1016/j.swevo.2022.101058_bib0039) 2020; 142
Zhao (10.1016/j.swevo.2022.101058_bib0003) 2021; 112
Lu (10.1016/j.swevo.2022.101058_bib0008) 2022; 74
Ham (10.1016/j.swevo.2022.101058_bib0037) 2016; 102
Rakovitis (10.1016/j.swevo.2022.101058_bib0021) 2021
Cai (10.1016/j.swevo.2022.101058_bib0028) 2021; 59
Sang (10.1016/j.swevo.2022.101058_bib0004) 2019; 44
Hamzadayı (10.1016/j.swevo.2022.101058_bib0042) 2020; 123
Du (10.1016/j.swevo.2022.101058_bib0016) 2021
Li (10.1016/j.swevo.2022.101058_bib0023) 2021; 23
Rocha (10.1016/j.swevo.2022.101058_bib0041) 2008; 35
Chen (10.1016/j.swevo.2022.101058_bib0007) 2019; 50
Naderi (10.1016/j.swevo.2022.101058_bib0031) 2014; 38
Meng (10.1016/j.swevo.2022.101058_bib0035) 2021; 3
References_xml – volume: 41
  start-page: 667
  year: 2017
  end-page: 682
  ident: bib0032
  article-title: Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm[J]
  publication-title: Appl. Math. Modell.
– volume: 38
  start-page: 5767
  year: 2014
  end-page: 5780
  ident: bib0031
  article-title: Hybrid flexible flowshop problems: Models and solution methods[J]
  publication-title: Appl. Math. Modell.
– volume: 90
  year: 2020
  ident: bib0026
  article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks[J]
  publication-title: Eng. Appl. Artif. Intell.
– volume: 109
  start-page: 77
  year: 2019
  end-page: 88
  ident: bib0024
  article-title: Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective[J]
  publication-title: Comput. Oper. Res.
– year: 2021
  ident: bib0016
  article-title: A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations[J]
  publication-title: Swarm Evol. Comput.
– volume: 112
  year: 2021
  ident: bib0003
  article-title: An optimal block knowledge driven backtracking search algorithm for distributed assembly No-wait flow shop scheduling problem[J]
  publication-title: Appl. Soft Comput.
– volume: 210
  start-page: 710
  year: 2019
  end-page: 723
  ident: bib0019
  article-title: MILP models for energy-aware flexible job shop scheduling problem[J]
  publication-title: J. Cleaner Prod.
– volume: 3
  start-page: 147
  year: 2021
  end-page: 160
  ident: bib0035
  article-title: Constraint programing for solving four complex flexible shop scheduling problems[J]
  publication-title: IET Collab. Intell. Manuf.
– volume: 54
  year: 2020
  ident: bib0036
  article-title: Ensemble of metaheuristics for energy-efficient hybrid flowshops: Makespan versus total energy consumption[J]
  publication-title: Swarm Evol. Comput.
– volume: 63
  year: 2021
  ident: bib0001
  article-title: An Adaptive Iterated Greedy algorithm for distributed mixed no-idle permutation flowshop scheduling problems[J]
  publication-title: Swarm Evol. Comput.
– volume: 121
  start-page: 139
  year: 2018
  end-page: 149
  ident: bib0034
  article-title: A constraint programming approach for solving unrelated parallel machine scheduling problem[J]
  publication-title: Comput. Ind. Eng.
– volume: 194
  year: 2020
  ident: bib0014
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem[J]
  publication-title: Knowl.-Based Syst.
– volume: 92
  start-page: 132
  year: 2018
  end-page: 141
  ident: bib0025
  article-title: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks[J]
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2021
  end-page: 12
  ident: bib0009
  article-title: A Self-Learning Discrete Jaya Algorithm for Multiobjective Energy-Efficient Distributed No-Idle Flow-Shop Scheduling Problem in Heterogeneous Factory System[J]
  publication-title: IEEE Trans. Cybern.
– volume: 58
  year: 2020
  ident: bib0022
  article-title: Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition[J]
  publication-title: Swarm Evol. Comput.
– volume: 102
  start-page: 160
  year: 2016
  end-page: 165
  ident: bib0037
  article-title: Flexible job shop scheduling problem with parallel batch processing machines: MIP and CP approaches[J]
  publication-title: Comput. Ind. Eng.
– volume: 35
  start-page: 1250
  year: 2008
  end-page: 1264
  ident: bib0041
  article-title: Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup times[J]
  publication-title: Comput. Oper. Res.
– volume: 34
  start-page: 1539
  year: 2010
  end-page: 1548
  ident: bib0030
  article-title: Mathematical models for job-shop scheduling problems with routing and process plan flexibility[J]
  publication-title: Appl. Math. Modell.
– volume: 131
  year: 2021
  ident: bib0040
  article-title: A graph-based constraint programming approach for the integrated process planning and scheduling problem[J]
  publication-title: Comput. Oper. Res.
– start-page: 1
  year: 2020
  end-page: 14
  ident: bib0002
  article-title: An Effective Cooperative Co-Evolutionary Algorithm for Distributed Flowshop Group Scheduling Problems[J]
  publication-title: IEEE Trans. Cybern.
– volume: 74
  year: 2022
  ident: bib0008
  article-title: A Pareto-based collaborative multi-objective optimization algorithm for energy-efficient scheduling of distributed permutation flow-shop with limited buffers[J]
  publication-title: Rob. Comput. Integr. Manuf.
– volume: 37
  start-page: 977
  year: 2013
  end-page: 988
  ident: bib0033
  article-title: Evaluation of mathematical models for flexible job-shop scheduling problems[J]
  publication-title: Appl. Math. Modell.
– volume: 58
  start-page: 597
  year: 2020
  end-page: 614
  ident: bib0005
  article-title: An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling[J]
  publication-title: Int. J. Prod. Res.
– volume: 58
  year: 2020
  ident: bib0011
  article-title: Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition[J]
  publication-title: Swarm Evol. Comput.
– volume: 4
  start-page: 1119
  year: 2019
  end-page: 1145
  ident: bib0018
  article-title: Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines[J]
  publication-title: Int. J. Prod. Res.
– volume: 23
  start-page: 1194
  year: 2021
  end-page: 1212
  ident: bib0023
  article-title: Solving Type-2 Fuzzy Distributed Hybrid Flowshop Scheduling Using an Improved Brain Storm Optimization Algorithm[J]
  publication-title: Int. J. Fuzzy Syst.
– volume: 59
  start-page: 5404
  year: 2021
  end-page: 5421
  ident: bib0028
  article-title: A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop[J]
  publication-title: Int. J. Prod. Res.
– volume: 80
  start-page: 101
  year: 2017
  end-page: 112
  ident: bib0010
  article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems[J]
  publication-title: Comput. Oper. Res.
– volume: 44
  start-page: 64
  year: 2019
  end-page: 73
  ident: bib0004
  article-title: Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion[J]
  publication-title: Swarm Evol. Comput.
– volume: 59
  start-page: 3880
  year: 2021
  end-page: 3899
  ident: bib0012
  article-title: A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times[J]
  publication-title: Int. J. Prod. Res.
– volume: 41
  start-page: 7754
  year: 2014
  end-page: 7763
  ident: bib0020
  article-title: Modeling and heuristics for scheduling of distributed job shops[J]
  publication-title: Expert Syst. Appl.
– year: 2021
  ident: bib0021
  article-title: Novel Approach to Energy-Efficient Flexible Job-Shop Scheduling Problems[J]
  publication-title: Energy
– volume: 200
  start-page: 395
  year: 2010
  end-page: 408
  ident: bib0015
  article-title: An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem[J]
  publication-title: Eur. J. Oper. Res.
– volume: 7
  start-page: 66879
  year: 2019
  end-page: 66894
  ident: bib0027
  article-title: Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm[J]
  publication-title: Ieee Access
– volume: 123
  year: 2020
  ident: bib0042
  article-title: An effective benders decomposition algorithm for solving the distributed permutation flowshop scheduling problem[J]
  publication-title: Comput. Oper. Res.
– volume: 147
  year: 2020
  ident: bib0017
  article-title: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times[J]
  publication-title: Comput. Ind. Eng.
– volume: 32
  start-page: 121
  year: 2017
  end-page: 131
  ident: bib0006
  article-title: A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem[J]
  publication-title: Swarm Evol. Comput.
– volume: 50
  year: 2019
  ident: bib0007
  article-title: A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling[J]
  publication-title: Swarm Evol. Comput.
– volume: 58
  start-page: 3905
  year: 2020
  end-page: 3930
  ident: bib0029
  article-title: More MILP models for hybrid flow shop scheduling problem and its extended problems[J]
  publication-title: Int. J. Prod. Res.
– volume: 142
  year: 2020
  ident: bib0039
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem[J]
  publication-title: Comput. Ind. Eng.
– volume: 2021
  year: 2021
  ident: bib0038
  article-title: Energy-Aware Flexible Job Shop Scheduling Using Mixed Integer Programming and Constraint Programming[J]
  publication-title: Math. Probl. Eng.
– volume: 136
  year: 2021
  ident: bib0013
  article-title: Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem[J]
  publication-title: Comput. Oper. Res.
– volume: 136
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0013
  article-title: Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem[J]
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105482
– volume: 23
  start-page: 1194
  issue: 4
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0023
  article-title: Solving Type-2 Fuzzy Distributed Hybrid Flowshop Scheduling Using an Improved Brain Storm Optimization Algorithm[J]
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-021-01050-9
– volume: 90
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0026
  article-title: Dynamic shuffled frog-leaping algorithm for distributed hybrid flow shop scheduling with multiprocessor tasks[J]
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103540
– volume: 34
  start-page: 1539
  issue: 6
  year: 2010
  ident: 10.1016/j.swevo.2022.101058_bib0030
  article-title: Mathematical models for job-shop scheduling problems with routing and process plan flexibility[J]
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2009.09.002
– volume: 4
  start-page: 1119
  issue: 57
  year: 2019
  ident: 10.1016/j.swevo.2022.101058_bib0018
  article-title: Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines[J]
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2018.1501166
– volume: 58
  start-page: 3905
  issue: 13
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0029
  article-title: More MILP models for hybrid flow shop scheduling problem and its extended problems[J]
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1636324
– issue: 5
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0021
  article-title: Novel Approach to Energy-Efficient Flexible Job-Shop Scheduling Problems[J]
  publication-title: Energy
– volume: 109
  start-page: 77
  year: 2019
  ident: 10.1016/j.swevo.2022.101058_bib0024
  article-title: Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective[J]
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2019.05.002
– volume: 58
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0011
  article-title: Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition[J]
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100745
– volume: 121
  start-page: 139
  year: 2018
  ident: 10.1016/j.swevo.2022.101058_bib0034
  article-title: A constraint programming approach for solving unrelated parallel machine scheduling problem[J]
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.05.014
– volume: 142
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0039
  article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem[J]
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106347
– volume: 41
  start-page: 667
  year: 2017
  ident: 10.1016/j.swevo.2022.101058_bib0032
  article-title: Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm[J]
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2016.09.022
– volume: 194
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0014
  article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem[J]
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105527
– volume: 54
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0036
  article-title: Ensemble of metaheuristics for energy-efficient hybrid flowshops: Makespan versus total energy consumption[J]
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100660
– issue: 3
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0016
  article-title: A hybrid estimation of distribution algorithm for distributed flexible job shop scheduling with crane transportations[J]
  publication-title: Swarm Evol. Comput.
– volume: 41
  start-page: 7754
  issue: 17
  year: 2014
  ident: 10.1016/j.swevo.2022.101058_bib0020
  article-title: Modeling and heuristics for scheduling of distributed job shops[J]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.06.023
– volume: 44
  start-page: 64
  year: 2019
  ident: 10.1016/j.swevo.2022.101058_bib0004
  article-title: Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion[J]
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.12.001
– volume: 58
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0022
  article-title: Solving energy-efficient distributed job shop scheduling via multi-objective evolutionary algorithm with decomposition[J]
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100745
– volume: 63
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0001
  article-title: An Adaptive Iterated Greedy algorithm for distributed mixed no-idle permutation flowshop scheduling problems[J]
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100874
– volume: 50
  year: 2019
  ident: 10.1016/j.swevo.2022.101058_bib0007
  article-title: A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling[J]
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.100557
– volume: 74
  year: 2022
  ident: 10.1016/j.swevo.2022.101058_bib0008
  article-title: A Pareto-based collaborative multi-objective optimization algorithm for energy-efficient scheduling of distributed permutation flow-shop with limited buffers[J]
  publication-title: Rob. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102277
– volume: 147
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0017
  article-title: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times[J]
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106638
– volume: 2021
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0038
  article-title: Energy-Aware Flexible Job Shop Scheduling Using Mixed Integer Programming and Constraint Programming[J]
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/8035806
– volume: 7
  start-page: 66879
  year: 2019
  ident: 10.1016/j.swevo.2022.101058_bib0027
  article-title: Solving distributed hybrid flowshop scheduling problems by a hybrid brain storm optimization algorithm[J]
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2917273
– volume: 32
  start-page: 121
  year: 2017
  ident: 10.1016/j.swevo.2022.101058_bib0006
  article-title: A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem[J]
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.06.002
– volume: 58
  start-page: 597
  issue: 2
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0005
  article-title: An imperialist competitive algorithm with memory for distributed unrelated parallel machines scheduling[J]
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1598596
– volume: 80
  start-page: 101
  year: 2017
  ident: 10.1016/j.swevo.2022.101058_bib0010
  article-title: Effects of different chromosome representations in developing genetic algorithms to solve DFJS scheduling problems[J]
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.11.021
– volume: 210
  start-page: 710
  year: 2019
  ident: 10.1016/j.swevo.2022.101058_bib0019
  article-title: MILP models for energy-aware flexible job shop scheduling problem[J]
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.11.021
– volume: 102
  start-page: 160
  year: 2016
  ident: 10.1016/j.swevo.2022.101058_bib0037
  article-title: Flexible job shop scheduling problem with parallel batch processing machines: MIP and CP approaches[J]
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.11.001
– volume: 38
  start-page: 5767
  issue: 24
  year: 2014
  ident: 10.1016/j.swevo.2022.101058_bib0031
  article-title: Hybrid flexible flowshop problems: Models and solution methods[J]
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2014.04.012
– volume: 92
  start-page: 132
  year: 2018
  ident: 10.1016/j.swevo.2022.101058_bib0025
  article-title: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks[J]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.032
– volume: 59
  start-page: 5404
  issue: 18
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0028
  article-title: A shuffled frog-leaping algorithm with memeplex quality for bi-objective distributed scheduling in hybrid flow shop[J]
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1780333
– volume: 3
  start-page: 147
  issue: 2
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0035
  article-title: Constraint programing for solving four complex flexible shop scheduling problems[J]
  publication-title: IET Collab. Intell. Manuf.
  doi: 10.1049/cim2.12005
– volume: 123
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0042
  article-title: An effective benders decomposition algorithm for solving the distributed permutation flowshop scheduling problem[J]
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2020.105006
– volume: 59
  start-page: 3880
  issue: 13
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0012
  article-title: A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times[J]
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1753897
– volume: 200
  start-page: 395
  issue: 2
  year: 2010
  ident: 10.1016/j.swevo.2022.101058_bib0015
  article-title: An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem[J]
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.01.008
– volume: 112
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0003
  article-title: An optimal block knowledge driven backtracking search algorithm for distributed assembly No-wait flow shop scheduling problem[J]
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107750
– start-page: 1
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0009
  article-title: A Self-Learning Discrete Jaya Algorithm for Multiobjective Energy-Efficient Distributed No-Idle Flow-Shop Scheduling Problem in Heterogeneous Factory System[J]
  publication-title: IEEE Trans. Cybern.
– volume: 35
  start-page: 1250
  issue: 4
  year: 2008
  ident: 10.1016/j.swevo.2022.101058_bib0041
  article-title: Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and machine-dependent setup times[J]
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2006.07.015
– volume: 131
  year: 2021
  ident: 10.1016/j.swevo.2022.101058_bib0040
  article-title: A graph-based constraint programming approach for the integrated process planning and scheduling problem[J]
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105282
– volume: 37
  start-page: 977
  issue: 3
  year: 2013
  ident: 10.1016/j.swevo.2022.101058_bib0033
  article-title: Evaluation of mathematical models for flexible job-shop scheduling problems[J]
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2012.03.020
– start-page: 1
  year: 2020
  ident: 10.1016/j.swevo.2022.101058_bib0002
  article-title: An Effective Cooperative Co-Evolutionary Algorithm for Distributed Flowshop Group Scheduling Problems[J]
  publication-title: IEEE Trans. Cybern.
SSID ssj0000602559
Score 2.571185
Snippet As regards distributed hybrid flow shop scheduling with sequence-dependent setup times (DHFSP-SDST), three novel mixed-integer linear programming (MILP) models...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101058
SubjectTerms Constraint programming
Distributed hybrid flow shop scheduling
Mixed-integer linear programming
Modeling idea
Setup time
Title Novel MILP and CP models for distributed hybrid flowshop scheduling problem with sequence-dependent setup times
URI https://dx.doi.org/10.1016/j.swevo.2022.101058
Volume 71
WOSCitedRecordID wos000793131000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIdeuhdNN_DQWypD1koeUyNFUwSGgaaFexJISoQdGJJgy3aar8gnd7jJchMYzaEXQSAkWtI8D2fIx3kIfSRCgD9kvpcnA-JFeZB4FHyxx7mkeSIF5Xr1_Od5OhqRyYSOe70btxdmPU_Lklxd0fq_mhrawNhq6-w9zN12Cg1wDkaHI5gdjv9k-FG1VmzVs_OxXhgYjo3aja67oNZjjMQVxJnT32q31rGcV5vltKqPIc-FccduT9cyM5bAbtnWnhPMbaCpWdUdXXob3X7fsIWR3CjW9h0VKU9o5YidJX9FptVTAgV4pVlLAmKVYXjMrqfVql0LMp7xF6vdMNud6P48Y1V36gKy3pZiZTxcAPmmByHijjs2iizWnw6UgCe509WbWYfL_nIDr9RX3fe3V-8W1v5rwGtpiI7hdpnpTjLVSWY6eYAOgzSm4CcPT85OJ9_aeTs_0VmY0ix0T--KWWna4K3HuTvg6QQxF0_RY5t94BODmmeoV5TP0ROn7IGto3-BKg0irECEwZx4OMYGRBhAhDsgwgZE2IEIb0GELYiwAhG-DSKsQYQ1iF6iH19OL4ZfPSvN4YkgDBtFpwljIULO07hIIhrmIfEZhEE8TSSjPOKBL2Ma80BCxC85jZXsABXMz0kkg0H4Ch2UVVm8Rhg-ckRTGQUyzVXxf5IwmZCUiJjnkRTiCAXu-2XC1q1X8inzbI_5jtCn9qbalG3Zf3niDJPZyNNElBmgbd-Nb-73O2_Ro-3_4B06aBar4j16KNbNbLn4YKH2B7QNqZw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+MILP+and+CP+models+for+distributed+hybrid+flowshop+scheduling+problem+with+sequence-dependent+setup+times&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Meng%2C+Leilei&rft.au=Gao%2C+Kaizhou&rft.au=Ren%2C+Yaping&rft.au=Zhang%2C+Biao&rft.date=2022-06-01&rft.issn=2210-6502&rft.volume=71&rft.spage=101058&rft_id=info:doi/10.1016%2Fj.swevo.2022.101058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2022_101058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon