Improved identification of network anomalies through optimal CURE clustering

In this paper, we propose an advanced network anomaly behavior identification framework to overcome the constraints inherent in conventional rule- or signature-based approaches, which often struggle with emerging and previously unknown threats. Central to our framework is an Enhanced CURE (Cluster U...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering Research Express Ročník 6; číslo 4; s. 45217 - 45231
Hlavní autoři: Wu, Xiaoqian, Chen, Cheng, Quan, Lili
Médium: Journal Article
Jazyk:angličtina
Vydáno: IOP Publishing 01.12.2024
Témata:
ISSN:2631-8695, 2631-8695
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose an advanced network anomaly behavior identification framework to overcome the constraints inherent in conventional rule- or signature-based approaches, which often struggle with emerging and previously unknown threats. Central to our framework is an Enhanced CURE (Cluster Updating and REfining) clustering algorithm, meticulously tailored and refined to incorporate a density-based methodology. This enhancement enables the algorithm to discern subtle shifts in network anomaly patterns with heightened precision. The implementation workflow commences with the application of the optimized CURE algorithm to analyze network data, followed by the deployment of a sophisticated anomaly degree ranking mechanism. This mechanism, through meticulous calculation of individual data points’ anomaly degrees and subsequent ranking, effectively isolates those deviating significantly from standard behavioral norms, incorporating a strategic threshold to filter out false positives. To validate our methodology’s efficacy and its superiority over existing techniques, experiments were conducted utilizing a substantial real-world network dataset. These tests affirm not only a marked increase in the accuracy of abnormal behavior recognition and a reduction in computational intricacy but also demonstrate the adaptability across diverse network ecosystems. Our approach has proven successful in pinpointing a wide array of network anomalies, encompassing malicious cyberattacks, fraudulent activities, unauthorized intrusions, and breaches of security protocols, thereby highlighting its comprehensive capability in bolstering network defense strategies. Despite the notable advancements and successful identification of various network anomalies, our framework currently lacks integration with real-time learning capabilities, limiting its immediate responsiveness to rapidly evolving attack patterns and necessitating ongoing research for dynamic updates and adaptive learning mechanisms.
AbstractList In this paper, we propose an advanced network anomaly behavior identification framework to overcome the constraints inherent in conventional rule- or signature-based approaches, which often struggle with emerging and previously unknown threats. Central to our framework is an Enhanced CURE (Cluster Updating and REfining) clustering algorithm, meticulously tailored and refined to incorporate a density-based methodology. This enhancement enables the algorithm to discern subtle shifts in network anomaly patterns with heightened precision. The implementation workflow commences with the application of the optimized CURE algorithm to analyze network data, followed by the deployment of a sophisticated anomaly degree ranking mechanism. This mechanism, through meticulous calculation of individual data points’ anomaly degrees and subsequent ranking, effectively isolates those deviating significantly from standard behavioral norms, incorporating a strategic threshold to filter out false positives. To validate our methodology’s efficacy and its superiority over existing techniques, experiments were conducted utilizing a substantial real-world network dataset. These tests affirm not only a marked increase in the accuracy of abnormal behavior recognition and a reduction in computational intricacy but also demonstrate the adaptability across diverse network ecosystems. Our approach has proven successful in pinpointing a wide array of network anomalies, encompassing malicious cyberattacks, fraudulent activities, unauthorized intrusions, and breaches of security protocols, thereby highlighting its comprehensive capability in bolstering network defense strategies. Despite the notable advancements and successful identification of various network anomalies, our framework currently lacks integration with real-time learning capabilities, limiting its immediate responsiveness to rapidly evolving attack patterns and necessitating ongoing research for dynamic updates and adaptive learning mechanisms.
Author Quan, Lili
Wu, Xiaoqian
Chen, Cheng
Author_xml – sequence: 1
  givenname: Xiaoqian
  orcidid: 0009-0002-6714-3252
  surname: Wu
  fullname: Wu, Xiaoqian
  organization: Anhui Medical College School of Public Health and Health Management, Hefei, 230032, Anhui, People’s Republic of China
– sequence: 2
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: Anhui Medical College School of Public Health and Health Management, Hefei, 230032, Anhui, People’s Republic of China
– sequence: 3
  givenname: Lili
  surname: Quan
  fullname: Quan, Lili
  organization: Anhui Medical College School of Public Health and Health Management, Hefei, 230032, Anhui, People’s Republic of China
BookMark eNp1UE1LAzEUDFLBWnv3mB_g2mQ_sslRlqqFgiD2HGLy0kbbZEmyiv_eLRXx4mkew5thZi7RxAcPCF1TcksJ54uSVbTgTDQLZXhL4QxNf6nJn_sCzVNyr6RmjLKWtlO0Xh36GD7AYGfAZ2edVtkFj4PFHvJniO9Y-XBQewcJ510Mw3aHQ5_dSOFu87zEej-kDNH57RU6t2qfYP6DM7S5X750j8X66WHV3a0LXVZVLkpa24Yra1QpoDFtCbppqFGVqctWCasBWGtBcEWYYLRWxAhuKqG4JtZqW80QOfnqGFKKYGUfxzzxS1Iij4PIY2N5bCxPg4ySm5PEhV6-hSH6MeD_798jFmWL
CODEN ERENBL
Cites_doi 10.1016/j.future.2023.07.039
10.1504/IJBIC.2021.118095
10.1007/s10489-022-04058-2
10.1109/ACCESS.2019.2934756
10.1016/j.asoc.2018.07.045
10.1109/ACCESS.2022.3205742
10.1109/ACCESS.2020.2988796
10.1109/TNSM.2022.3213807
10.3934/era.2024042
10.1145/3572840
10.1007/s00500-020-05264-1
10.1007/s11227-020-03391-y
10.1007/s00500-018-3496-z
10.2507/IJSIMM18(4)485
10.1007/s11042-023-15875-z
10.1007/s00521-020-05649-1
10.1155/2022/3105291
10.1142/S0218488521500203
10.1007/s11042-021-11887-9
10.1007/s11042-023-14501-2
10.1016/j.patrec.2017.10.031
10.1016/j.knosys.2023.110261
10.1016/j.softx.2020.100642
10.1109/ACCESS.2020.2982906
10.1109/ACCESS.2022.3202541
10.1080/08927022.2020.1839661
10.1007/s12243-020-00831-x
10.1016/j.comcom.2021.04.013
10.1007/s00500-018-3076-2
10.1007/s10586-018-1755-5
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/2631-8695/ad871e
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2631-8695
ExternalDocumentID 10_1088_2631_8695_ad871e
erxad871e
GrantInformation_xml – fundername: 2020 Natural Science Research Project of Anhui Educational Committee: Design and implementation of a smart campus visualization platform based on Data Mining.
  grantid: KJ2019A1109
GroupedDBID AAYXX
ABJNI
ALMA_UNASSIGNED_HOLDINGS
CITATION
ID FETCH-LOGICAL-c233t-214f58afda29e5d72ec551da3d427a9fcee67fe98a069614a0d98d39a8c0ffcf3
IEDL.DBID O3W
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001345792500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2631-8695
IngestDate Sat Nov 29 03:50:56 EST 2025
Wed Nov 06 05:19:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-214f58afda29e5d72ec551da3d427a9fcee67fe98a069614a0d98d39a8c0ffcf3
Notes ERX-104590.R1
ORCID 0009-0002-6714-3252
PageCount 15
ParticipantIDs iop_journals_10_1088_2631_8695_ad871e
crossref_primary_10_1088_2631_8695_ad871e
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering Research Express
PublicationTitleAbbrev ERX
PublicationTitleAlternate Eng. Res. Express
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Hussain (erxad871ebib13) 2018; 72
Thrun (erxad871ebib29) 2021; 13
Xu (erxad871ebib31) 2023; 82
Liu (erxad871ebib22) 2023; 263
Kiki (erxad871ebib14) 2021; 24
Chang (erxad871ebib4) 2022; 81
Gocken (erxad871ebib11) 2019; 18
Xia (erxad871ebib30) 2021; 77
Ahn (erxad871ebib1) 2022; 10
Thoma (erxad871ebib28) 2021; 174
An (erxad871ebib3) 2019; 7
Li (erxad871ebib20) 2021; 18
De Oliveira (erxad871ebib7) 2020; 46
Hassan (erxad871ebib12) 2021; 33
Kuo (erxad871ebib15) 2019; 23
Peng (erxad871ebib24) 2018; 19
Song (erxad871ebib27) 2023; 53
Ren (erxad871ebib25) 2021; 76
Ma (erxad871ebib23) 2020; 24
Ganesh (erxad871ebib10) 2023; 19
Al-Dhamari (erxad871ebib2) 2020; 8
Chen (erxad871ebib5) 2023; 149
Chen (erxad871ebib6) 2021; 29
Kushwaha (erxad871ebib16) 2018; 115
Deng (erxad871ebib9) 2023; 20
Liu (erxad871ebib21) 2023; 83
Li (erxad871ebib18) 2022; 10
Yang (erxad871ebib32) 2019; 22
Deb (erxad871ebib8) 2018; 22
Lei (erxad871ebib17) 2024; 32
Li (erxad871ebib19) 2022; 2022
Sinaga (erxad871ebib26) 2020; 8
References_xml – volume: 149
  start-page: 330
  year: 2023
  ident: erxad871ebib5
  article-title: An optimized feature extraction algorithm for abnormal network traffic detection
  publication-title: Future Generation Computer Systems-the International Journal of Escience
  doi: 10.1016/j.future.2023.07.039
– volume: 18
  start-page: 105
  year: 2021
  ident: erxad871ebib20
  article-title: Clustering algorithm for mixed attributes data based on glowworm swarm optimisation algorithm and K-prototypes algorithm
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2021.118095
– volume: 53
  start-page: 10520
  year: 2023
  ident: erxad871ebib27
  article-title: A spectral clustering algorithm based on attribute fluctuation and density peaks clustering algorithm
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-022-04058-2
– volume: 7
  start-page: 113398
  year: 2019
  ident: erxad871ebib3
  article-title: Clustering algorithm improvement in SAR target detection
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2934756
– volume: 72
  start-page: 30
  year: 2018
  ident: erxad871ebib13
  article-title: CCGA: co-similarity based Co-clustering using genetic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.045
– volume: 10
  start-page: 98034
  year: 2022
  ident: erxad871ebib18
  article-title: A new density peak clustering algorithm based on cluster fusion strategy
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2022.3205742
– volume: 8
  start-page: 80716
  year: 2020
  ident: erxad871ebib26
  article-title: Unsupervised K-means clustering algorithm
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.2988796
– volume: 20
  start-page: 684
  year: 2023
  ident: erxad871ebib9
  article-title: Flow topology-based graph convolutional network for intrusion detection in label-limited iot networks
  publication-title: IEEE Trans. Netw. Serv. Manage.
  doi: 10.1109/TNSM.2022.3213807
– volume: 32
  start-page: 874
  year: 2024
  ident: erxad871ebib17
  article-title: A novel approach for enhanced abnormal action recognition via coarse and precise detection stage
  publication-title: Electronic Research Archive
  doi: 10.3934/era.2024042
– volume: 19
  start-page: 46
  year: 2023
  ident: erxad871ebib10
  article-title: Universal algorithms for clustering problems
  publication-title: Acm Transactions on Algorithms
  doi: 10.1145/3572840
– volume: 24
  start-page: 15129
  year: 2020
  ident: erxad871ebib23
  article-title: Multiple clustering and selecting algorithms with combining strategy for selective clustering ensemble
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05264-1
– volume: 77
  start-page: 3223
  year: 2021
  ident: erxad871ebib30
  article-title: A new method of abnormal behavior detection using LSTM network with temporal attention mechanism
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03391-y
– volume: 23
  start-page: 8957
  year: 2019
  ident: erxad871ebib15
  article-title: An improved differential evolution with cluster decomposition algorithm for automatic clustering
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3496-z
– volume: 18
  start-page: 574
  year: 2019
  ident: erxad871ebib11
  article-title: Comparison of different clustering algorithms via genetic algorithm for vrptw
  publication-title: International Journal of Simulation Modelling
  doi: 10.2507/IJSIMM18(4)485
– volume: 83
  start-page: 61929
  year: 2023
  ident: erxad871ebib21
  article-title: Abnormal operation recognition based on a spatiotemporal residual network
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-15875-z
– volume: 33
  start-page: 10987
  year: 2021
  ident: erxad871ebib12
  article-title: A multidisciplinary ensemble algorithm for clustering heterogeneous datasets
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-020-05649-1
– volume: 2022
  start-page: 13
  year: 2022
  ident: erxad871ebib19
  article-title: Task-oriented network abnormal behavior detection method
  publication-title: Security and Communication Networks
  doi: 10.1155/2022/3105291
– volume: 29
  start-page: 463
  year: 2021
  ident: erxad871ebib6
  article-title: A combined clustering algorithm based on esync algorithm and a merging judgement process of micro-clusters
  publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst.
  doi: 10.1142/S0218488521500203
– volume: 81
  start-page: 11825
  year: 2022
  ident: erxad871ebib4
  article-title: A hybrid CNN and LSTM-based deep learning model for abnormal behavior detection
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-11887-9
– volume: 82
  start-page: 22723
  year: 2023
  ident: erxad871ebib31
  article-title: Abnormal behavior detection algorithm based on multi-branch convolutional fusion neural network
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-14501-2
– volume: 115
  start-page: 59
  year: 2018
  ident: erxad871ebib16
  article-title: Magnetic optimization algorithm for data clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.10.031
– volume: 263
  start-page: 19
  year: 2023
  ident: erxad871ebib22
  article-title: Cloud-cluster: an uncertainty clustering algorithm based on cloud model
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110261
– volume: 13
  start-page: 7
  year: 2021
  ident: erxad871ebib29
  article-title: Fundamental clustering algorithms suite
  publication-title: Softwarex
  doi: 10.1016/j.softx.2020.100642
– volume: 8
  start-page: 61085
  year: 2020
  ident: erxad871ebib2
  article-title: Transfer deep learning along with binary support vector machine for abnormal behavior detection
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.2982906
– volume: 10
  start-page: 119232
  year: 2022
  ident: erxad871ebib1
  article-title: Modeling and simulation of abnormal behavior detection through history trajectory monitoring in wireless sensor networks
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2022.3202541
– volume: 19
  start-page: 489
  year: 2018
  ident: erxad871ebib24
  article-title: A new method for abnormal behavior propagation in networked software
  publication-title: Journal of Internet Technology
– volume: 24
  start-page: 489
  year: 2021
  ident: erxad871ebib14
  article-title: Mapreduce FCM clustering set algorithm
  publication-title: Cluster Computing-the Journal of Networks Software Tools and Applications
– volume: 46
  start-page: 1453
  year: 2020
  ident: erxad871ebib7
  article-title: Modified clustering algorithm for molecular simulation
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2020.1839661
– volume: 76
  start-page: 581
  year: 2021
  ident: erxad871ebib25
  article-title: A review of clustering algorithms in vanets
  publication-title: Ann. Telecommun.
  doi: 10.1007/s12243-020-00831-x
– volume: 174
  start-page: 28
  year: 2021
  ident: erxad871ebib28
  article-title: Detection of collaborative misbehaviour in distributed cyber-attacks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.04.013
– volume: 22
  start-page: 6035
  year: 2018
  ident: erxad871ebib8
  article-title: Elephant search algorithm applied to data clustering
  publication-title: Soft Computing
  doi: 10.1007/s00500-018-3076-2
– volume: 22
  start-page: S8309
  year: 2019
  ident: erxad871ebib32
  article-title: Anomaly network traffic detection algorithm based on information entropy measurement under the cloud computing environment
  publication-title: Cluster Computing-the Journal of Networks Software Tools and Applications
  doi: 10.1007/s10586-018-1755-5
SSID ssib046616717
ssib037096498
ssib052001916
Score 2.2754564
Snippet In this paper, we propose an advanced network anomaly behavior identification framework to overcome the constraints inherent in conventional rule- or...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 45217
SubjectTerms anomaly identification
clustering algorithm
network anomalous behavior
Title Improved identification of network anomalies through optimal CURE clustering
URI https://iopscience.iop.org/article/10.1088/2631-8695/ad871e
Volume 6
WOSCitedRecordID wos001345792500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2631-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib037096498
  issn: 2631-8695
  databaseCode: O3W
  dateStart: 20190711
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7a6sGLD1SsL_agBw9r091NsosnKS0epIpY7C1s9gEFTUpfv99JdusDFARvIQxJ-HYy3zfZyQxCF1Vbn0hxSXLOLOGguIngVJMcqCLReayZ1fWwiXQ4FOOxfGygm49_YcppCP3XcOgbBXsIQ0Gc6NCEdYlIZNxRBuS-baINJkAGgDM_sJe1M7EUxDn_zCU4EFECuUvYqvzpQt-oqQm3_8I0g51_PeMu2g4CE9960z3UsMU-uvffDqzBExPKg-oVwaXDhS8Ex6oo30CU2zkOs3twCeEETuHe6KmP9euy6qkATHeARoP-c--OhDkKRFPGFoR2uYuFckZRaWOTUqtBJxnFDKepkg54MkmdlUJFiQS6VpGRwjCphI6c044dolZRFvYI4YSnkbIQF3iUcwWLmTsHKaYG4SJiYLY2ulpDmE19u4ys3uYWIqswySpMMo9JG10CfFl4Z-a_2h3_0e4EbVFQHL7W5BS1FrOlPUOberWYzGfntXO8A5Cbubk
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRbz4QMX6zEEPHmK3SXY3OUptUSy1iMXelmweUNDd0oe_3-kmRQUFwduyDEv4MjvfN5vZGYQuFm19IsUlyTmzhIPiJoJTTXKgikTnsWZWV8Mm0l5PDIeyH-acVv_ClOMQ-q_h0jcK9hCGgjjRoAlrEpHIuKEMyH3bGBu3itaqPiXg0I_sZelQLAWBzj_zCQ5klED-Eo4rf3rYN3pahSV8YZvO9r_XuYO2gtDEN958F63YYg91_TcEa_DIhDKhamdw6XDhC8KxKso3EOd2isMMH1xCWIFbuDV4amP9Ol_0VgDG20eDTvu5dUfCPAWiKWMzQpvcxUI5o6i0sUmp1aCXjGKG01RJB3yZpM5KoaJEAm2ryEhhmFRCR85pxw5QrSgLe4hwwtNIWYgPPMq5gk3NnYNUU4OAETEwXB1dLWHMxr5tRlYddwuRLXDJFrhkHpc6ugQIs_DuTH-1O_qj3Tna6N92su597-EYbVIQIb785ATVZpO5PUXr-n02mk7OKl_5AKK3vyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+identification+of+network+anomalies+through+optimal+CURE+clustering&rft.jtitle=Engineering+Research+Express&rft.au=Wu%2C+Xiaoqian&rft.au=Chen%2C+Cheng&rft.au=Quan%2C+Lili&rft.date=2024-12-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=6&rft.issue=4&rft_id=info:doi/10.1088%2F2631-8695%2Fad871e&rft.externalDocID=erxad871e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon