A computational algorithm for random particle breakage

Random breakage can be defined as the breakage patterns independent from the stressing environment and the nature of the broken particle. However, the relevant literature studies give contrary evidence against random breakage of particles. A simple way to detect random breakage is to evaluate the fr...

Full description

Saved in:
Bibliographic Details
Published in:Physica A Vol. 602; p. 127640
Main Author: Camalan, Mahmut
Format: Journal Article
Language:English
Published: Elsevier B.V 15.09.2022
Subjects:
ISSN:0378-4371, 1873-2119
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Random breakage can be defined as the breakage patterns independent from the stressing environment and the nature of the broken particle. However, the relevant literature studies give contrary evidence against random breakage of particles. A simple way to detect random breakage is to evaluate the fragment (progeny) size distributions. Such distributions are estimated analytically or through numerical models. The latter models generally treat random breakage as a geometric statistical problem with prior assumptions on particle/flaw geometry and external stressing environment, which may violate the randomness of the breakage process. This study presents a random-breakage algorithm that does not require such assumptions. The simulated progeny size distributions were compared with the experimental size distributions by impact loading (drop-weight) tests. Random breakage events should yield number-weighted size distributions that is fitted well to the lognormal distribution function. Also, a mass-weighted (sieve) size distribution function is presented for random breakage. Nevertheless, the results refute the random breakage of clinker and other brittle particles after impact loading. Instead, the sieve size distribution of fragments may evolve due to crack branching/merging and Poissonian crack nucleation processes. •An algorithm is presented to simulate random breakage without any assumption.•Simulation results refute the random breakage of brittle particles.•The results are consistent with Kolmogorov’s proof for lognormal distribution.•A function is derived for sieve size dist. of progenies after random breakage.•Progeny size dist. may be due to crack branching/merging and Poissonian processes.
AbstractList Random breakage can be defined as the breakage patterns independent from the stressing environment and the nature of the broken particle. However, the relevant literature studies give contrary evidence against random breakage of particles. A simple way to detect random breakage is to evaluate the fragment (progeny) size distributions. Such distributions are estimated analytically or through numerical models. The latter models generally treat random breakage as a geometric statistical problem with prior assumptions on particle/flaw geometry and external stressing environment, which may violate the randomness of the breakage process. This study presents a random-breakage algorithm that does not require such assumptions. The simulated progeny size distributions were compared with the experimental size distributions by impact loading (drop-weight) tests. Random breakage events should yield number-weighted size distributions that is fitted well to the lognormal distribution function. Also, a mass-weighted (sieve) size distribution function is presented for random breakage. Nevertheless, the results refute the random breakage of clinker and other brittle particles after impact loading. Instead, the sieve size distribution of fragments may evolve due to crack branching/merging and Poissonian crack nucleation processes. •An algorithm is presented to simulate random breakage without any assumption.•Simulation results refute the random breakage of brittle particles.•The results are consistent with Kolmogorov’s proof for lognormal distribution.•A function is derived for sieve size dist. of progenies after random breakage.•Progeny size dist. may be due to crack branching/merging and Poissonian processes.
ArticleNumber 127640
Author Camalan, Mahmut
Author_xml – sequence: 1
  givenname: Mahmut
  orcidid: 0000-0001-7071-7910
  surname: Camalan
  fullname: Camalan, Mahmut
  email: camalanmahmut@gmail.com
  organization: Middle East Technical University, Ankara, Turkey
BookMark eNqFz79OwzAQx3ELFYm28AQseYEEn50m9cBQVfyTkFhgti7OuXVJ4sgOSH17UsLEANPd8v1JnwWbdb4jxq6BZ8ChuDlk_f4YMRNciAxEWeT8jM1hXcpUAKgZm3NZrtNclnDBFjEeOOdQSjFnxSYxvu0_Bhyc77BJsNn54IZ9m1gfkoBd7dukxzA401BSBcJ33NElO7fYRLr6uUv2dn_3un1Mn18enrab59QIKYcUqhIIKceqhtyquhSVKixU3K5wpThIrkgit4WsrcplXvPxq6AgIiHW48SSyWnXBB9jIKv74FoMRw1cn-j6oL_p-kTXE32s1K_KuAk4BHTNP-3t1NLI-nQUdDSOOkO1C2QGXXv3Z_8F_bh4JQ
CitedBy_id crossref_primary_10_1029_2024JF007844
Cites_doi 10.1145/272991.272995
10.1063/1.336139
10.6028/jres.073B.001
10.1103/PhysRevE.77.051302
10.1063/1.360073
10.1088/0004-637X/738/1/86
10.1063/1.347188
10.1016/0016-0032(47)90465-1
10.1016/j.powtec.2004.04.004
10.1103/PhysRevE.70.026104
10.1007/s10704-008-9267-6
10.1038/srep09147
10.1016/S0016-0032(36)90309-5
10.1080/01621459.1951.10500769
10.1016/j.mineng.2016.05.005
10.1016/j.minpro.2007.12.001
10.1080/15427951.2004.10129088
10.1016/j.ijmst.2020.03.017
10.1214/aoms/1177731283
10.1016/S0032-5910(01)00276-5
10.7566/JPSJ.83.124005
10.1007/BF01028965
10.1016/j.minpro.2004.01.006
10.1016/j.physa.2006.04.087
10.1016/S0892-6875(98)00102-2
10.1016/S0032-5910(02)00237-1
10.1140/epjst/e2014-02270-3
10.1016/0378-4371(95)00063-D
10.1016/j.wear.2004.09.012
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2022.127640
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2119
ExternalDocumentID 10_1016_j_physa_2022_127640
S0378437122004344
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAXUO
ABAOU
ABMAC
ABNEU
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXIXF
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c233t-1b71eae4abd14f9d72b96f1b0f5a5901309e3a0f63df9434d063db16eee228233
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000811872400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Tue Nov 18 21:47:18 EST 2025
Sat Nov 29 07:16:15 EST 2025
Fri Feb 23 02:38:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lognormal
Size distribution
Power-law
Exponential
Pseudorandom
Random breakage
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c233t-1b71eae4abd14f9d72b96f1b0f5a5901309e3a0f63df9434d063db16eee228233
ORCID 0000-0001-7071-7910
ParticipantIDs crossref_primary_10_1016_j_physa_2022_127640
crossref_citationtrail_10_1016_j_physa_2022_127640
elsevier_sciencedirect_doi_10_1016_j_physa_2022_127640
PublicationCentury 2000
PublicationDate 2022-09-15
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Halmos (b18) 1944; 15
Wittel, Carmona, Kun, Herrmann (b33) 2008; 154
Epstein (b21) 1947; 244
Grady, Kipp (b1) 1985; 58
Mariano, Evans, Manlapig (b37) 2016; 94
Wittel, Carmona, Kun, Herrmann (b27) 2008; 154
Carmona, Wittel, Kun, Herrmann (b32) 2008; 77
Subero, Ghadiri (b17) 2001; 120
Shimizu, Grow (b7) 1988
Shengzhi (b13) 2003
Gradshteyn, Ryzhik (b42) 2015
Allen (b24) 2003
Hernández, Herrmann (b5) 1995; 215
Camalan (b9) 2020; 30
Åström, Linna, Timonen, Møller, Oddershede (b29) 2004; 70
Santurbano (b8) 1993
Ito, Yukawa (b6) 2014; 83
Papadopoulos (b14) 1998
Grady (b4) 1990; 68
Lienau (b2) 1936; 221
Mitzenmacher (b35) 2003; 1
Ng, Geller (b41) 1969; 73B
Khanal, Schubert, Tomas (b11) 2008; 86
Matsumoto, Nishimura (b23) 1998; 8
Dacey, Krumbein (b20) 1979; 11
Hogg (b26) 2009
Carron (b39) 2011; 738
Kolmogorov (b19) 1941; 31
Napier-Munn, Morrell, Morrison, Kojovic (b22) 1996
Brown, Wohletz (b34) 1995; 78
Schubert, Khanal, Tomas (b10) 2005; 75
Mott, Linfoot (b3) 2006
Domokos, Kun, Sipos, Szabo (b31) 2015; 5
King, Schneider (b38) 1998; 11
Carmona, Wittel, Kun (b28) 2014; 223
Herrmann, Wittel, Kun (b30) 2006; 371
Salman, Fu, Gorham, Hounslow (b12) 2003; 130
Merkus (b25) 2009
Gorham, Salman (b15) 2005; 258
Schönert (b16) 2004; 143–144
Ginos (b40) 2009
Massey (b36) 1951; 46
Napier-Munn (10.1016/j.physa.2022.127640_b22) 1996
Gradshteyn (10.1016/j.physa.2022.127640_b42) 2015
Lienau (10.1016/j.physa.2022.127640_b2) 1936; 221
Mariano (10.1016/j.physa.2022.127640_b37) 2016; 94
Merkus (10.1016/j.physa.2022.127640_b25) 2009
Ng (10.1016/j.physa.2022.127640_b41) 1969; 73B
Camalan (10.1016/j.physa.2022.127640_b9) 2020; 30
Epstein (10.1016/j.physa.2022.127640_b21) 1947; 244
Allen (10.1016/j.physa.2022.127640_b24) 2003
Shengzhi (10.1016/j.physa.2022.127640_b13) 2003
King (10.1016/j.physa.2022.127640_b38) 1998; 11
Hernández (10.1016/j.physa.2022.127640_b5) 1995; 215
Carmona (10.1016/j.physa.2022.127640_b28) 2014; 223
Ginos (10.1016/j.physa.2022.127640_b40) 2009
Gorham (10.1016/j.physa.2022.127640_b15) 2005; 258
Wittel (10.1016/j.physa.2022.127640_b27) 2008; 154
Carmona (10.1016/j.physa.2022.127640_b32) 2008; 77
Brown (10.1016/j.physa.2022.127640_b34) 1995; 78
Grady (10.1016/j.physa.2022.127640_b4) 1990; 68
Ito (10.1016/j.physa.2022.127640_b6) 2014; 83
Dacey (10.1016/j.physa.2022.127640_b20) 1979; 11
Domokos (10.1016/j.physa.2022.127640_b31) 2015; 5
Carron (10.1016/j.physa.2022.127640_b39) 2011; 738
Schönert (10.1016/j.physa.2022.127640_b16) 2004; 143–144
Wittel (10.1016/j.physa.2022.127640_b33) 2008; 154
Salman (10.1016/j.physa.2022.127640_b12) 2003; 130
Hogg (10.1016/j.physa.2022.127640_b26) 2009
Halmos (10.1016/j.physa.2022.127640_b18) 1944; 15
Massey (10.1016/j.physa.2022.127640_b36) 1951; 46
Shimizu (10.1016/j.physa.2022.127640_b7) 1988
Santurbano (10.1016/j.physa.2022.127640_b8) 1993
Subero (10.1016/j.physa.2022.127640_b17) 2001; 120
Khanal (10.1016/j.physa.2022.127640_b11) 2008; 86
Grady (10.1016/j.physa.2022.127640_b1) 1985; 58
Papadopoulos (10.1016/j.physa.2022.127640_b14) 1998
Åström (10.1016/j.physa.2022.127640_b29) 2004; 70
Matsumoto (10.1016/j.physa.2022.127640_b23) 1998; 8
Mott (10.1016/j.physa.2022.127640_b3) 2006
Mitzenmacher (10.1016/j.physa.2022.127640_b35) 2003; 1
Schubert (10.1016/j.physa.2022.127640_b10) 2005; 75
Herrmann (10.1016/j.physa.2022.127640_b30) 2006; 371
Kolmogorov (10.1016/j.physa.2022.127640_b19) 1941; 31
References_xml – volume: 5
  start-page: 1
  year: 2015
  end-page: 6
  ident: b31
  article-title: Universality of fragment shapes
  publication-title: Sci. Rep.
– year: 2006
  ident: b3
  article-title: A theory of fragmentation
  publication-title: Fragm. Rings Shells
– volume: 83
  start-page: 1
  year: 2014
  end-page: 6
  ident: b6
  article-title: Stochastic modeling on fragmentation process over lifetime and its dynamical scaling law of fragment distribution
  publication-title: J. Phys. Soc. Japan
– volume: 223
  start-page: 2369
  year: 2014
  end-page: 2382
  ident: b28
  article-title: From fracture to fragmentation: Discrete element modeling: Complexity of crackling noise and fragmentation phenomena revealed by discrete element simulations
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 244
  start-page: 471
  year: 1947
  ident: b21
  article-title: The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution
  publication-title: J. Franklin Inst.
– year: 2003
  ident: b24
  article-title: Powder Sampling and Particle Size Determination
– volume: 58
  start-page: 1210
  year: 1985
  end-page: 1222
  ident: b1
  article-title: Geometric statistics and dynamic fragmentation
  publication-title: J. Appl. Phys.
– volume: 154
  start-page: 105
  year: 2008
  end-page: 117
  ident: b33
  article-title: Mechanisms in impact fragmentation
  publication-title: Int. J. Fract.
– volume: 221
  start-page: 485
  year: 1936
  end-page: 494
  ident: b2
  article-title: Random fracture of a brittle solid: Introduction
  publication-title: J. Franklin Inst.
– year: 2015
  ident: b42
  article-title: Table of Integrals, Series, and Products
– volume: 154
  start-page: 105
  year: 2008
  end-page: 117
  ident: b27
  article-title: Mechanisms in impact fragmentation
  publication-title: Int. J. Fract.
– year: 1998
  ident: b14
  article-title: Impact Breakage of Particulate Solids
– volume: 120
  start-page: 232
  year: 2001
  end-page: 243
  ident: b17
  article-title: Breakage patterns of agglomerates
  publication-title: Powder Technol.
– volume: 30
  start-page: 901
  year: 2020
  end-page: 908
  ident: b9
  article-title: Correlating common breakage modes with impact breakage and ball milling of cement clinker and chromite
  publication-title: Int. J. Min. Sci. Technol.
– volume: 8
  start-page: 3
  year: 1998
  end-page: 30
  ident: b23
  article-title: Mersenne twister: A 623-Dimensionally equidistributed uniform pseudo-random number generator
  publication-title: ACM Trans. Model. Comput. Simul.
– volume: 73B
  start-page: 1
  year: 1969
  end-page: 20
  ident: b41
  article-title: Table of integrals of the error functions
  publication-title: J. Res. Natl. Bur. Stand. - B. Math. Sci.
– volume: 1
  start-page: 226
  year: 2003
  end-page: 251
  ident: b35
  article-title: A brief history of generative models for power law and lognormal distributions
  publication-title: Internet Math.
– start-page: 49
  year: 1996
  end-page: 94
  ident: b22
  article-title: Rock testing - determining the material - Specific breakage function
  publication-title: Miner. Comminution Circuits their Oper. Optim.
– volume: 15
  start-page: 182
  year: 1944
  end-page: 189
  ident: b18
  article-title: Random alms
  publication-title: Ann. Math. Stat.
– volume: 371
  start-page: 59
  year: 2006
  end-page: 66
  ident: b30
  article-title: Fragmentation
  publication-title: Phys. A Stat. Mech. Appl.
– volume: 46
  start-page: 68
  year: 1951
  end-page: 78
  ident: b36
  article-title: The Kolmogorov–Smirnov test for goodness of fit
  publication-title: J. Amer. Statist. Assoc.
– volume: 215
  start-page: 420
  year: 1995
  end-page: 430
  ident: b5
  article-title: Discrete models for two- and three-dimensional fragmentation
  publication-title: Phys. A Stat. Mech. Appl.
– volume: 70
  year: 2004
  ident: b29
  article-title: Exponential and power-law mass distributions in brittle fragmentation
  publication-title: Phys. Rev. E.
– volume: 94
  start-page: 51
  year: 2016
  end-page: 60
  ident: b37
  article-title: Definition of random and non-random breakage in mineral liberation - A review
  publication-title: Miner. Eng.
– year: 2009
  ident: b40
  article-title: Parameter Estimation for the Lognormal Distribution
– year: 2003
  ident: b13
  article-title: Theoretical and Experimental Studies on Dynamic Impact on Brittle Solids
– volume: 11
  start-page: 193
  year: 1979
  end-page: 222
  ident: b20
  article-title: Models of breakage and selection for particle size distributions
  publication-title: J. Int. Assoc. Math. Geol.
– volume: 77
  start-page: 1
  year: 2008
  end-page: 10
  ident: b32
  article-title: Fragmentation processes in impact of spheres
  publication-title: Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
– volume: 75
  start-page: 41
  year: 2005
  end-page: 52
  ident: b10
  article-title: Impact crushing of particle–particle compounds—experiment and simulation
  publication-title: Int. J. Miner. Process.
– year: 2009
  ident: b25
  article-title: Particle Size Measurements: Fundamentals, Practice, Quality
– volume: 86
  start-page: 104
  year: 2008
  end-page: 113
  ident: b11
  article-title: Compression and impact loading experiments of high strength spherical composites
  publication-title: Int. J. Miner. Process.
– volume: 11
  start-page: 1143
  year: 1998
  end-page: 1160
  ident: b38
  article-title: Mineral liberation and the batch communition equation
  publication-title: Miner. Eng.
– volume: 130
  start-page: 359
  year: 2003
  end-page: 366
  ident: b12
  article-title: Impact breakage of fertiliser granules
  publication-title: Powder Technol.
– year: 1993
  ident: b8
  article-title: An Experimental and Analytical Study of the Mechanics of Rock Particle Fragmentation During Impact Crushing
– volume: 258
  start-page: 580
  year: 2005
  end-page: 587
  ident: b15
  article-title: The failure of spherical particles under impact
  publication-title: Wear
– volume: 143–144
  start-page: 2
  year: 2004
  end-page: 18
  ident: b16
  article-title: Breakage of spheres and circular discs
  publication-title: Powder Technol.
– volume: 78
  start-page: 2758
  year: 1995
  end-page: 2763
  ident: b34
  article-title: Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions
  publication-title: J. Appl. Phys.
– start-page: 1
  year: 1988
  end-page: 26
  ident: b7
  article-title: History, genesis, and properties
  publication-title: Lognormal Distrib. Theory Appl.
– volume: 738
  start-page: 86
  year: 2011
  ident: b39
  article-title: On the incompleteness of the moment and correlation function hierarchy as probes of the lognormal field
  publication-title: Astrophys. J.
– year: 2009
  ident: b26
  article-title: Particle characterization
  publication-title: Princ. Miner. Process
– volume: 68
  start-page: 6099
  year: 1990
  end-page: 6105
  ident: b4
  article-title: Particle size statistics in dynamic fragmentation
  publication-title: J. Appl. Phys.
– volume: 31
  start-page: 99
  year: 1941
  ident: b19
  article-title: A log-normal distribution for particle breakage
  publication-title: Dokl. Akad. Nauk S.S.S.R.
– volume: 8
  start-page: 3
  year: 1998
  ident: 10.1016/j.physa.2022.127640_b23
  article-title: Mersenne twister: A 623-Dimensionally equidistributed uniform pseudo-random number generator
  publication-title: ACM Trans. Model. Comput. Simul.
  doi: 10.1145/272991.272995
– year: 2003
  ident: 10.1016/j.physa.2022.127640_b24
– start-page: 1
  year: 1988
  ident: 10.1016/j.physa.2022.127640_b7
  article-title: History, genesis, and properties
– year: 2009
  ident: 10.1016/j.physa.2022.127640_b25
– year: 1998
  ident: 10.1016/j.physa.2022.127640_b14
– volume: 58
  start-page: 1210
  year: 1985
  ident: 10.1016/j.physa.2022.127640_b1
  article-title: Geometric statistics and dynamic fragmentation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.336139
– volume: 73B
  start-page: 1
  year: 1969
  ident: 10.1016/j.physa.2022.127640_b41
  article-title: Table of integrals of the error functions
  publication-title: J. Res. Natl. Bur. Stand. - B. Math. Sci.
  doi: 10.6028/jres.073B.001
– volume: 77
  start-page: 1
  year: 2008
  ident: 10.1016/j.physa.2022.127640_b32
  article-title: Fragmentation processes in impact of spheres
  publication-title: Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.77.051302
– volume: 78
  start-page: 2758
  year: 1995
  ident: 10.1016/j.physa.2022.127640_b34
  article-title: Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.360073
– volume: 738
  start-page: 86
  year: 2011
  ident: 10.1016/j.physa.2022.127640_b39
  article-title: On the incompleteness of the moment and correlation function hierarchy as probes of the lognormal field
  publication-title: Astrophys. J.
  doi: 10.1088/0004-637X/738/1/86
– volume: 68
  start-page: 6099
  year: 1990
  ident: 10.1016/j.physa.2022.127640_b4
  article-title: Particle size statistics in dynamic fragmentation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.347188
– volume: 244
  start-page: 471
  year: 1947
  ident: 10.1016/j.physa.2022.127640_b21
  article-title: The mathematical description of certain breakage mechanisms leading to the logarithmico-normal distribution
  publication-title: J. Franklin Inst.
  doi: 10.1016/0016-0032(47)90465-1
– volume: 143–144
  start-page: 2
  year: 2004
  ident: 10.1016/j.physa.2022.127640_b16
  article-title: Breakage of spheres and circular discs
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2004.04.004
– volume: 70
  year: 2004
  ident: 10.1016/j.physa.2022.127640_b29
  article-title: Exponential and power-law mass distributions in brittle fragmentation
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.70.026104
– volume: 154
  start-page: 105
  year: 2008
  ident: 10.1016/j.physa.2022.127640_b27
  article-title: Mechanisms in impact fragmentation
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-008-9267-6
– volume: 5
  start-page: 1
  year: 2015
  ident: 10.1016/j.physa.2022.127640_b31
  article-title: Universality of fragment shapes
  publication-title: Sci. Rep.
  doi: 10.1038/srep09147
– volume: 221
  start-page: 485
  year: 1936
  ident: 10.1016/j.physa.2022.127640_b2
  article-title: Random fracture of a brittle solid: Introduction
  publication-title: J. Franklin Inst.
  doi: 10.1016/S0016-0032(36)90309-5
– volume: 154
  start-page: 105
  year: 2008
  ident: 10.1016/j.physa.2022.127640_b33
  article-title: Mechanisms in impact fragmentation
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-008-9267-6
– volume: 46
  start-page: 68
  year: 1951
  ident: 10.1016/j.physa.2022.127640_b36
  article-title: The Kolmogorov–Smirnov test for goodness of fit
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1951.10500769
– volume: 94
  start-page: 51
  year: 2016
  ident: 10.1016/j.physa.2022.127640_b37
  article-title: Definition of random and non-random breakage in mineral liberation - A review
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.05.005
– volume: 86
  start-page: 104
  year: 2008
  ident: 10.1016/j.physa.2022.127640_b11
  article-title: Compression and impact loading experiments of high strength spherical composites
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2007.12.001
– volume: 1
  start-page: 226
  year: 2003
  ident: 10.1016/j.physa.2022.127640_b35
  article-title: A brief history of generative models for power law and lognormal distributions
  publication-title: Internet Math.
  doi: 10.1080/15427951.2004.10129088
– year: 2003
  ident: 10.1016/j.physa.2022.127640_b13
– year: 2015
  ident: 10.1016/j.physa.2022.127640_b42
– volume: 30
  start-page: 901
  year: 2020
  ident: 10.1016/j.physa.2022.127640_b9
  article-title: Correlating common breakage modes with impact breakage and ball milling of cement clinker and chromite
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2020.03.017
– volume: 15
  start-page: 182
  year: 1944
  ident: 10.1016/j.physa.2022.127640_b18
  article-title: Random alms
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731283
– volume: 120
  start-page: 232
  year: 2001
  ident: 10.1016/j.physa.2022.127640_b17
  article-title: Breakage patterns of agglomerates
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(01)00276-5
– year: 2009
  ident: 10.1016/j.physa.2022.127640_b40
– volume: 83
  start-page: 1
  year: 2014
  ident: 10.1016/j.physa.2022.127640_b6
  article-title: Stochastic modeling on fragmentation process over lifetime and its dynamical scaling law of fragment distribution
  publication-title: J. Phys. Soc. Japan
  doi: 10.7566/JPSJ.83.124005
– volume: 31
  start-page: 99
  year: 1941
  ident: 10.1016/j.physa.2022.127640_b19
  article-title: A log-normal distribution for particle breakage
  publication-title: Dokl. Akad. Nauk S.S.S.R.
– start-page: 49
  year: 1996
  ident: 10.1016/j.physa.2022.127640_b22
  article-title: Rock testing - determining the material - Specific breakage function
– volume: 11
  start-page: 193
  year: 1979
  ident: 10.1016/j.physa.2022.127640_b20
  article-title: Models of breakage and selection for particle size distributions
  publication-title: J. Int. Assoc. Math. Geol.
  doi: 10.1007/BF01028965
– year: 2009
  ident: 10.1016/j.physa.2022.127640_b26
  article-title: Particle characterization
– volume: 75
  start-page: 41
  year: 2005
  ident: 10.1016/j.physa.2022.127640_b10
  article-title: Impact crushing of particle–particle compounds—experiment and simulation
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2004.01.006
– year: 2006
  ident: 10.1016/j.physa.2022.127640_b3
  article-title: A theory of fragmentation
– volume: 371
  start-page: 59
  year: 2006
  ident: 10.1016/j.physa.2022.127640_b30
  article-title: Fragmentation
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2006.04.087
– volume: 11
  start-page: 1143
  year: 1998
  ident: 10.1016/j.physa.2022.127640_b38
  article-title: Mineral liberation and the batch communition equation
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(98)00102-2
– volume: 130
  start-page: 359
  year: 2003
  ident: 10.1016/j.physa.2022.127640_b12
  article-title: Impact breakage of fertiliser granules
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(02)00237-1
– volume: 223
  start-page: 2369
  year: 2014
  ident: 10.1016/j.physa.2022.127640_b28
  article-title: From fracture to fragmentation: Discrete element modeling: Complexity of crackling noise and fragmentation phenomena revealed by discrete element simulations
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2014-02270-3
– volume: 215
  start-page: 420
  year: 1995
  ident: 10.1016/j.physa.2022.127640_b5
  article-title: Discrete models for two- and three-dimensional fragmentation
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/0378-4371(95)00063-D
– year: 1993
  ident: 10.1016/j.physa.2022.127640_b8
– volume: 258
  start-page: 580
  year: 2005
  ident: 10.1016/j.physa.2022.127640_b15
  article-title: The failure of spherical particles under impact
  publication-title: Wear
  doi: 10.1016/j.wear.2004.09.012
SSID ssj0001732
Score 2.3923175
Snippet Random breakage can be defined as the breakage patterns independent from the stressing environment and the nature of the broken particle. However, the relevant...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127640
SubjectTerms Exponential
Lognormal
Power-law
Pseudorandom
Random breakage
Size distribution
Title A computational algorithm for random particle breakage
URI https://dx.doi.org/10.1016/j.physa.2022.127640
Volume 602
WOSCitedRecordID wos000811872400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001732
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT8IwEG8UNfHF-BnxK3vwTUfWdrTbIyEY9YHwgAlvS7t1IsIgMAx_vtd1G6CG6IMvzbK0t-5-3fXudr1D6Jb6igiqM7fKmNsuY7EtsAxtrjyHEwZbUj3Kik3wdtvr9fxOXkJxlpUT4EniLRb-5F-hhnsAtj46-we4S6JwA64BdGgBdmh_BXwjCxOfp4WXTwxfx9O3tD_KIgpha4rGo7tJPvAOLGLxLtYDgjoGu6WbsylGOgLSnO3pj-bpqq8AzExd66C-IlI0Ki41RU8K-cccsiLBMOHMJFD6JlyNnT-oaZ-LTtlESG3Zez2V9Zctpgz8K2LKBkFGJNBEAkNkG-0QXvdBMu00nlq953I_xZyaf0H53IvcUVmU3re5_KxfrOgM3UN0kCv7VsPw-ghtqeQY7Rn2zk4Qa1hrUFklVBZAZRmorAIqq4DqFL08tLrNRzuvY2GHhNLUxpJjJZQrZITd2I84kT6LsXTiutBHf6njKyqcmNEo1un6IlAbI4mZUoqARUzpGaok40SdIysKPak8MOFDUMs8zARYszF8h6A4s5C5sopI8fZBmCd517VGhsEGzlfRfTloYnKcbO7OCrYGuZpm1K8AFsqmgRd_e84l2l-u4StUSadzdY12w4_0bTa9yVfJJ8jsXCo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+algorithm+for+random+particle+breakage&rft.jtitle=Physica+A&rft.au=Camalan%2C+Mahmut&rft.date=2022-09-15&rft.issn=0378-4371&rft.volume=602&rft.spage=127640&rft_id=info:doi/10.1016%2Fj.physa.2022.127640&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2022_127640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon