On a generalization of $z$-ideals in modules over commutative rings
In this article, we introduce and study the concept of $z$-submodules as a generalization of $z$-ideals. Let $M$ be a module over a commutative ring with identity $R$. A proper submodule $N$ of $M$ is called a $z$-submodule if for any $x\in M$ and $y\in N$ such that every maximal submodule of $M$ co...
Uloženo v:
| Vydáno v: | International electronic journal of algebra Ročník 37; číslo 37; s. 297 - 312 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
14.01.2025
|
| ISSN: | 1306-6048, 1306-6048 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, we introduce and study the concept of $z$-submodules as a generalization of $z$-ideals. Let $M$ be a module over a commutative ring with identity $R$. A proper submodule $N$ of $M$ is called a $z$-submodule if for any $x\in M$ and $y\in N$ such that every maximal submodule of $M$ containing $y$ also contains $x$, then $x\in N$ as well. We investigate the properties of $z$-submodules, particularly considering their stability with respect to various module constructions. Let $\mathcal{Z}({_R}M)$ denote the lattice of $z$-submodules of $M$ ordered by inclusion. We are concerned with
certain mappings between the lattices $\mathcal{Z}({_R}R)$ and $\mathcal{Z}({_R}M)$. The mappings in question are $\phi:\mathcal{Z}({_R}R) \rightarrow \mathcal{Z}({_R}M)$ defined by setting for each $z$-ideal $I$ of $R$, $\phi(I)$ to be the intersection of all $z$-submodules of $M$ containing $IM$ and $\psi:\mathcal{Z}({_R}M) \rightarrow \mathcal{Z}({_R}R)$ defined by $\psi(N)$ is the colon ideal $(N:M)$. It is shown that $\phi$ is a lattice homomorphism, and if $M$ is a finitely generated multiplication module, then $\psi$ is also a lattice homomorphism. In particular, $\mathcal{Z}({_R}M)$ is a homomorphic image of $\mathcal{R}({_R}M)$, the lattice of radical submodules of $M$. Finally, we show that if $Y$ is a finite subset of a compact Hausdorff $P$-space $X$, then every submodule of the $C(X)$- module $\mathbb{R}^Y$ is a $z$-submodule of $\mathbb{R}^Y$. |
|---|---|
| AbstractList | In this article, we introduce and study the concept of $z$-submodules as a generalization of $z$-ideals. Let $M$ be a module over a commutative ring with identity $R$. A proper submodule $N$ of $M$ is called a $z$-submodule if for any $x\in M$ and $y\in N$ such that every maximal submodule of $M$ containing $y$ also contains $x$, then $x\in N$ as well. We investigate the properties of $z$-submodules, particularly considering their stability with respect to various module constructions. Let $\mathcal{Z}({_R}M)$ denote the lattice of $z$-submodules of $M$ ordered by inclusion. We are concerned with
certain mappings between the lattices $\mathcal{Z}({_R}R)$ and $\mathcal{Z}({_R}M)$. The mappings in question are $\phi:\mathcal{Z}({_R}R) \rightarrow \mathcal{Z}({_R}M)$ defined by setting for each $z$-ideal $I$ of $R$, $\phi(I)$ to be the intersection of all $z$-submodules of $M$ containing $IM$ and $\psi:\mathcal{Z}({_R}M) \rightarrow \mathcal{Z}({_R}R)$ defined by $\psi(N)$ is the colon ideal $(N:M)$. It is shown that $\phi$ is a lattice homomorphism, and if $M$ is a finitely generated multiplication module, then $\psi$ is also a lattice homomorphism. In particular, $\mathcal{Z}({_R}M)$ is a homomorphic image of $\mathcal{R}({_R}M)$, the lattice of radical submodules of $M$. Finally, we show that if $Y$ is a finite subset of a compact Hausdorff $P$-space $X$, then every submodule of the $C(X)$- module $\mathbb{R}^Y$ is a $z$-submodule of $\mathbb{R}^Y$. |
| Author | Mohebian, Seyedeh Fatemeh Fazaeli Moghimi, Hosein |
| Author_xml | – sequence: 1 givenname: Seyedeh Fatemeh surname: Mohebian fullname: Mohebian, Seyedeh Fatemeh – sequence: 2 givenname: Hosein surname: Fazaeli Moghimi fullname: Fazaeli Moghimi, Hosein |
| BookMark | eNpNkD1rwzAYhEVJoWmasbuGrEpffdoei-kXBLK0sxHyq6BgS0VKAs2vr9tm6C13w3Fwzy2ZxRSRkHsOa6GkhIeAe7vmWmsO5orMuQTDDKh69i_fkGUpe5gktWpAzUm7jdTSHUbMdghnewgp0uTp6rxioUc7FBoiHVN_HLDQdMJMXRrH42FqnpDmEHfljlz7qYjLiy_Ix_PTe_vKNtuXt_Zxw5yQ4sCsacCBxsrZSjuhwAvJ68rWFVfCNwqEtNBDDbXhvreoemhQOCsVamemkwvC_nZdTqVk9N1nDqPNXx2H7hdC9wOhu0CQ3_F5UGc |
| Cites_doi | 10.1007/s41980-021-00573-z 10.1007/BF01140126 10.15672/hujms.605105 10.1007/978-1-4615-7819-2 10.1016/0021-8693(73)90024-0 10.24330/ieja.266191 10.2989/16073606.2019.1601647 10.1216/JCA-2015-7-4-567 10.24330/ieja.266224 10.15672/hujms.455030 10.4064/fm-45-1-28-50 10.1080/00927878808823601 10.1081/AGB-120014684 10.1016/j.topol.2019.106969 10.4153/CMB-1980-064-3 10.24330/ieja.266246 10.7146/math.scand.a-11411 10.2307/2040685 10.1515/ms-2017-0099 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.24330/ieja.1555106 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1306-6048 |
| EndPage | 312 |
| ExternalDocumentID | 10_24330_ieja_1555106 |
| GroupedDBID | 2WC AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION FRP J9A M~E OK1 |
| ID | FETCH-LOGICAL-c232t-a690c05e7ca75c240f23187a87142f94023a0d080861fdae4d09e2ca34e5c6243 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001400993000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1306-6048 |
| IngestDate | Sat Nov 29 03:23:30 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c232t-a690c05e7ca75c240f23187a87142f94023a0d080861fdae4d09e2ca34e5c6243 |
| OpenAccessLink | https://doi.org/10.24330/ieja.1555106 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_24330_ieja_1555106 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-14 |
| PublicationDateYYYYMMDD | 2025-01-14 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | International electronic journal of algebra |
| PublicationYear | 2025 |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref3 doi: 10.1007/s41980-021-00573-z – ident: ref26 doi: 10.1007/BF01140126 – ident: ref20 doi: 10.15672/hujms.605105 – ident: ref8 doi: 10.1007/978-1-4615-7819-2 – ident: ref13 doi: 10.1016/0021-8693(73)90024-0 – ident: ref15 doi: 10.24330/ieja.266191 – ident: ref5 doi: 10.2989/16073606.2019.1601647 – ident: ref25 doi: 10.1216/JCA-2015-7-4-567 – ident: ref9 – ident: ref19 – ident: ref24 doi: 10.24330/ieja.266224 – ident: ref1 doi: 10.15672/hujms.455030 – ident: ref11 doi: 10.4064/fm-45-1-28-50 – ident: ref17 – ident: ref4 – ident: ref7 doi: 10.1080/00927878808823601 – ident: ref2 – ident: ref18 doi: 10.1081/AGB-120014684 – ident: ref16 doi: 10.15672/hujms.605105 – ident: ref10 doi: 10.1016/j.topol.2019.106969 – ident: ref14 doi: 10.4153/CMB-1980-064-3 – ident: ref23 doi: 10.24330/ieja.266246 – ident: ref21 doi: 10.7146/math.scand.a-11411 – ident: ref22 doi: 10.2307/2040685 – ident: ref6 doi: 10.1515/ms-2017-0099 – ident: ref12 |
| SSID | ssj0000354904 |
| Score | 2.2866626 |
| Snippet | In this article, we introduce and study the concept of $z$-submodules as a generalization of $z$-ideals. Let $M$ be a module over a commutative ring with... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 297 |
| Title | On a generalization of $z$-ideals in modules over commutative rings |
| Volume | 37 |
| WOSCitedRecordID | wos001400993000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1306-6048 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000354904 issn: 1306-6048 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbctEM7FH2ib3BwuwRMaYoSxbEIanSokw4pkM2gqFOtwKYDP4LEQ_rXexQZWQ08pEMHERIhEiLvcPrucPyOkL4eSCOKQcoUSphJk5TMSKOYzRVkgyIrVdGw639XR0f56an-0ev9vjkLczFVzuWXl_r8v4oa-1DY_ujsP4i7nRQ78B6Fji2KHds7Cf7Y7RtfGNkHm-IhS48IPwq5wYvVJXjG5Nr5IjjrqeecxSX61PLZehVYwBdt9Pxsm-e-DRt2Kud0eCd8vZBi0Rr50XwCns68ia7CFZQw2R8irp1BG38emo2BaY1m5deknoXq2fMlRCrwGIkQPumPhROg0Xii-8EyHpgzD2BHX7S4geYlalZ8iPYzJOvGX3ESMqxvW3khk8TnRdZwZg4QD6FZ2cGmfesv1-YeotfTTDD2w8dx-D1yX6hUe7M4ut4G6XiC7jMPhZHjOgJPazPD5-4HdHBNB6CcPCGPo2dBvwSNeEp64J6RR6OWlnf5nBweO2ro37pB5xXtb_pRL2jtaNQL6vWCdvSCNnrxgvwcfj05_MZiFQ1mES2vmMk0tzwFZY1KLQK4CiF9rgx6ylJUWiJoM7xExyHPBlVpQJZcg7AmkZDaDBf6kuy5uYNXhIJBcFlxbXEoOrq6yEshrOBW4i4lkL8mn272YHweyFLGO7f7zV1ffEsebjXtHdlbLdbwnjywF6t6ufjQCOsPxiNfMQ |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+generalization+of+%24z%24-ideals+in+modules+over+commutative+rings&rft.jtitle=International+electronic+journal+of+algebra&rft.au=Mohebian%2C+Seyedeh+Fatemeh&rft.au=Fazaeli+Moghimi%2C+Hosein&rft.date=2025-01-14&rft.issn=1306-6048&rft.eissn=1306-6048&rft.volume=37&rft.issue=37&rft.spage=297&rft.epage=312&rft_id=info:doi/10.24330%2Fieja.1555106&rft.externalDBID=n%2Fa&rft.externalDocID=10_24330_ieja_1555106 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1306-6048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1306-6048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1306-6048&client=summon |