On a generalization of $z$-ideals in modules over commutative rings

In this article, we introduce and study the concept of $z$-submodules as a generalization of $z$-ideals. Let $M$ be a module over a commutative ring with identity $R$. A proper submodule $N$ of $M$ is called a $z$-submodule if for any $x\in M$ and $y\in N$ such that every maximal submodule of $M$ co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International electronic journal of algebra Jg. 37; H. 37; S. 297 - 312
Hauptverfasser: Mohebian, Seyedeh Fatemeh, Fazaeli Moghimi, Hosein
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 14.01.2025
ISSN:1306-6048, 1306-6048
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we introduce and study the concept of $z$-submodules as a generalization of $z$-ideals. Let $M$ be a module over a commutative ring with identity $R$. A proper submodule $N$ of $M$ is called a $z$-submodule if for any $x\in M$ and $y\in N$ such that every maximal submodule of $M$ containing $y$ also contains $x$, then $x\in N$ as well. We investigate the properties of $z$-submodules, particularly considering their stability with respect to various module constructions. Let $\mathcal{Z}({_R}M)$ denote the lattice of $z$-submodules of $M$ ordered by inclusion. We are concerned with certain mappings between the lattices $\mathcal{Z}({_R}R)$ and $\mathcal{Z}({_R}M)$. The mappings in question are $\phi:\mathcal{Z}({_R}R) \rightarrow \mathcal{Z}({_R}M)$ defined by setting for each $z$-ideal $I$ of $R$, $\phi(I)$ to be the intersection of all $z$-submodules of $M$ containing $IM$ and $\psi:\mathcal{Z}({_R}M) \rightarrow \mathcal{Z}({_R}R)$ defined by $\psi(N)$ is the colon ideal $(N:M)$. It is shown that $\phi$ is a lattice homomorphism, and if $M$ is a finitely generated multiplication module, then $\psi$ is also a lattice homomorphism. In particular, $\mathcal{Z}({_R}M)$ is a homomorphic image of $\mathcal{R}({_R}M)$, the lattice of radical submodules of $M$. Finally, we show that if $Y$ is a finite subset of a compact Hausdorff $P$-space $X$, then every submodule of the $C(X)$- module $\mathbb{R}^Y$ is a $z$-submodule of $\mathbb{R}^Y$.
AbstractList In this article, we introduce and study the concept of $z$-submodules as a generalization of $z$-ideals. Let $M$ be a module over a commutative ring with identity $R$. A proper submodule $N$ of $M$ is called a $z$-submodule if for any $x\in M$ and $y\in N$ such that every maximal submodule of $M$ containing $y$ also contains $x$, then $x\in N$ as well. We investigate the properties of $z$-submodules, particularly considering their stability with respect to various module constructions. Let $\mathcal{Z}({_R}M)$ denote the lattice of $z$-submodules of $M$ ordered by inclusion. We are concerned with certain mappings between the lattices $\mathcal{Z}({_R}R)$ and $\mathcal{Z}({_R}M)$. The mappings in question are $\phi:\mathcal{Z}({_R}R) \rightarrow \mathcal{Z}({_R}M)$ defined by setting for each $z$-ideal $I$ of $R$, $\phi(I)$ to be the intersection of all $z$-submodules of $M$ containing $IM$ and $\psi:\mathcal{Z}({_R}M) \rightarrow \mathcal{Z}({_R}R)$ defined by $\psi(N)$ is the colon ideal $(N:M)$. It is shown that $\phi$ is a lattice homomorphism, and if $M$ is a finitely generated multiplication module, then $\psi$ is also a lattice homomorphism. In particular, $\mathcal{Z}({_R}M)$ is a homomorphic image of $\mathcal{R}({_R}M)$, the lattice of radical submodules of $M$. Finally, we show that if $Y$ is a finite subset of a compact Hausdorff $P$-space $X$, then every submodule of the $C(X)$- module $\mathbb{R}^Y$ is a $z$-submodule of $\mathbb{R}^Y$.
Author Mohebian, Seyedeh Fatemeh
Fazaeli Moghimi, Hosein
Author_xml – sequence: 1
  givenname: Seyedeh Fatemeh
  surname: Mohebian
  fullname: Mohebian, Seyedeh Fatemeh
– sequence: 2
  givenname: Hosein
  surname: Fazaeli Moghimi
  fullname: Fazaeli Moghimi, Hosein
BookMark eNpNkD1rwzAYhEVJoWmasbuGrEpffdoei-kXBLK0sxHyq6BgS0VKAs2vr9tm6C13w3Fwzy2ZxRSRkHsOa6GkhIeAe7vmWmsO5orMuQTDDKh69i_fkGUpe5gktWpAzUm7jdTSHUbMdghnewgp0uTp6rxioUc7FBoiHVN_HLDQdMJMXRrH42FqnpDmEHfljlz7qYjLiy_Ix_PTe_vKNtuXt_Zxw5yQ4sCsacCBxsrZSjuhwAvJ68rWFVfCNwqEtNBDDbXhvreoemhQOCsVamemkwvC_nZdTqVk9N1nDqPNXx2H7hdC9wOhu0CQ3_F5UGc
Cites_doi 10.1007/s41980-021-00573-z
10.1007/BF01140126
10.15672/hujms.605105
10.1007/978-1-4615-7819-2
10.1016/0021-8693(73)90024-0
10.24330/ieja.266191
10.2989/16073606.2019.1601647
10.1216/JCA-2015-7-4-567
10.24330/ieja.266224
10.15672/hujms.455030
10.4064/fm-45-1-28-50
10.1080/00927878808823601
10.1081/AGB-120014684
10.1016/j.topol.2019.106969
10.4153/CMB-1980-064-3
10.24330/ieja.266246
10.7146/math.scand.a-11411
10.2307/2040685
10.1515/ms-2017-0099
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.24330/ieja.1555106
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1306-6048
EndPage 312
ExternalDocumentID 10_24330_ieja_1555106
GroupedDBID 2WC
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
FRP
J9A
M~E
OK1
ID FETCH-LOGICAL-c232t-a690c05e7ca75c240f23187a87142f94023a0d080861fdae4d09e2ca34e5c6243
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001400993000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1306-6048
IngestDate Sat Nov 29 03:23:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c232t-a690c05e7ca75c240f23187a87142f94023a0d080861fdae4d09e2ca34e5c6243
OpenAccessLink https://doi.org/10.24330/ieja.1555106
PageCount 16
ParticipantIDs crossref_primary_10_24330_ieja_1555106
PublicationCentury 2000
PublicationDate 2025-01-14
PublicationDateYYYYMMDD 2025-01-14
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-14
  day: 14
PublicationDecade 2020
PublicationTitle International electronic journal of algebra
PublicationYear 2025
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1007/s41980-021-00573-z
– ident: ref26
  doi: 10.1007/BF01140126
– ident: ref20
  doi: 10.15672/hujms.605105
– ident: ref8
  doi: 10.1007/978-1-4615-7819-2
– ident: ref13
  doi: 10.1016/0021-8693(73)90024-0
– ident: ref15
  doi: 10.24330/ieja.266191
– ident: ref5
  doi: 10.2989/16073606.2019.1601647
– ident: ref25
  doi: 10.1216/JCA-2015-7-4-567
– ident: ref9
– ident: ref19
– ident: ref24
  doi: 10.24330/ieja.266224
– ident: ref1
  doi: 10.15672/hujms.455030
– ident: ref11
  doi: 10.4064/fm-45-1-28-50
– ident: ref17
– ident: ref4
– ident: ref7
  doi: 10.1080/00927878808823601
– ident: ref2
– ident: ref18
  doi: 10.1081/AGB-120014684
– ident: ref16
  doi: 10.15672/hujms.605105
– ident: ref10
  doi: 10.1016/j.topol.2019.106969
– ident: ref14
  doi: 10.4153/CMB-1980-064-3
– ident: ref23
  doi: 10.24330/ieja.266246
– ident: ref21
  doi: 10.7146/math.scand.a-11411
– ident: ref22
  doi: 10.2307/2040685
– ident: ref6
  doi: 10.1515/ms-2017-0099
– ident: ref12
SSID ssj0000354904
Score 2.2866626
Snippet In this article, we introduce and study the concept of $z$-submodules as a generalization of $z$-ideals. Let $M$ be a module over a commutative ring with...
SourceID crossref
SourceType Index Database
StartPage 297
Title On a generalization of $z$-ideals in modules over commutative rings
Volume 37
WOSCitedRecordID wos001400993000020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1306-6048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000354904
  issn: 1306-6048
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbctEM7FH0ifYKD2yVgSlMUJY5FUKOLkw4pkM2gqFOtwKYDP4LUQ_LXexQZWQ08pEMHCTIhEabuw-m7w_E7QvpapLaAgWKqSDImoShYDpozqQrQlS9oLKum2UR2fJyfnekfvd7N7V6Yy2nmXH51pS_-q6lxDI3tt87-g7nbSXEAr9HoeEaz4_lehj9xB8Y3RvbJprjJ0jPCT0Ju8GB1CV4xuXa-Cc566jVncYm-tHy2XgUV8EWbPT_f1rlv04adzjkd3QnfL6RYtE5-NJ-AlzNvsqvwG0qYHAyR186gzT8PzcbAtEa38mtSz0L37PkSohR4zEQIX_THwg7Q6Dwx_GCKB-XMQ9gxFj1ukHmJyIo_ov8MxbrxU5yECuu7Xl7IJPF1kTWcm0PkQ-hWdqhp3_nKtbWHGPU0E4z94-P4-APyUGSp9m5xdL1N0vEEw2ceGiPHdQSd1maGL90_0OE1HYJy-ow8jZEF_RoQ8Zz0wL0gT0atLO_yJTk6cdTQv7FB5xXtb_oRF7R2NOKCelzQDi5og4tX5Ofw2-nRdxa7aDCLbHnFjNLc8hQya7LUIoGrkNLnmcFIWYpKSyRthpcYOORqUJUGZMk1CGsSCalVuNDXZM_NHewTClaXPK2EMirxgW5RpTazstQDOxB4_YZ8vn0H44sgljLe-brf3vfGd-TxFmnvyd5qsYYP5JG9XNXLxcfGWH8AOf9gbg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+generalization+of+%24z%24-ideals+in+modules+over+commutative+rings&rft.jtitle=International+electronic+journal+of+algebra&rft.au=Mohebian%2C+Seyedeh+Fatemeh&rft.au=Fazaeli+Moghimi%2C+Hosein&rft.date=2025-01-14&rft.issn=1306-6048&rft.eissn=1306-6048&rft.volume=37&rft.issue=37&rft.spage=297&rft.epage=312&rft_id=info:doi/10.24330%2Fieja.1555106&rft.externalDBID=n%2Fa&rft.externalDocID=10_24330_ieja_1555106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1306-6048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1306-6048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1306-6048&client=summon