Improved Dynamic Q-Learning Algorithm to Solve the Lot-Streaming Flowshop Scheduling Problem with Equal-Size Sublots
The lot-streaming flowshop scheduling problem with equal-size sublots (ELFSP) is a significant extension of the classic flowshop scheduling problem, focusing on optimize makespan. In response, an improved dynamic Q-learning (IDQL) algorithm is proposed, utilizing makespan as feedback. To prevent bli...
Uložené v:
| Vydané v: | Complex System Modeling and Simulation Ročník 4; číslo 3; s. 223 - 235 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Tsinghua University Press
01.09.2024
|
| Predmet: | |
| ISSN: | 2096-9929, 2097-3705 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The lot-streaming flowshop scheduling problem with equal-size sublots (ELFSP) is a significant extension of the classic flowshop scheduling problem, focusing on optimize makespan. In response, an improved dynamic Q-learning (IDQL) algorithm is proposed, utilizing makespan as feedback. To prevent blind search, a dynamic ε-greedy search strategy is introduced. Additionally, the Nawaz-Enscore-Ham (NEH) algorithm is employed to diversify solution sets, enhancing local optimality. Addressing the limitations of the dynamic ε-greedy strategy, the Glover operator complements local search efforts. Simulation experiments, comparing the IDQL algorithm with other intelligent algorithms, validate its effectiveness. The performance of the IDQL algorithm surpasses that of its counterparts, as evidenced by the experimental analysis. Overall, the proposed approach offers a promising solution to the complex ELFSP, showcasing its capability to efficiently minimize makespan and optimize scheduling processes in flowshop environments with equal-size sublots. |
|---|---|
| AbstractList | The lot-streaming flowshop scheduling problem with equal-size sublots (ELFSP) is a significant extension of the classic flowshop scheduling problem, focusing on optimize makespan. In response, an improved dynamic Q-learning (IDQL) algorithm is proposed, utilizing makespan as feedback. To prevent blind search, a dynamic ε-greedy search strategy is introduced. Additionally, the Nawaz-Enscore-Ham (NEH) algorithm is employed to diversify solution sets, enhancing local optimality. Addressing the limitations of the dynamic ε-greedy strategy, the Glover operator complements local search efforts. Simulation experiments, comparing the IDQL algorithm with other intelligent algorithms, validate its effectiveness. The performance of the IDQL algorithm surpasses that of its counterparts, as evidenced by the experimental analysis. Overall, the proposed approach offers a promising solution to the complex ELFSP, showcasing its capability to efficiently minimize makespan and optimize scheduling processes in flowshop environments with equal-size sublots. |
| Author | Sang, Hongyan Wang, Ping De Leone, Renato |
| Author_xml | – sequence: 1 givenname: Ping surname: Wang fullname: Wang, Ping organization: School of Computer Sciences and Mathematics, University of Camerino,Camerino,Italy,62032 – sequence: 2 givenname: Renato surname: De Leone fullname: De Leone, Renato organization: School of Computer Sciences and Mathematics, University of Camerino,Camerino,Italy,62032 – sequence: 3 givenname: Hongyan surname: Sang fullname: Sang, Hongyan organization: School of Computer Science, Liaocheng University,Liaocheng,China,252000 |
| BookMark | eNo9kctOwzAQRS0EEuWxZusfSOtH4sTLqrRQqQhQYG3ZzqQNcuLiuK3g60kLYjWjq3vP5lyh8853gNAdJWPGJZWTWflUjhlh6ZgQSs7QiBGZJzwn2fnpF4mUTF6i275vDMlYkWWCixGKy3Yb_B4qfP_V6bax-DVZgQ5d063x1K19aOKmxdHj0rs94LgBvPIxKWOAoT6UFs4f-o3f4tJuoNq5Y_YSvHHQ4sMwxvPPnXZJ2XwDLnfG-djfoItaux5u_-41el_M32aPyer5YTmbrhLLOIsJrawEk3JGqCBG1iyVzGScCWOJsJIPQV1QmYNIMyosZ9qCBFZXvK6h0oZfo-Uvt_L6Q21D0-rwpbxu1CnwYa10iI11oDS3tsi0LfKcppkkRrDUaOBkoBfAxcCa_LJs8H0foP7nUaJODtTRgTo6UEcH_AeGf3zC |
| Cites_doi | 10.1109/TASE.2022.3151648 10.1016/j.swevo.2022.101058 10.1109/TII.2022.3218645 10.1007/s10479-018-2969-x 10.23919/CCC50068.2020.9188697 10.1016/j.eswa.2022.119151 10.1016/j.jmsy.2024.01.006 10.1049/cim2.12042 10.1007/BF00992698 10.1080/24725854.2023.2294816 10.1080/0305215X.2021.2010727 10.1016/j.eswa.2023.122112 10.1109/TSMC.2022.3219380 10.1016/j.ijpe.2023.108958 10.3390/s23052808 10.3390/sym15040836 10.23919/CSMS.2022.0002 10.1007/978-3-030-70281-6_14 10.1016/j.eswa.2022.117796 10.1016/j.swevo.2018.12.001 10.1007/s10951-023-00777-7 10.1016/j.cor.2023.106473 10.1016/j.eswa.2023.121309 10.1146/annurev-statistics-031219-041220 10.1016/j.cor.2022.106009 10.1109/TCYB.2022.3192112 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.23919/CSMS.2024.0010 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2097-3705 |
| EndPage | 235 |
| ExternalDocumentID | oai_doaj_org_article_a3cc85ac87714590b624bae307e68e36 10_23919_CSMS_2024_0010 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c232t-1dc9eb4320160b9f2492b5326bc06c93f24f8197e64516c32ace9e2fd3ffedab3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001543740400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2096-9929 |
| IngestDate | Fri Oct 03 12:52:44 EDT 2025 Sat Nov 29 03:38:31 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c232t-1dc9eb4320160b9f2492b5326bc06c93f24f8197e64516c32ace9e2fd3ffedab3 |
| OpenAccessLink | https://doaj.org/article/a3cc85ac87714590b624bae307e68e36 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a3cc85ac87714590b624bae307e68e36 crossref_primary_10_23919_CSMS_2024_0010 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-9-00 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-9-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Complex System Modeling and Simulation |
| PublicationYear | 2024 |
| Publisher | Tsinghua University Press |
| Publisher_xml | – name: Tsinghua University Press |
| References | ref13 ref15 ref14 Wang (ref19) 2018 ref11 ref10 ref2 ref1 ref17 ref16 ref18 Rouhbakhsh (ref12) 2023; 8 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref5 doi: 10.1109/TASE.2022.3151648 – ident: ref1 doi: 10.1016/j.swevo.2022.101058 – ident: ref17 doi: 10.1109/TII.2022.3218645 – year: 2018 ident: ref19 article-title: Monte Carlo Q-learning for general game playing publication-title: arXiv preprint – ident: ref25 doi: 10.1007/s10479-018-2969-x – ident: ref26 doi: 10.23919/CCC50068.2020.9188697 – ident: ref11 doi: 10.1016/j.eswa.2022.119151 – ident: ref13 doi: 10.1016/j.jmsy.2024.01.006 – ident: ref21 doi: 10.1049/cim2.12042 – ident: ref9 doi: 10.1007/BF00992698 – ident: ref7 doi: 10.1080/24725854.2023.2294816 – ident: ref23 doi: 10.1080/0305215X.2021.2010727 – ident: ref28 doi: 10.1016/j.eswa.2023.122112 – ident: ref16 doi: 10.1109/TSMC.2022.3219380 – ident: ref3 doi: 10.1016/j.ijpe.2023.108958 – ident: ref4 doi: 10.3390/s23052808 – ident: ref18 doi: 10.3390/sym15040836 – ident: ref15 doi: 10.23919/CSMS.2022.0002 – ident: ref24 doi: 10.1007/978-3-030-70281-6_14 – ident: ref8 doi: 10.1016/j.eswa.2022.117796 – ident: ref27 doi: 10.1016/j.swevo.2018.12.001 – ident: ref10 doi: 10.1007/s10951-023-00777-7 – volume: 8 start-page: 307 issue: 2 year: 2023 ident: ref12 article-title: Presenting a model for solving lot-streaming hybrid flow shop scheduling problem by considering independent setup time and transportation time publication-title: Journal of Decisions and Operations Research – ident: ref22 doi: 10.1016/j.cor.2023.106473 – ident: ref6 doi: 10.1016/j.eswa.2023.121309 – ident: ref20 doi: 10.1146/annurev-statistics-031219-041220 – ident: ref2 doi: 10.1016/j.cor.2022.106009 – ident: ref14 doi: 10.1109/TCYB.2022.3192112 |
| SSID | ssib052855636 ssib053565417 |
| Score | 2.2736394 |
| Snippet | The lot-streaming flowshop scheduling problem with equal-size sublots (ELFSP) is a significant extension of the classic flowshop scheduling problem, focusing... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 223 |
| SubjectTerms | dynamic search flowshop sechduling lot-streaming q-learning reward function |
| Title | Improved Dynamic Q-Learning Algorithm to Solve the Lot-Streaming Flowshop Scheduling Problem with Equal-Size Sublots |
| URI | https://doaj.org/article/a3cc85ac87714590b624bae307e68e36 |
| Volume | 4 |
| WOSCitedRecordID | wos001543740400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2097-3705 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib053565417 issn: 2096-9929 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYmBBIEB8ywMDi4Vr58sjlFYMFIECElsU2-eCVBpEA0gM_Hbu4oK6sbBksKzEemfl3iXn9xg7DspBCNIKWUAQSc9LYXSaiQxTvdTBgLW-M5vIr6-Lhwdzs2D1RT1hUR44Andaa-eKtHZFnveS1EibqcTWgFsTsgJ0J7Ytc7NQTOFOSlVBwle_iTbFx6dJZ7-rkLMLg6Qg6vwobXrmtF-OSqwVFSlp01nahRS1oOTfpZzhOlubc0V-Fte4wZZgusna-BkAPL-IZvL8VsxFUsf8bDJusNp_fOZtw8tm8g4cCR6_alpBv59xOk4aTpqP2WPzwksMmKdO9DG_ib4ynD7L8gGdtBTl0ydwfK9Mmna2xe6Hg7v-pZhbJwiHFKkVPe8Q5kQrEpCzJpAuoE2RqlknM2c0DgTkAoghGfU6rWoHBlTwOgTwtdXbbHnaTGGH8VoSzL4mjfEkeGUBC1mZQe7zNNd1sctOftCqXqJCRoWVRQdsRcBWBCz1zslddk5o_k4jaetuAANezQNe_RXwvf-4yT5bpVXFZrEDtty-vsEhW3Hv7dPs9ajbS3gdfQ2-AZPzzKI |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Dynamic+Q-Learning+Algorithm+to+Solve+the+Lot-Streaming+Flowshop+Scheduling+Problem+with+Equal-Size+Sublots&rft.jtitle=Complex+System+Modeling+and+Simulation&rft.au=Ping+Wang&rft.au=Renato+De+Leone&rft.au=Hongyan+Sang&rft.date=2024-09-01&rft.pub=Tsinghua+University+Press&rft.issn=2096-9929&rft.eissn=2097-3705&rft.volume=4&rft.issue=3&rft.spage=223&rft.epage=235&rft_id=info:doi/10.23919%2FCSMS.2024.0010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a3cc85ac87714590b624bae307e68e36 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-9929&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-9929&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-9929&client=summon |