Improved Dynamic Q-Learning Algorithm to Solve the Lot-Streaming Flowshop Scheduling Problem with Equal-Size Sublots

The lot-streaming flowshop scheduling problem with equal-size sublots (ELFSP) is a significant extension of the classic flowshop scheduling problem, focusing on optimize makespan. In response, an improved dynamic Q-learning (IDQL) algorithm is proposed, utilizing makespan as feedback. To prevent bli...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Complex System Modeling and Simulation Ročník 4; číslo 3; s. 223 - 235
Hlavní autori: Wang, Ping, De Leone, Renato, Sang, Hongyan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Tsinghua University Press 01.09.2024
Predmet:
ISSN:2096-9929, 2097-3705
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The lot-streaming flowshop scheduling problem with equal-size sublots (ELFSP) is a significant extension of the classic flowshop scheduling problem, focusing on optimize makespan. In response, an improved dynamic Q-learning (IDQL) algorithm is proposed, utilizing makespan as feedback. To prevent blind search, a dynamic ε-greedy search strategy is introduced. Additionally, the Nawaz-Enscore-Ham (NEH) algorithm is employed to diversify solution sets, enhancing local optimality. Addressing the limitations of the dynamic ε-greedy strategy, the Glover operator complements local search efforts. Simulation experiments, comparing the IDQL algorithm with other intelligent algorithms, validate its effectiveness. The performance of the IDQL algorithm surpasses that of its counterparts, as evidenced by the experimental analysis. Overall, the proposed approach offers a promising solution to the complex ELFSP, showcasing its capability to efficiently minimize makespan and optimize scheduling processes in flowshop environments with equal-size sublots.
AbstractList The lot-streaming flowshop scheduling problem with equal-size sublots (ELFSP) is a significant extension of the classic flowshop scheduling problem, focusing on optimize makespan. In response, an improved dynamic Q-learning (IDQL) algorithm is proposed, utilizing makespan as feedback. To prevent blind search, a dynamic ε-greedy search strategy is introduced. Additionally, the Nawaz-Enscore-Ham (NEH) algorithm is employed to diversify solution sets, enhancing local optimality. Addressing the limitations of the dynamic ε-greedy strategy, the Glover operator complements local search efforts. Simulation experiments, comparing the IDQL algorithm with other intelligent algorithms, validate its effectiveness. The performance of the IDQL algorithm surpasses that of its counterparts, as evidenced by the experimental analysis. Overall, the proposed approach offers a promising solution to the complex ELFSP, showcasing its capability to efficiently minimize makespan and optimize scheduling processes in flowshop environments with equal-size sublots.
Author Sang, Hongyan
Wang, Ping
De Leone, Renato
Author_xml – sequence: 1
  givenname: Ping
  surname: Wang
  fullname: Wang, Ping
  organization: School of Computer Sciences and Mathematics, University of Camerino,Camerino,Italy,62032
– sequence: 2
  givenname: Renato
  surname: De Leone
  fullname: De Leone, Renato
  organization: School of Computer Sciences and Mathematics, University of Camerino,Camerino,Italy,62032
– sequence: 3
  givenname: Hongyan
  surname: Sang
  fullname: Sang, Hongyan
  organization: School of Computer Science, Liaocheng University,Liaocheng,China,252000
BookMark eNo9kctOwzAQRS0EEuWxZusfSOtH4sTLqrRQqQhQYG3ZzqQNcuLiuK3g60kLYjWjq3vP5lyh8853gNAdJWPGJZWTWflUjhlh6ZgQSs7QiBGZJzwn2fnpF4mUTF6i275vDMlYkWWCixGKy3Yb_B4qfP_V6bax-DVZgQ5d063x1K19aOKmxdHj0rs94LgBvPIxKWOAoT6UFs4f-o3f4tJuoNq5Y_YSvHHQ4sMwxvPPnXZJ2XwDLnfG-djfoItaux5u_-41el_M32aPyer5YTmbrhLLOIsJrawEk3JGqCBG1iyVzGScCWOJsJIPQV1QmYNIMyosZ9qCBFZXvK6h0oZfo-Uvt_L6Q21D0-rwpbxu1CnwYa10iI11oDS3tsi0LfKcppkkRrDUaOBkoBfAxcCa_LJs8H0foP7nUaJODtTRgTo6UEcH_AeGf3zC
Cites_doi 10.1109/TASE.2022.3151648
10.1016/j.swevo.2022.101058
10.1109/TII.2022.3218645
10.1007/s10479-018-2969-x
10.23919/CCC50068.2020.9188697
10.1016/j.eswa.2022.119151
10.1016/j.jmsy.2024.01.006
10.1049/cim2.12042
10.1007/BF00992698
10.1080/24725854.2023.2294816
10.1080/0305215X.2021.2010727
10.1016/j.eswa.2023.122112
10.1109/TSMC.2022.3219380
10.1016/j.ijpe.2023.108958
10.3390/s23052808
10.3390/sym15040836
10.23919/CSMS.2022.0002
10.1007/978-3-030-70281-6_14
10.1016/j.eswa.2022.117796
10.1016/j.swevo.2018.12.001
10.1007/s10951-023-00777-7
10.1016/j.cor.2023.106473
10.1016/j.eswa.2023.121309
10.1146/annurev-statistics-031219-041220
10.1016/j.cor.2022.106009
10.1109/TCYB.2022.3192112
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23919/CSMS.2024.0010
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2097-3705
EndPage 235
ExternalDocumentID oai_doaj_org_article_a3cc85ac87714590b624bae307e68e36
10_23919_CSMS_2024_0010
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
GROUPED_DOAJ
ID FETCH-LOGICAL-c232t-1dc9eb4320160b9f2492b5326bc06c93f24f8197e64516c32ace9e2fd3ffedab3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001543740400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2096-9929
IngestDate Fri Oct 03 12:52:44 EDT 2025
Sat Nov 29 03:38:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c232t-1dc9eb4320160b9f2492b5326bc06c93f24f8197e64516c32ace9e2fd3ffedab3
OpenAccessLink https://doaj.org/article/a3cc85ac87714590b624bae307e68e36
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_a3cc85ac87714590b624bae307e68e36
crossref_primary_10_23919_CSMS_2024_0010
PublicationCentury 2000
PublicationDate 2024-9-00
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-9-00
PublicationDecade 2020
PublicationTitle Complex System Modeling and Simulation
PublicationYear 2024
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References ref13
ref15
ref14
Wang (ref19) 2018
ref11
ref10
ref2
ref1
ref17
ref16
ref18
Rouhbakhsh (ref12) 2023; 8
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1109/TASE.2022.3151648
– ident: ref1
  doi: 10.1016/j.swevo.2022.101058
– ident: ref17
  doi: 10.1109/TII.2022.3218645
– year: 2018
  ident: ref19
  article-title: Monte Carlo Q-learning for general game playing
  publication-title: arXiv preprint
– ident: ref25
  doi: 10.1007/s10479-018-2969-x
– ident: ref26
  doi: 10.23919/CCC50068.2020.9188697
– ident: ref11
  doi: 10.1016/j.eswa.2022.119151
– ident: ref13
  doi: 10.1016/j.jmsy.2024.01.006
– ident: ref21
  doi: 10.1049/cim2.12042
– ident: ref9
  doi: 10.1007/BF00992698
– ident: ref7
  doi: 10.1080/24725854.2023.2294816
– ident: ref23
  doi: 10.1080/0305215X.2021.2010727
– ident: ref28
  doi: 10.1016/j.eswa.2023.122112
– ident: ref16
  doi: 10.1109/TSMC.2022.3219380
– ident: ref3
  doi: 10.1016/j.ijpe.2023.108958
– ident: ref4
  doi: 10.3390/s23052808
– ident: ref18
  doi: 10.3390/sym15040836
– ident: ref15
  doi: 10.23919/CSMS.2022.0002
– ident: ref24
  doi: 10.1007/978-3-030-70281-6_14
– ident: ref8
  doi: 10.1016/j.eswa.2022.117796
– ident: ref27
  doi: 10.1016/j.swevo.2018.12.001
– ident: ref10
  doi: 10.1007/s10951-023-00777-7
– volume: 8
  start-page: 307
  issue: 2
  year: 2023
  ident: ref12
  article-title: Presenting a model for solving lot-streaming hybrid flow shop scheduling problem by considering independent setup time and transportation time
  publication-title: Journal of Decisions and Operations Research
– ident: ref22
  doi: 10.1016/j.cor.2023.106473
– ident: ref6
  doi: 10.1016/j.eswa.2023.121309
– ident: ref20
  doi: 10.1146/annurev-statistics-031219-041220
– ident: ref2
  doi: 10.1016/j.cor.2022.106009
– ident: ref14
  doi: 10.1109/TCYB.2022.3192112
SSID ssib052855636
ssib053565417
Score 2.2736394
Snippet The lot-streaming flowshop scheduling problem with equal-size sublots (ELFSP) is a significant extension of the classic flowshop scheduling problem, focusing...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 223
SubjectTerms dynamic search
flowshop sechduling
lot-streaming
q-learning
reward function
Title Improved Dynamic Q-Learning Algorithm to Solve the Lot-Streaming Flowshop Scheduling Problem with Equal-Size Sublots
URI https://doaj.org/article/a3cc85ac87714590b624bae307e68e36
Volume 4
WOSCitedRecordID wos001543740400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2097-3705
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib053565417
  issn: 2096-9929
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYmBBIEB8ywMDi4Vr58sjlFYMFIECElsU2-eCVBpEA0gM_Hbu4oK6sbBksKzEemfl3iXn9xg7DspBCNIKWUAQSc9LYXSaiQxTvdTBgLW-M5vIr6-Lhwdzs2D1RT1hUR44Andaa-eKtHZFnveS1EibqcTWgFsTsgJ0J7Ytc7NQTOFOSlVBwle_iTbFx6dJZ7-rkLMLg6Qg6vwobXrmtF-OSqwVFSlp01nahRS1oOTfpZzhOlubc0V-Fte4wZZgusna-BkAPL-IZvL8VsxFUsf8bDJusNp_fOZtw8tm8g4cCR6_alpBv59xOk4aTpqP2WPzwksMmKdO9DG_ib4ynD7L8gGdtBTl0ydwfK9Mmna2xe6Hg7v-pZhbJwiHFKkVPe8Q5kQrEpCzJpAuoE2RqlknM2c0DgTkAoghGfU6rWoHBlTwOgTwtdXbbHnaTGGH8VoSzL4mjfEkeGUBC1mZQe7zNNd1sctOftCqXqJCRoWVRQdsRcBWBCz1zslddk5o_k4jaetuAANezQNe_RXwvf-4yT5bpVXFZrEDtty-vsEhW3Hv7dPs9ajbS3gdfQ2-AZPzzKI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Dynamic+Q-Learning+Algorithm+to+Solve+the+Lot-Streaming+Flowshop+Scheduling+Problem+with+Equal-Size+Sublots&rft.jtitle=Complex+System+Modeling+and+Simulation&rft.au=Ping+Wang&rft.au=Renato+De+Leone&rft.au=Hongyan+Sang&rft.date=2024-09-01&rft.pub=Tsinghua+University+Press&rft.issn=2096-9929&rft.eissn=2097-3705&rft.volume=4&rft.issue=3&rft.spage=223&rft.epage=235&rft_id=info:doi/10.23919%2FCSMS.2024.0010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a3cc85ac87714590b624bae307e68e36
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2096-9929&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2096-9929&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2096-9929&client=summon