An efficient algorithm for biomechanical problems based on a fully implicit nested Newton solver
Numerical simulations of the dynamics of soft biological tissues are highly non-trivial because tissues generally exhibit complex biological response to external and internal actions, including large deformations and remodeling. Combining the advantages of globally implicit approach (GIA) solvers wi...
Saved in:
| Published in: | Theoretical and applied mechanics (Belgrade, Serbia) Vol. 49; no. 2; pp. 183 - 221 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
2022
|
| ISSN: | 1450-5584, 2406-0925 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Numerical simulations of the dynamics of soft biological tissues are highly non-trivial because tissues generally exhibit complex biological response to external and internal actions, including large deformations and remodeling. Combining the advantages of globally implicit approach (GIA) solvers with the general applicability of the semi-implicit General Plasticity Algorithm (GPA), introduced by some of us some years ago, we present a new, efficient plasticity algorithm, which we call Bio Mechanics Basis Plasticity Algorithm (BMBPA). This is fully implicit, based on a nested Newton solver, and naturally suited for massively parallel computations. The Bilby?Kr?ner?Lee (BKL) multiplicative decomposition of the deformation gradient tensor is employed to introduce the unknowns of our model. We distinguish between global and local unknowns, associated with local and global equations, which are connected by means of a resolution function. The BMBPA asks for very few conditions to be applied and thus can be easily employed to solve several types of biological and biomechanical problems. We demonstrate the efficacy of BMBPA by performing two numerical experiments of a monophasic model of fiber-reinforced tissues. In one case, we consider the shear-compression test of a cubic specimen of tissue, while, in the other case, we focus on the unconfined compression test of a cylinder. The BMBPA is capable of solving the deformation and the remodeling of anisotropic biological tissues by employing a computation time of hours, while the GPA, applied to the same problems as the BMBPA, needs a substantially longer amount of time. All computations were performed in parallel and, within all tests, the performance of the BMBPA displayed substantially higher than the one of the GPA. The results of our simulations permit to study the overall mechanical behavior of the considered tissue and enable further investigations in the field of tissue biomechanics. |
|---|---|
| AbstractList | Numerical simulations of the dynamics of soft biological tissues are highly non-trivial because tissues generally exhibit complex biological response to external and internal actions, including large deformations and remodeling. Combining the advantages of globally implicit approach (GIA) solvers with the general applicability of the semi-implicit General Plasticity Algorithm (GPA), introduced by some of us some years ago, we present a new, efficient plasticity algorithm, which we call Bio Mechanics Basis Plasticity Algorithm (BMBPA). This is fully implicit, based on a nested Newton solver, and naturally suited for massively parallel computations. The Bilby?Kr?ner?Lee (BKL) multiplicative decomposition of the deformation gradient tensor is employed to introduce the unknowns of our model. We distinguish between global and local unknowns, associated with local and global equations, which are connected by means of a resolution function. The BMBPA asks for very few conditions to be applied and thus can be easily employed to solve several types of biological and biomechanical problems. We demonstrate the efficacy of BMBPA by performing two numerical experiments of a monophasic model of fiber-reinforced tissues. In one case, we consider the shear-compression test of a cubic specimen of tissue, while, in the other case, we focus on the unconfined compression test of a cylinder. The BMBPA is capable of solving the deformation and the remodeling of anisotropic biological tissues by employing a computation time of hours, while the GPA, applied to the same problems as the BMBPA, needs a substantially longer amount of time. All computations were performed in parallel and, within all tests, the performance of the BMBPA displayed substantially higher than the one of the GPA. The results of our simulations permit to study the overall mechanical behavior of the considered tissue and enable further investigations in the field of tissue biomechanics. |
| Author | di, Stefano Nägel, Arne Grillo, Alfio Knodel, Markus |
| Author_xml | – sequence: 1 givenname: Markus surname: Knodel fullname: Knodel, Markus organization: Goethe Center for Scientific Computing (GCSC), Universität Frankfurt, Frankfurt am Main, Germany – sequence: 2 givenname: Stefano surname: di fullname: di, Stefano organization: Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Bari, Italy – sequence: 3 givenname: Arne surname: Nägel fullname: Nägel, Arne organization: Goethe Center for Scientific Computing (GCSC), Universität Frankfurt, Frankfurt am Main, Germany – sequence: 4 givenname: Alfio surname: Grillo fullname: Grillo, Alfio organization: Dipartimento di Scienze Matematiche “G.L. Lagrange” (DISMA), Politecnico di Torino, Torino, Italy |
| BookMark | eNpVkL1OwzAYRS1UJELpyO4XCNif4zgZq4qfigJLmYPt2NTIsSM7gPr2BMHCXe5wpDOcc7QIMRiELim5Amib6_36EYBSygmFhxNUQEXqkrTAF6igFScl5011hlY5v5N5rBUtbwv0ug7YWOu0M2HC0r_F5KbDgG1MWLk4GH2QwWnp8Zii8mbIWMlsehwDlth-eH_Ebhj9LJhwMHma0ZP5mmaco_806QKdWumzWf39Er3c3uw39-Xu-W67We9KDQymkipOoBHCVkJRVlPgUoq6Z0ChZ3WlKOkltVXTCABGeiN6wYwEpRuhFWecLVH569Up5pyM7cbkBpmOHSXdT6HuXyH2DXXTWsI |
| Cites_doi | 10.1146/annurev.bioeng.6.040803.140250 10.1016/S0045-7825(98)00210-2 10.1017/CBO9780511623059 10.1007/BF00281393 10.1115/1.3005109 10.1177/1081286513515265 10.1016/j.ijnonlinmec.2022.104157 10.1007/s00791-014-0231-x 10.1002/nme.1620371004 10.1093/imammb/dqr008 10.1016/j.ijsolstr.2007.11.014 10.1016/j.mechmat.2011.07.010 10.1007/978-3-642-33374-3_32 10.1007/s00791-016-0261-7 10.1016/j.jbiomech.2003.09.026 10.1016/j.cma.2003.10.010 10.1016/S0749-6419(97)00043-0 10.1093/imamat/hxu039 10.1177/1081286515612280 10.1007/s10665-017-9940-8 10.1007/s10237-007-0076-z 10.1142/S0218202502001878 10.1016/S0749-6419(99)00081-9 10.1177/1081286505059739 10.1007/978-3-642-22167-5_4 10.1115/1.1324665 10.1017/S0962492911000079 10.1016/S0020-7683(02)00352-9 10.1016/0021-9290(90)90007-P 10.1007/978-0-387-89490-4 10.1016/j.jmps.2015.07.009 10.1007/978-3-7091-1838-2_2 10.1007/3-540-31184-X_4 10.1002/gamm.201900015 10.1016/0021-9290(94)90021-3 10.1371/journal.pcbi.1000915 10.1007/s00791-014-0232-9 10.1007/s10596-009-9162-x 10.1007/978-3-319-52794-9_11 10.1016/j.jbiomech.2004.09.020 10.1007/s00161-015-0465-y 10.1007/s00033-022-01692-1 10.1007/978-3-642-02677-5_12 10.1016/j.jmbbm.2011.06.005 10.1098/rsif.2019.0233 10.1137/17M1142338 10.1016/j.jmps.2010.12.011 10.1016/j.cma.2022.114630 10.1002/nme.1620362005 10.1016/0021-9290(83)90041-6 10.1016/j.ijnonlinmec.2022.103966 10.1137/S1064827502405318 10.1007/978-3-642-11445-8_9 10.1007/978-0-387-70914-7 10.1016/j.ijnonlinmec.2011.09.026 10.1016/j.ijnonlinmec.2018.08.003 10.1177/1081286515598661 10.1016/j.crhy.2009.10.003 10.1016/j.ijnonlinmec.2018.08.022 10.1007/BF01187433 10.1098/rsif.2009.0502 10.1016/j.cma.2009.04.007 10.1007/s10237-008-0125-2 10.1007/978-3-030-79385-2 10.1007/s10237-010-0241-7 10.1016/j.jtbi.2009.08.023 10.1016/j.mechrescom.2015.04.004 10.1007/s10237-007-0091-0 10.1016/j.ijnonlinmec.2009.02.005 10.1007/s00791-019-00313-1 10.1039/C9SM01628G 10.1016/j.cma.2004.08.006 10.1016/j.euromechsol.2007.12.006 10.1016/S0045-7825(98)00211-4 10.1007/s00791-017-0278-6 10.1515/JNETDY.2008.009 10.1007/s10596-009-9163-9 10.1016/j.jcp.2009.05.044 10.1007/978-3-662-04864-1 10.1007/978-3-0348-9229-2_25 10.1007/s10596-022-10140-y 10.1007/s00791-020-00322-5 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.2298/TAM221115012K |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2406-0925 |
| EndPage | 221 |
| ExternalDocumentID | 10_2298_TAM221115012K |
| GroupedDBID | .4S .DC 123 2WC 53S 5IG AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION CS3 EOJEC GROUPED_DOAJ I-F IPNFZ KQ8 OBODZ OK1 RIG RNS TUS |
| ID | FETCH-LOGICAL-c232t-1b502877f47b136125aa76d3212d364b10da1f48872230de7d73ea2bc87cb5353 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000950617300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1450-5584 |
| IngestDate | Sat Nov 29 02:28:33 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c232t-1b502877f47b136125aa76d3212d364b10da1f48872230de7d73ea2bc87cb5353 |
| OpenAccessLink | http://www.doiserbia.nb.rs/ft.aspx?id=1450-55842200012K |
| PageCount | 39 |
| ParticipantIDs | crossref_primary_10_2298_TAM221115012K |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Theoretical and applied mechanics (Belgrade, Serbia) |
| PublicationYear | 2022 |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref92 ref51 ref50 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref14 doi: 10.1146/annurev.bioeng.6.040803.140250 – ident: ref2 doi: 10.1016/S0045-7825(98)00210-2 – ident: ref1 – ident: ref35 doi: 10.1017/CBO9780511623059 – ident: ref64 doi: 10.1007/BF00281393 – ident: ref85 – ident: ref86 doi: 10.1115/1.3005109 – ident: ref50 doi: 10.1177/1081286513515265 – ident: ref20 doi: 10.1016/j.ijnonlinmec.2022.104157 – ident: ref81 doi: 10.1007/s00791-014-0231-x – ident: ref27 doi: 10.1002/nme.1620371004 – ident: ref42 doi: 10.1093/imammb/dqr008 – ident: ref34 doi: 10.1016/j.ijsolstr.2007.11.014 – ident: ref30 doi: 10.1016/j.mechmat.2011.07.010 – ident: ref55 doi: 10.1007/978-3-642-33374-3_32 – ident: ref61 doi: 10.1007/s00791-016-0261-7 – ident: ref40 doi: 10.1016/j.jbiomech.2003.09.026 – ident: ref79 doi: 10.1016/j.cma.2003.10.010 – ident: ref71 doi: 10.1016/S0749-6419(97)00043-0 – ident: ref87 doi: 10.1093/imamat/hxu039 – ident: ref69 – ident: ref84 doi: 10.1177/1081286515612280 – ident: ref46 doi: 10.1007/s10665-017-9940-8 – ident: ref6 doi: 10.1007/s10237-007-0076-z – ident: ref7 doi: 10.1142/S0218202502001878 – ident: ref26 doi: 10.1016/S0749-6419(99)00081-9 – ident: ref5 doi: 10.1177/1081286505059739 – ident: ref75 doi: 10.1007/978-3-642-22167-5_4 – ident: ref13 doi: 10.1115/1.1324665 – ident: ref53 – ident: ref91 doi: 10.1017/S0962492911000079 – ident: ref68 doi: 10.1016/S0020-7683(02)00352-9 – ident: ref36 – ident: ref56 doi: 10.1016/0021-9290(90)90007-P – ident: ref72 doi: 10.1007/978-0-387-89490-4 – ident: ref23 doi: 10.1016/j.jmps.2015.07.009 – ident: ref28 doi: 10.1007/978-3-7091-1838-2_2 – ident: ref52 doi: 10.1007/3-540-31184-X_4 – ident: ref47 doi: 10.1002/gamm.201900015 – ident: ref83 doi: 10.1016/0021-9290(94)90021-3 – ident: ref44 – ident: ref82 – ident: ref39 doi: 10.1371/journal.pcbi.1000915 – ident: ref90 doi: 10.1007/s00791-014-0232-9 – ident: ref8 doi: 10.1007/s10596-009-9162-x – ident: ref31 doi: 10.1007/978-3-319-52794-9_11 – ident: ref32 doi: 10.1016/j.jbiomech.2004.09.020 – ident: ref49 doi: 10.1007/s00161-015-0465-y – ident: ref21 doi: 10.1007/s00033-022-01692-1 – ident: ref45 doi: 10.1007/978-3-642-02677-5_12 – ident: ref76 doi: 10.1016/j.jmbbm.2011.06.005 – ident: ref54 – ident: ref3 doi: 10.1098/rsif.2019.0233 – ident: ref92 doi: 10.1137/17M1142338 – ident: ref4 doi: 10.1016/j.jmps.2010.12.011 – ident: ref62 doi: 10.1016/j.cma.2022.114630 – ident: ref67 doi: 10.1002/nme.1620362005 – ident: ref58 – ident: ref65 doi: 10.1016/0021-9290(83)90041-6 – ident: ref18 doi: 10.1016/j.ijnonlinmec.2022.103966 – ident: ref63 doi: 10.1137/S1064827502405318 – ident: ref77 doi: 10.1007/978-3-642-11445-8_9 – ident: ref10 doi: 10.1007/978-0-387-70914-7 – ident: ref48 doi: 10.1016/j.ijnonlinmec.2011.09.026 – ident: ref22 doi: 10.1016/j.ijnonlinmec.2018.08.003 – ident: ref51 doi: 10.1177/1081286515598661 – ident: ref89 doi: 10.1016/j.crhy.2009.10.003 – ident: ref15 doi: 10.1016/j.ijnonlinmec.2018.08.022 – ident: ref70 – ident: ref25 doi: 10.1007/BF01187433 – ident: ref29 doi: 10.1098/rsif.2009.0502 – ident: ref88 doi: 10.1016/j.cma.2009.04.007 – ident: ref38 doi: 10.1007/s10237-008-0125-2 – ident: ref59 doi: 10.1007/978-3-030-79385-2 – ident: ref74 doi: 10.1007/s10237-010-0241-7 – ident: ref78 doi: 10.1016/j.jtbi.2009.08.023 – ident: ref43 doi: 10.1016/j.mechrescom.2015.04.004 – ident: ref33 doi: 10.1007/s10237-007-0091-0 – ident: ref24 doi: 10.1016/j.ijnonlinmec.2009.02.005 – ident: ref19 doi: 10.1007/s00791-019-00313-1 – ident: ref41 doi: 10.1039/C9SM01628G – ident: ref57 doi: 10.1016/j.cma.2004.08.006 – ident: ref73 doi: 10.1016/j.euromechsol.2007.12.006 – ident: ref9 doi: 10.1016/S0045-7825(98)00211-4 – ident: ref11 doi: 10.1007/s00791-017-0278-6 – ident: ref12 doi: 10.1515/JNETDY.2008.009 – ident: ref16 doi: 10.1007/s10596-009-9163-9 – ident: ref17 doi: 10.1016/j.jcp.2009.05.044 – ident: ref66 doi: 10.1007/978-3-662-04864-1 – ident: ref37 doi: 10.1007/978-3-0348-9229-2_25 – ident: ref60 doi: 10.1007/s10596-022-10140-y – ident: ref80 doi: 10.1007/s00791-020-00322-5 |
| SSID | ssj0000397959 |
| Score | 2.1751723 |
| Snippet | Numerical simulations of the dynamics of soft biological tissues are highly non-trivial because tissues generally exhibit complex biological response to... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 183 |
| Title | An efficient algorithm for biomechanical problems based on a fully implicit nested Newton solver |
| Volume | 49 |
| WOSCitedRecordID | wos000950617300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2406-0925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000397959 issn: 1450-5584 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLbKwIELO4JhkQ-ISxVI7KROjgGxSMCIQ5HmVuzYGYqKO2o71cxf49fxnremIw7DgUtUWamb9n31-95OyAul4G_QgQTkpDcZMHCWNQYN10ZwIVmvdOda5n8WR0f18XHzdTT6HWthtgthbX1-3pz-V1HDGggbS2f_QdxpU1iA1yB0uILY4XolwbcWkzTmrtBxLBcnSzD_f_zyaZlYa4-lvk4yYZbMeoyaTGPUQI7RG3-BpZML2GAzts4biichdt-A596GZN6fCWSpDNJ1fQ2cNn6Kc-m-MTjkyLf3haNJYXruLsXb4iieWDV0lhi-nocctF7aZfJYu7B-eRIyC1a7lIAPq3kIIrWL3qeWRV8GGzg2i7LKs6ry4-JeGbeGZANA4wuj42ntG5wGVLLB0Vv4gThBizNfd31ZQTDWYNHDtP0CNyAZLtinnSaM0f9LCjKlLYLBhBvM9t5-jVxnAsyygTnvWAAGTN2svvTVfItX3OH13g4DSjTgNtM75FYwSmjrwXSXjIy9R24HA4WG4399n3xvLU3YoglbFLBF97BFI7aowxZdWiqpwxaN2KIeW9Rji3psPSDf3r-bvv2YhREdWQdUfJMVqgKCKkRfClVwZMtSionmQIg0n5SqyLUselASAmhoro3QghvJVFeLTlW84g_JgV1a84jQXOdVV8jGNFqUzJR1LusS200KXkvDxWPyMv5Ks1PfiWX2V4EcXvXGJ-QmgtA71J6Sg83qzDwjN7rtZr5ePXfi_ANfln1X |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+algorithm+for+biomechanical+problems+based+on+a+fully+implicit+nested+Newton+solver&rft.jtitle=Theoretical+and+applied+mechanics+%28Belgrade%2C+Serbia%29&rft.au=Knodel%2C+Markus&rft.au=di%2C+Stefano&rft.au=N%C3%A4gel%2C+Arne&rft.au=Grillo%2C+Alfio&rft.date=2022&rft.issn=1450-5584&rft.eissn=2406-0925&rft.volume=49&rft.issue=2&rft.spage=183&rft.epage=221&rft_id=info:doi/10.2298%2FTAM221115012K&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_TAM221115012K |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1450-5584&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1450-5584&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1450-5584&client=summon |